/* * Copyright 2002-2008, Axel Dörfler, axeld@pinc-software.de. * Copyright 2002, Angelo Mottola, a.mottola@libero.it. * * Distributed under the terms of the MIT License. */ /*! POSIX signals handling routines */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //#define TRACE_SIGNAL #ifdef TRACE_SIGNAL # define TRACE(x) dprintf x #else # define TRACE(x) ; #endif #define BLOCKABLE_SIGNALS (~(KILL_SIGNALS | SIGNAL_TO_MASK(SIGSTOP))) #define STOP_SIGNALS \ (SIGNAL_TO_MASK(SIGSTOP) | SIGNAL_TO_MASK(SIGTSTP) \ | SIGNAL_TO_MASK(SIGTTIN) | SIGNAL_TO_MASK(SIGTTOU)) #define DEFAULT_IGNORE_SIGNALS \ (SIGNAL_TO_MASK(SIGCHLD) | SIGNAL_TO_MASK(SIGWINCH) \ | SIGNAL_TO_MASK(SIGCONT)) const char * const sigstr[NSIG] = { "NONE", "HUP", "INT", "QUIT", "ILL", "CHLD", "ABRT", "PIPE", "FPE", "KILL", "STOP", "SEGV", "CONT", "TSTP", "ALRM", "TERM", "TTIN", "TTOU", "USR1", "USR2", "WINCH", "KILLTHR", "TRAP", "POLL", "PROF", "SYS", "URG", "VTALRM", "XCPU", "XFSZ" }; static status_t deliver_signal(struct thread *thread, uint signal, uint32 flags); // #pragma mark - signal tracing #ifdef SIGNAL_TRACING namespace SignalTracing { class HandleSignals : public AbstractTraceEntry { public: HandleSignals(uint32 signals) : fSignals(signals) { Initialized(); } virtual void AddDump(TraceOutput& out) { out.Print("signal handle: 0x%lx", fSignals); } private: uint32 fSignals; }; class ExecuteSignalHandler : public AbstractTraceEntry { public: ExecuteSignalHandler(int signal, struct sigaction* handler) : fSignal(signal), fHandler((void*)handler->sa_handler) { Initialized(); } virtual void AddDump(TraceOutput& out) { out.Print("signal exec handler: signal: %d, handler: %p", fSignal, fHandler); } private: int fSignal; void* fHandler; }; class SendSignal : public AbstractTraceEntry { public: SendSignal(pid_t target, uint32 signal, uint32 flags) : fTarget(target), fSignal(signal), fFlags(flags) { Initialized(); } virtual void AddDump(TraceOutput& out) { out.Print("signal send: target: %ld, signal: %lu (%s), " "flags: 0x%lx", fTarget, fSignal, (fSignal < NSIG ? sigstr[fSignal] : "invalid"), fFlags); } private: pid_t fTarget; uint32 fSignal; uint32 fFlags; }; class SigAction : public AbstractTraceEntry { public: SigAction(struct thread* thread, uint32 signal, const struct sigaction* act) : fThread(thread->id), fSignal(signal), fAction(*act) { Initialized(); } virtual void AddDump(TraceOutput& out) { out.Print("signal action: thread: %ld, signal: %lu (%s), " "action: {handler: %p, flags: 0x%x, mask: 0x%lx}", fThread, fSignal, (fSignal < NSIG ? sigstr[fSignal] : "invalid"), fAction.sa_handler, fAction.sa_flags, fAction.sa_mask); } private: thread_id fThread; uint32 fSignal; struct sigaction fAction; }; class SigProcMask : public AbstractTraceEntry { public: SigProcMask(int how, sigset_t mask) : fHow(how), fMask(mask), fOldMask(thread_get_current_thread()->sig_block_mask) { Initialized(); } virtual void AddDump(TraceOutput& out) { const char* how = "invalid"; switch (fHow) { case SIG_BLOCK: how = "block"; break; case SIG_UNBLOCK: how = "unblock"; break; case SIG_SETMASK: how = "set"; break; } out.Print("signal proc mask: %s 0x%lx, old mask: 0x%lx", how, fMask, fOldMask); } private: int fHow; sigset_t fMask; sigset_t fOldMask; }; } // namespace SignalTracing # define T(x) new(std::nothrow) SignalTracing::x #else # define T(x) #endif // SIGNAL_TRACING // #pragma mark - /*! Updates the thread::flags field according to what signals are pending. Interrupts must be disabled and the thread lock must be held. */ static void update_thread_signals_flag(struct thread* thread) { if (atomic_get(&thread->sig_pending) & ~atomic_get(&thread->sig_block_mask)) atomic_or(&thread->flags, THREAD_FLAGS_SIGNALS_PENDING); else atomic_and(&thread->flags, ~THREAD_FLAGS_SIGNALS_PENDING); } void update_current_thread_signals_flag() { InterruptsSpinLocker locker(thread_spinlock); update_thread_signals_flag(thread_get_current_thread()); } static bool notify_debugger(struct thread *thread, int signal, struct sigaction *handler, bool deadly) { uint64 signalMask = SIGNAL_TO_MASK(signal); // first check the ignore signal masks the debugger specified for the thread if (atomic_get(&thread->debug_info.ignore_signals_once) & signalMask) { atomic_and(&thread->debug_info.ignore_signals_once, ~signalMask); return true; } if (atomic_get(&thread->debug_info.ignore_signals) & signalMask) return true; // deliver the event return user_debug_handle_signal(signal, handler, deadly); } /*! Actually handles the signal - ie. the thread will exit, a custom signal handler is prepared, or whatever the signal demands. */ bool handle_signals(struct thread *thread) { uint32 signalMask = atomic_get(&thread->sig_pending) & ~atomic_get(&thread->sig_block_mask); // If SIGKILL[THR] are pending, we ignore other signals. // Otherwise check, if the thread shall stop for debugging. if (signalMask & KILL_SIGNALS) { signalMask &= KILL_SIGNALS; } else if (thread->debug_info.flags & B_THREAD_DEBUG_STOP) { user_debug_stop_thread(); } if (signalMask == 0) return 0; bool restart = (atomic_and(&thread->flags, ~THREAD_FLAGS_DONT_RESTART_SYSCALL) & THREAD_FLAGS_DONT_RESTART_SYSCALL) == 0; T(HandleSignals(signalMask)); for (int32 i = 0; i < NSIG; i++) { bool debugSignal; int32 signal = i + 1; if ((signalMask & SIGNAL_TO_MASK(signal)) == 0) continue; // clear the signal that we will handle atomic_and(&thread->sig_pending, ~SIGNAL_TO_MASK(signal)); debugSignal = !(~atomic_get(&thread->team->debug_info.flags) & (B_TEAM_DEBUG_SIGNALS | B_TEAM_DEBUG_DEBUGGER_INSTALLED)); // TODO: since sigaction_etc() could clobber the fields at any time, // we should actually copy the relevant fields atomically before // accessing them (only the debugger is calling sigaction_etc() // right now). // Update: sigaction_etc() is only used by the userland debugger // support. We can just as well restrict getting/setting signal // handlers to work only when the respective thread is stopped. // Then sigaction() could be used instead and we could get rid of // sigaction_etc(). struct sigaction* handler = &thread->sig_action[i]; TRACE(("Thread 0x%lx received signal %s\n", thread->id, sigstr[signal])); if (handler->sa_handler == SIG_IGN) { // signal is to be ignored // ToDo: apply zombie cleaning on SIGCHLD // notify the debugger if (debugSignal) notify_debugger(thread, signal, handler, false); continue; } else if (handler->sa_handler == SIG_DFL) { // default signal behaviour switch (signal) { case SIGCHLD: case SIGWINCH: case SIGURG: // notify the debugger if (debugSignal) notify_debugger(thread, signal, handler, false); continue; case SIGCONT: // notify the debugger if (debugSignal && !notify_debugger(thread, signal, handler, false)) continue; // notify threads waiting for team state changes if (thread == thread->team->main_thread) { InterruptsSpinLocker locker(team_spinlock); team_set_job_control_state(thread->team, JOB_CONTROL_STATE_CONTINUED, signal, false); // The standard states that the system *may* send a // SIGCHLD when a child is continued. I haven't found // a good reason why we would want to, though. } continue; case SIGSTOP: case SIGTSTP: case SIGTTIN: case SIGTTOU: // notify the debugger if (debugSignal && !notify_debugger(thread, signal, handler, false)) continue; thread->next_state = B_THREAD_SUSPENDED; // notify threads waiting for team state changes if (thread == thread->team->main_thread) { InterruptsSpinLocker locker(team_spinlock); team_set_job_control_state(thread->team, JOB_CONTROL_STATE_STOPPED, signal, false); // send a SIGCHLD to the parent (if it does have // SA_NOCLDSTOP defined) SpinLocker _(thread_spinlock); struct thread* parentThread = thread->team->parent->main_thread; struct sigaction& parentHandler = parentThread->sig_action[SIGCHLD - 1]; if ((parentHandler.sa_flags & SA_NOCLDSTOP) == 0) deliver_signal(parentThread, SIGCHLD, 0); } return true; case SIGQUIT: case SIGILL: case SIGTRAP: case SIGABRT: case SIGFPE: case SIGSEGV: case SIGPOLL: case SIGPROF: case SIGSYS: case SIGVTALRM: case SIGXCPU: case SIGXFSZ: TRACE(("Shutting down thread 0x%lx due to signal #%ld\n", thread->id, signal)); case SIGKILL: case SIGKILLTHR: default: // if the thread exited normally, the exit reason is already set if (thread->exit.reason != THREAD_RETURN_EXIT) { thread->exit.reason = THREAD_RETURN_INTERRUPTED; thread->exit.signal = (uint16)signal; } // notify the debugger if (debugSignal && signal != SIGKILL && signal != SIGKILLTHR && !notify_debugger(thread, signal, handler, true)) continue; thread_exit(); // won't return } } // User defined signal handler // notify the debugger if (debugSignal && !notify_debugger(thread, signal, handler, false)) continue; if (!restart || (handler->sa_flags & SA_RESTART) == 0) atomic_and(&thread->flags, ~THREAD_FLAGS_RESTART_SYSCALL); T(ExecuteSignalHandler(signal, handler)); TRACE(("### Setting up custom signal handler frame...\n")); arch_setup_signal_frame(thread, handler, signal, atomic_get(&thread->sig_block_mask)); if (handler->sa_flags & SA_ONESHOT) handler->sa_handler = SIG_DFL; if ((handler->sa_flags & SA_NOMASK) == 0) { // Update the block mask while the signal handler is running - it // will be automatically restored when the signal frame is left. atomic_or(&thread->sig_block_mask, (handler->sa_mask | SIGNAL_TO_MASK(signal)) & BLOCKABLE_SIGNALS); } update_current_thread_signals_flag(); return false; } // clear syscall restart thread flag, if we're not supposed to restart the // syscall if (!restart) atomic_and(&thread->flags, ~THREAD_FLAGS_RESTART_SYSCALL); update_current_thread_signals_flag(); return false; } bool is_kill_signal_pending(void) { return (atomic_get(&thread_get_current_thread()->sig_pending) & KILL_SIGNALS) != 0; } bool is_signal_blocked(int signal) { return (atomic_get(&thread_get_current_thread()->sig_block_mask) & SIGNAL_TO_MASK(signal)) != 0; } /*! Tries to interrupt a thread waiting for a semaphore or a condition variable. Interrupts must be disabled, the thread lock be held. */ static status_t signal_interrupt_thread(struct thread* thread) { if (thread->sem.blocking >= 0) return sem_interrupt_thread(thread); else if (thread->condition_variable_entry) return condition_variable_interrupt_thread(thread); return B_BAD_VALUE; } /*! Delivers the \a signal to the \a thread, but doesn't handle the signal - it just makes sure the thread gets the signal, ie. unblocks it if needed. This function must be called with interrupts disabled and the thread lock held. */ static status_t deliver_signal(struct thread *thread, uint signal, uint32 flags) { if (flags & B_CHECK_PERMISSION) { // ToDo: introduce euid & uid fields to the team and check permission } if (signal == 0) return B_OK; if (thread->team == team_get_kernel_team()) { // Signals to kernel threads will only wake them up if (thread->state == B_THREAD_SUSPENDED) scheduler_enqueue_in_run_queue(thread); return B_OK; } atomic_or(&thread->sig_pending, SIGNAL_TO_MASK(signal)); switch (signal) { case SIGKILL: { struct thread *mainThread = thread->team->main_thread; // Forward KILLTHR to the main thread of the team mainThread->sig_pending |= SIGNAL_TO_MASK(SIGKILLTHR); // Wake up main thread if (mainThread->state == B_THREAD_SUSPENDED) scheduler_enqueue_in_run_queue(mainThread); else if (mainThread->state == B_THREAD_WAITING) signal_interrupt_thread(mainThread); // Supposed to fall through } case SIGKILLTHR: // Wake up suspended threads and interrupt waiting ones if (thread->state == B_THREAD_SUSPENDED) scheduler_enqueue_in_run_queue(thread); else if (thread->state == B_THREAD_WAITING) signal_interrupt_thread(thread); break; case SIGCONT: // Wake up thread if it was suspended if (thread->state == B_THREAD_SUSPENDED) scheduler_enqueue_in_run_queue(thread); if ((flags & SIGNAL_FLAG_DONT_RESTART_SYSCALL) != 0) atomic_or(&thread->flags, THREAD_FLAGS_DONT_RESTART_SYSCALL); atomic_and(&thread->sig_pending, ~STOP_SIGNALS); // remove any pending stop signals break; default: if (thread->sig_pending & (~thread->sig_block_mask | SIGNAL_TO_MASK(SIGCHLD))) { // Interrupt thread if it was waiting if (thread->state == B_THREAD_WAITING) signal_interrupt_thread(thread); } break; } update_thread_signals_flag(thread); return B_OK; } int send_signal_etc(pid_t id, uint signal, uint32 flags) { status_t status = B_BAD_THREAD_ID; struct thread *thread; cpu_status state = 0; if (signal < 0 || signal > MAX_SIGNO) return B_BAD_VALUE; T(SendSignal(id, signal, flags)); if ((flags & SIGNAL_FLAG_TEAMS_LOCKED) == 0) state = disable_interrupts(); if (id > 0) { // send a signal to the specified thread GRAB_THREAD_LOCK(); thread = thread_get_thread_struct_locked(id); if (thread != NULL) status = deliver_signal(thread, signal, flags); } else { // send a signal to the specified process group // (the absolute value of the id) struct process_group *group; // TODO: handle -1 correctly if (id == 0 || id == -1) { // send a signal to the current team id = thread_get_current_thread()->team->id; } else id = -id; if ((flags & SIGNAL_FLAG_TEAMS_LOCKED) == 0) GRAB_TEAM_LOCK(); group = team_get_process_group_locked(NULL, id); if (group != NULL) { struct team *team, *next; // Send a signal to all teams in this process group for (team = group->teams; team != NULL; team = next) { next = team->group_next; id = team->id; GRAB_THREAD_LOCK(); thread = thread_get_thread_struct_locked(id); if (thread != NULL) { // we don't stop because of an error sending the signal; we // rather want to send as much signals as possible status = deliver_signal(thread, signal, flags); } RELEASE_THREAD_LOCK(); } } if ((flags & SIGNAL_FLAG_TEAMS_LOCKED) == 0) RELEASE_TEAM_LOCK(); GRAB_THREAD_LOCK(); } // ToDo: maybe the scheduler should only be invoked if there is reason to do it? // (ie. deliver_signal() moved some threads in the running queue?) if ((flags & (B_DO_NOT_RESCHEDULE | SIGNAL_FLAG_TEAMS_LOCKED)) == 0) scheduler_reschedule(); RELEASE_THREAD_LOCK(); if ((flags & SIGNAL_FLAG_TEAMS_LOCKED) == 0) restore_interrupts(state); return status; } int send_signal(pid_t threadID, uint signal) { // The BeBook states that this function wouldn't be exported // for drivers, but, of course, it's wrong. return send_signal_etc(threadID, signal, 0); } int has_signals_pending(void *_thread) { struct thread *thread = (struct thread *)_thread; if (thread == NULL) thread = thread_get_current_thread(); return atomic_get(&thread->sig_pending) & ~atomic_get(&thread->sig_block_mask); } int sigprocmask(int how, const sigset_t *set, sigset_t *oldSet) { struct thread *thread = thread_get_current_thread(); sigset_t oldMask = atomic_get(&thread->sig_block_mask); if (set != NULL) { T(SigProcMask(how, *set)); switch (how) { case SIG_BLOCK: atomic_or(&thread->sig_block_mask, *set & BLOCKABLE_SIGNALS); break; case SIG_UNBLOCK: atomic_and(&thread->sig_block_mask, ~*set); break; case SIG_SETMASK: atomic_set(&thread->sig_block_mask, *set & BLOCKABLE_SIGNALS); break; default: return B_BAD_VALUE; } update_current_thread_signals_flag(); } if (oldSet != NULL) *oldSet = oldMask; return B_OK; } /*! \brief sigaction() for the specified thread. A \a threadID is < 0 specifies the current thread. */ int sigaction_etc(thread_id threadID, int signal, const struct sigaction *act, struct sigaction *oldAction) { struct thread *thread; cpu_status state; status_t error = B_OK; if (signal < 1 || signal > MAX_SIGNO || (SIGNAL_TO_MASK(signal) & ~BLOCKABLE_SIGNALS) != 0) return B_BAD_VALUE; state = disable_interrupts(); GRAB_THREAD_LOCK(); thread = (threadID < 0 ? thread_get_current_thread() : thread_get_thread_struct_locked(threadID)); if (thread) { if (oldAction) { // save previous sigaction structure memcpy(oldAction, &thread->sig_action[signal - 1], sizeof(struct sigaction)); } if (act) { T(SigAction(thread, signal, act)); // set new sigaction structure memcpy(&thread->sig_action[signal - 1], act, sizeof(struct sigaction)); thread->sig_action[signal - 1].sa_mask &= BLOCKABLE_SIGNALS; } if (act && act->sa_handler == SIG_IGN) { // remove pending signal if it should now be ignored atomic_and(&thread->sig_pending, ~SIGNAL_TO_MASK(signal)); } else if (act && act->sa_handler == SIG_DFL && (SIGNAL_TO_MASK(signal) & DEFAULT_IGNORE_SIGNALS) != 0) { // remove pending signal for those signals whose default // action is to ignore them atomic_and(&thread->sig_pending, ~SIGNAL_TO_MASK(signal)); } } else error = B_BAD_THREAD_ID; RELEASE_THREAD_LOCK(); restore_interrupts(state); return error; } int sigaction(int signal, const struct sigaction *act, struct sigaction *oldAction) { return sigaction_etc(-1, signal, act, oldAction); } /*! Triggers a SIGALRM to the thread that issued the timer and reschedules */ static int32 alarm_event(timer *t) { // The hook can be called from any context, but we have to // deliver the signal to the thread that originally called // set_alarm(). // Since thread->alarm is this timer structure, we can just // cast it back - ugly but it works for now struct thread *thread = (struct thread *)((uint8 *)t - offsetof(struct thread, alarm)); // ToDo: investigate adding one user parameter to the timer structure to fix this hack TRACE(("alarm_event: thread = %p\n", thread)); send_signal_etc(thread->id, SIGALRM, B_DO_NOT_RESCHEDULE); return B_INVOKE_SCHEDULER; } /*! Sets the alarm timer for the current thread. The timer fires at the specified time in the future, periodically or just once, as determined by \a mode. \return the time left until a previous set alarm would have fired. */ bigtime_t set_alarm(bigtime_t time, uint32 mode) { struct thread *thread = thread_get_current_thread(); bigtime_t remainingTime = 0; ASSERT(B_ONE_SHOT_RELATIVE_ALARM == B_ONE_SHOT_RELATIVE_TIMER); // just to be sure no one changes the headers some day TRACE(("set_alarm: thread = %p\n", thread)); if (thread->alarm.period) remainingTime = (bigtime_t)thread->alarm.entry.key - system_time(); cancel_timer(&thread->alarm); if (time != B_INFINITE_TIMEOUT) add_timer(&thread->alarm, &alarm_event, time, mode); else { // this marks the alarm as canceled (for returning the remaining time) thread->alarm.period = 0; } return remainingTime; } /*! Replace the current signal block mask and wait for any event to happen. Before returning, the original signal block mask is reinstantiated. */ int sigsuspend(const sigset_t *mask) { struct thread *thread = thread_get_current_thread(); sigset_t oldMask = atomic_get(&thread->sig_block_mask); // Set the new block mask and interuptably block wait for a condition // variable no one will ever notify. atomic_set(&thread->sig_block_mask, *mask & BLOCKABLE_SIGNALS); ConditionVariable conditionVar; conditionVar.Publish(mask, "sigsuspend"); while (true) { ConditionVariableEntry entry; entry.Wait(mask, B_CAN_INTERRUPT); if (has_signals_pending(thread)) break; } conditionVar.Unpublish(); // restore the original block mask atomic_set(&thread->sig_block_mask, oldMask); update_current_thread_signals_flag(); // we're not supposed to actually succeed return B_INTERRUPTED; } int sigpending(sigset_t *set) { struct thread *thread = thread_get_current_thread(); if (set == NULL) return B_BAD_VALUE; *set = atomic_get(&thread->sig_pending); return B_OK; } // #pragma mark - bigtime_t _user_set_alarm(bigtime_t time, uint32 mode) { syscall_64_bit_return_value(); return set_alarm(time, mode); } status_t _user_send_signal(pid_t team, uint signal) { return send_signal_etc(team, signal, B_CHECK_PERMISSION); } status_t _user_sigprocmask(int how, const sigset_t *userSet, sigset_t *userOldSet) { sigset_t set, oldSet; status_t status; if ((userSet != NULL && user_memcpy(&set, userSet, sizeof(sigset_t)) < B_OK) || (userOldSet != NULL && user_memcpy(&oldSet, userOldSet, sizeof(sigset_t)) < B_OK)) return B_BAD_ADDRESS; status = sigprocmask(how, userSet ? &set : NULL, userOldSet ? &oldSet : NULL); // copy old set if asked for if (status >= B_OK && userOldSet != NULL && user_memcpy(userOldSet, &oldSet, sizeof(sigset_t)) < B_OK) return B_BAD_ADDRESS; return status; } status_t _user_sigaction(int signal, const struct sigaction *userAction, struct sigaction *userOldAction) { struct sigaction act, oact; status_t status; if ((userAction != NULL && user_memcpy(&act, userAction, sizeof(struct sigaction)) < B_OK) || (userOldAction != NULL && user_memcpy(&oact, userOldAction, sizeof(struct sigaction)) < B_OK)) return B_BAD_ADDRESS; status = sigaction(signal, userAction ? &act : NULL, userOldAction ? &oact : NULL); // only copy the old action if a pointer has been given if (status >= B_OK && userOldAction != NULL && user_memcpy(userOldAction, &oact, sizeof(struct sigaction)) < B_OK) return B_BAD_ADDRESS; return status; } status_t _user_sigsuspend(const sigset_t *userMask) { sigset_t mask; if (userMask == NULL) return B_BAD_VALUE; if (user_memcpy(&mask, userMask, sizeof(sigset_t)) < B_OK) return B_BAD_ADDRESS; return sigsuspend(&mask); } status_t _user_sigpending(sigset_t *userSet) { sigset_t set; int status; if (userSet == NULL) return B_BAD_VALUE; if (!IS_USER_ADDRESS(userSet)) return B_BAD_ADDRESS; status = sigpending(&set); if (status == B_OK && user_memcpy(userSet, &set, sizeof(sigset_t)) < B_OK) return B_BAD_ADDRESS; return status; } status_t _user_set_signal_stack(const stack_t *newUserStack, stack_t *oldUserStack) { struct thread *thread = thread_get_current_thread(); struct stack_t newStack, oldStack; bool onStack = false; if ((newUserStack != NULL && user_memcpy(&newStack, newUserStack, sizeof(stack_t)) < B_OK) || (oldUserStack != NULL && user_memcpy(&oldStack, oldUserStack, sizeof(stack_t)) < B_OK)) return B_BAD_ADDRESS; if (thread->signal_stack_enabled) { // determine wether or not the user thread is currently // on the active signal stack onStack = arch_on_signal_stack(thread); } if (oldUserStack != NULL) { oldStack.ss_sp = (void *)thread->signal_stack_base; oldStack.ss_size = thread->signal_stack_size; oldStack.ss_flags = (thread->signal_stack_enabled ? 0 : SS_DISABLE) | (onStack ? SS_ONSTACK : 0); } if (newUserStack != NULL) { // no flags other than SS_DISABLE are allowed if ((newStack.ss_flags & ~SS_DISABLE) != 0) return B_BAD_VALUE; if ((newStack.ss_flags & SS_DISABLE) == 0) { // check if the size is valid if (newStack.ss_size < MINSIGSTKSZ) return B_NO_MEMORY; if (onStack) return B_NOT_ALLOWED; if (!IS_USER_ADDRESS(newStack.ss_sp)) return B_BAD_VALUE; thread->signal_stack_base = (addr_t)newStack.ss_sp; thread->signal_stack_size = newStack.ss_size; thread->signal_stack_enabled = true; } else thread->signal_stack_enabled = false; } // only copy the old stack info if a pointer has been given if (oldUserStack != NULL && user_memcpy(oldUserStack, &oldStack, sizeof(stack_t)) < B_OK) return B_BAD_ADDRESS; return B_OK; }