// The template and inlines for the numeric_limits classes. -*- C++ -*-
// Copyright (C) 1999-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// .
/** @file include/limits
* This is a Standard C++ Library header.
*/
// Note: this is not a conforming implementation.
// Written by Gabriel Dos Reis
//
// ISO 14882:1998
// 18.2.1
//
#ifndef _GLIBCXX_NUMERIC_LIMITS
#define _GLIBCXX_NUMERIC_LIMITS 1
#pragma GCC system_header
#include
#include
#include
//
// The numeric_limits<> traits document implementation-defined aspects
// of fundamental arithmetic data types (integers and floating points).
// From Standard C++ point of view, there are 14 such types:
// * integers
// bool (1)
// char, signed char, unsigned char, wchar_t (4)
// short, unsigned short (2)
// int, unsigned (2)
// long, unsigned long (2)
//
// * floating points
// float (1)
// double (1)
// long double (1)
//
// GNU C++ understands (where supported by the host C-library)
// * integer
// long long, unsigned long long (2)
//
// which brings us to 16 fundamental arithmetic data types in GNU C++.
//
//
// Since a numeric_limits<> is a bit tricky to get right, we rely on
// an interface composed of macros which should be defined in config/os
// or config/cpu when they differ from the generic (read arbitrary)
// definitions given here.
//
// These values can be overridden in the target configuration file.
// The default values are appropriate for many 32-bit targets.
// GCC only intrinsically supports modulo integral types. The only remaining
// integral exceptional values is division by zero. Only targets that do not
// signal division by zero in some "hard to ignore" way should use false.
#ifndef __glibcxx_integral_traps
# define __glibcxx_integral_traps true
#endif
// float
//
// Default values. Should be overridden in configuration files if necessary.
#ifndef __glibcxx_float_has_denorm_loss
# define __glibcxx_float_has_denorm_loss false
#endif
#ifndef __glibcxx_float_traps
# define __glibcxx_float_traps false
#endif
#ifndef __glibcxx_float_tinyness_before
# define __glibcxx_float_tinyness_before false
#endif
// double
// Default values. Should be overridden in configuration files if necessary.
#ifndef __glibcxx_double_has_denorm_loss
# define __glibcxx_double_has_denorm_loss false
#endif
#ifndef __glibcxx_double_traps
# define __glibcxx_double_traps false
#endif
#ifndef __glibcxx_double_tinyness_before
# define __glibcxx_double_tinyness_before false
#endif
// long double
// Default values. Should be overridden in configuration files if necessary.
#ifndef __glibcxx_long_double_has_denorm_loss
# define __glibcxx_long_double_has_denorm_loss false
#endif
#ifndef __glibcxx_long_double_traps
# define __glibcxx_long_double_traps false
#endif
#ifndef __glibcxx_long_double_tinyness_before
# define __glibcxx_long_double_tinyness_before false
#endif
// You should not need to define any macros below this point.
#define __glibcxx_signed(T) ((T)(-1) < 0)
#define __glibcxx_min(T) \
(__glibcxx_signed (T) ? -__glibcxx_max (T) - 1 : (T)0)
#define __glibcxx_max(T) \
(__glibcxx_signed (T) ? \
(((((T)1 << (__glibcxx_digits (T) - 1)) - 1) << 1) + 1) : ~(T)0)
#define __glibcxx_digits(T) \
(sizeof(T) * CHAR_BIT - __glibcxx_signed (T))
// The fraction 643/2136 approximates log10(2) to 7 significant digits.
#define __glibcxx_digits10(T) \
(__glibcxx_digits (T) * 643L / 2136)
#define __glibcxx_max_digits10(T) \
(2 + (T) * 643L / 2136)
namespace std
{
/**
* @brief Describes the rounding style for floating-point types.
*
* This is used in the std::numeric_limits class.
*/
enum float_round_style
{
round_indeterminate = -1, /// Intermediate.
round_toward_zero = 0, /// To zero.
round_to_nearest = 1, /// To the nearest representable value.
round_toward_infinity = 2, /// To infinity.
round_toward_neg_infinity = 3 /// To negative infinity.
};
/**
* @brief Describes the denormalization for floating-point types.
*
* These values represent the presence or absence of a variable number
* of exponent bits. This type is used in the std::numeric_limits class.
*/
enum float_denorm_style
{
/// Indeterminate at compile time whether denormalized values are allowed.
denorm_indeterminate = -1,
/// The type does not allow denormalized values.
denorm_absent = 0,
/// The type allows denormalized values.
denorm_present = 1
};
/**
* @brief Part of std::numeric_limits.
*
* The @c static @c const members are usable as integral constant
* expressions.
*
* @note This is a separate class for purposes of efficiency; you
* should only access these members as part of an instantiation
* of the std::numeric_limits class.
*/
struct __numeric_limits_base
{
/** This will be true for all fundamental types (which have
specializations), and false for everything else. */
static const bool is_specialized = false;
/** The number of @c radix digits that be represented without change: for
integer types, the number of non-sign bits in the mantissa; for
floating types, the number of @c radix digits in the mantissa. */
static const int digits = 0;
/** The number of base 10 digits that can be represented without change. */
static const int digits10 = 0;
#if __cplusplus >= 201103L
/** The number of base 10 digits required to ensure that values which
differ are always differentiated. */
static constexpr int max_digits10 = 0;
#endif
/** True if the type is signed. */
static const bool is_signed = false;
/** True if the type is integer. */
static const bool is_integer = false;
/** True if the type uses an exact representation. All integer types are
exact, but not all exact types are integer. For example, rational and
fixed-exponent representations are exact but not integer. */
static const bool is_exact = false;
/** For integer types, specifies the base of the representation. For
floating types, specifies the base of the exponent representation. */
static const int radix = 0;
/** The minimum negative integer such that @c radix raised to the power of
(one less than that integer) is a normalized floating point number. */
static const int min_exponent = 0;
/** The minimum negative integer such that 10 raised to that power is in
the range of normalized floating point numbers. */
static const int min_exponent10 = 0;
/** The maximum positive integer such that @c radix raised to the power of
(one less than that integer) is a representable finite floating point
number. */
static const int max_exponent = 0;
/** The maximum positive integer such that 10 raised to that power is in
the range of representable finite floating point numbers. */
static const int max_exponent10 = 0;
/** True if the type has a representation for positive infinity. */
static const bool has_infinity = false;
/** True if the type has a representation for a quiet (non-signaling)
Not a Number. */
static const bool has_quiet_NaN = false;
/** True if the type has a representation for a signaling
Not a Number. */
static const bool has_signaling_NaN = false;
/** See std::float_denorm_style for more information. */
static const float_denorm_style has_denorm = denorm_absent;
/** True if loss of accuracy is detected as a denormalization loss,
rather than as an inexact result. */
static const bool has_denorm_loss = false;
/** True if-and-only-if the type adheres to the IEC 559 standard, also
known as IEEE 754. (Only makes sense for floating point types.) */
static const bool is_iec559 = false;
/** True if the set of values representable by the type is
finite. All built-in types are bounded, this member would be
false for arbitrary precision types. */
static const bool is_bounded = false;
/** True if the type is @e modulo. A type is modulo if, for any
operation involving +, -, or * on values of that type whose
result would fall outside the range [min(),max()], the value
returned differs from the true value by an integer multiple of
max() - min() + 1. On most machines, this is false for floating
types, true for unsigned integers, and true for signed integers.
See PR22200 about signed integers. */
static const bool is_modulo = false;
/** True if trapping is implemented for this type. */
static const bool traps = false;
/** True if tininess is detected before rounding. (see IEC 559) */
static const bool tinyness_before = false;
/** See std::float_round_style for more information. This is only
meaningful for floating types; integer types will all be
round_toward_zero. */
static const float_round_style round_style =
round_toward_zero;
};
/**
* @brief Properties of fundamental types.
*
* This class allows a program to obtain information about the
* representation of a fundamental type on a given platform. For
* non-fundamental types, the functions will return 0 and the data
* members will all be @c false.
*
* _GLIBCXX_RESOLVE_LIB_DEFECTS: DRs 201 and 184 (hi Gaby!) are
* noted, but not incorporated in this documented (yet).
*/
template
struct numeric_limits : public __numeric_limits_base
{
/** The minimum finite value, or for floating types with
denormalization, the minimum positive normalized value. */
static const _Tp
min() { return _Tp(); }
/** The maximum finite value. */
static const _Tp
max() { return _Tp(); }
#if __cplusplus >= 201103L
/** A finite value x such that there is no other finite value y
* where y < x. */
static constexpr _Tp
lowest() noexcept { return _Tp(); }
#endif
/** The @e machine @e epsilon: the difference between 1 and the least
value greater than 1 that is representable. */
static const _Tp
epsilon() { return _Tp(); }
/** The maximum rounding error measurement (see LIA-1). */
static const _Tp
round_error() { return _Tp(); }
/** The representation of positive infinity, if @c has_infinity. */
static const _Tp
infinity() { return _Tp(); }
/** The representation of a quiet Not a Number,
if @c has_quiet_NaN. */
static const _Tp
quiet_NaN() { return _Tp(); }
/** The representation of a signaling Not a Number, if
@c has_signaling_NaN. */
static const _Tp
signaling_NaN() { return _Tp(); }
/** The minimum positive denormalized value. For types where
@c has_denorm is false, this is the minimum positive normalized
value. */
static const _Tp
denorm_min() { return _Tp(); }
};
#if __cplusplus >= 201103L
template
struct numeric_limits
: public numeric_limits<_Tp> { };
template
struct numeric_limits
: public numeric_limits<_Tp> { };
template
struct numeric_limits
: public numeric_limits<_Tp> { };
#endif
// Now there follow 16 explicit specializations. Yes, 16. Make sure
// you get the count right. (18 in c++0x mode)
/// numeric_limits specialization.
template<>
struct numeric_limits
{
static const bool is_specialized = true;
static const bool
min() { return false; }
static const bool
max() { return true; }
#if __cplusplus >= 201103L
static constexpr bool
lowest() noexcept { return min(); }
#endif
static const int digits = 1;
static const int digits10 = 0;
#if __cplusplus >= 201103L
static constexpr int max_digits10 = 0;
#endif
static const bool is_signed = false;
static const bool is_integer = true;
static const bool is_exact = true;
static const int radix = 2;
static const bool
epsilon() { return false; }
static const bool
round_error() { return false; }
static const int min_exponent = 0;
static const int min_exponent10 = 0;
static const int max_exponent = 0;
static const int max_exponent10 = 0;
static const bool has_infinity = false;
static const bool has_quiet_NaN = false;
static const bool has_signaling_NaN = false;
static const float_denorm_style has_denorm
= denorm_absent;
static const bool has_denorm_loss = false;
static const bool
infinity() { return false; }
static const bool
quiet_NaN() { return false; }
static const bool
signaling_NaN() { return false; }
static const bool
denorm_min() { return false; }
static const bool is_iec559 = false;
static const bool is_bounded = true;
static const bool is_modulo = false;
// It is not clear what it means for a boolean type to trap.
// This is a DR on the LWG issue list. Here, I use integer
// promotion semantics.
static const bool traps = __glibcxx_integral_traps;
static const bool tinyness_before = false;
static const float_round_style round_style
= round_toward_zero;
};
/// numeric_limits specialization.
template<>
struct numeric_limits
{
static const bool is_specialized = true;
static const char
min() { return __glibcxx_min(char); }
static const char
max() { return __glibcxx_max(char); }
#if __cplusplus >= 201103L
static constexpr char
lowest() noexcept { return min(); }
#endif
static const int digits = __glibcxx_digits (char);
static const int digits10 = __glibcxx_digits10 (char);
#if __cplusplus >= 201103L
static constexpr int max_digits10 = 0;
#endif
static const bool is_signed = __glibcxx_signed (char);
static const bool is_integer = true;
static const bool is_exact = true;
static const int radix = 2;
static const char
epsilon() { return 0; }
static const char
round_error() { return 0; }
static const int min_exponent = 0;
static const int min_exponent10 = 0;
static const int max_exponent = 0;
static const int max_exponent10 = 0;
static const bool has_infinity = false;
static const bool has_quiet_NaN = false;
static const bool has_signaling_NaN = false;
static const float_denorm_style has_denorm
= denorm_absent;
static const bool has_denorm_loss = false;
static const
char infinity() { return char(); }
static const char
quiet_NaN() { return char(); }
static const char
signaling_NaN() { return char(); }
static const char
denorm_min() { return static_cast(0); }
static const bool is_iec559 = false;
static const bool is_bounded = true;
static const bool is_modulo = !is_signed;
static const bool traps = __glibcxx_integral_traps;
static const bool tinyness_before = false;
static const float_round_style round_style
= round_toward_zero;
};
/// numeric_limits specialization.
template<>
struct numeric_limits
{
static const bool is_specialized = true;
static const signed char
min() { return -SCHAR_MAX - 1; }
static const signed char
max() { return SCHAR_MAX; }
#if __cplusplus >= 201103L
static constexpr signed char
lowest() noexcept { return min(); }
#endif
static const int digits = __glibcxx_digits (signed char);
static const int digits10
= __glibcxx_digits10 (signed char);
#if __cplusplus >= 201103L
static constexpr int max_digits10 = 0;
#endif
static const bool is_signed = true;
static const bool is_integer = true;
static const bool is_exact = true;
static const int radix = 2;
static const signed char
epsilon() { return 0; }
static const signed char
round_error() { return 0; }
static const int min_exponent = 0;
static const int min_exponent10 = 0;
static const int max_exponent = 0;
static const int max_exponent10 = 0;
static const bool has_infinity = false;
static const bool has_quiet_NaN = false;
static const bool has_signaling_NaN = false;
static const float_denorm_style has_denorm
= denorm_absent;
static const bool has_denorm_loss = false;
static const signed char
infinity() { return static_cast(0); }
static const signed char
quiet_NaN() { return static_cast(0); }
static const signed char
signaling_NaN()
{ return static_cast(0); }
static const signed char
denorm_min()
{ return static_cast(0); }
static const bool is_iec559 = false;
static const bool is_bounded = true;
static const bool is_modulo = false;
static const bool traps = __glibcxx_integral_traps;
static const bool tinyness_before = false;
static const float_round_style round_style
= round_toward_zero;
};
/// numeric_limits specialization.
template<>
struct numeric_limits
{
static const bool is_specialized = true;
static const unsigned char
min() { return 0; }
static const unsigned char
max() { return SCHAR_MAX * 2U + 1; }
#if __cplusplus >= 201103L
static constexpr unsigned char
lowest() noexcept { return min(); }
#endif
static const int digits
= __glibcxx_digits (unsigned char);
static const int digits10
= __glibcxx_digits10 (unsigned char);
#if __cplusplus >= 201103L
static constexpr int max_digits10 = 0;
#endif
static const bool is_signed = false;
static const bool is_integer = true;
static const bool is_exact = true;
static const int radix = 2;
static const unsigned char
epsilon() { return 0; }
static const unsigned char
round_error() { return 0; }
static const int min_exponent = 0;
static const int min_exponent10 = 0;
static const int max_exponent = 0;
static const int max_exponent10 = 0;
static const bool has_infinity = false;
static const bool has_quiet_NaN = false;
static const bool has_signaling_NaN = false;
static const float_denorm_style has_denorm
= denorm_absent;
static const bool has_denorm_loss = false;
static const unsigned char
infinity()
{ return static_cast(0); }
static const unsigned char
quiet_NaN()
{ return static_cast(0); }
static const unsigned char
signaling_NaN()
{ return static_cast(0); }
static const unsigned char
denorm_min()
{ return static_cast(0); }
static const bool is_iec559 = false;
static const bool is_bounded = true;
static const bool is_modulo = true;
static const bool traps = __glibcxx_integral_traps;
static const bool tinyness_before = false;
static const float_round_style round_style
= round_toward_zero;
};
/// numeric_limits specialization.
template<>
struct numeric_limits
{
static const bool is_specialized = true;
static const wchar_t
min() { return __glibcxx_min (wchar_t); }
static const wchar_t
max() { return __glibcxx_max (wchar_t); }
#if __cplusplus >= 201103L
static constexpr wchar_t
lowest() noexcept { return min(); }
#endif
static const int digits = __glibcxx_digits (wchar_t);
static const int digits10
= __glibcxx_digits10 (wchar_t);
#if __cplusplus >= 201103L
static constexpr int max_digits10 = 0;
#endif
static const bool is_signed = __glibcxx_signed (wchar_t);
static const bool is_integer = true;
static const bool is_exact = true;
static const int radix = 2;
static const wchar_t
epsilon() { return 0; }
static const wchar_t
round_error() { return 0; }
static const int min_exponent = 0;
static const int min_exponent10 = 0;
static const int max_exponent = 0;
static const int max_exponent10 = 0;
static const bool has_infinity = false;
static const bool has_quiet_NaN = false;
static const bool has_signaling_NaN = false;
static const float_denorm_style has_denorm
= denorm_absent;
static const bool has_denorm_loss = false;
static const wchar_t
infinity() { return wchar_t(); }
static const wchar_t
quiet_NaN() { return wchar_t(); }
static const wchar_t
signaling_NaN() { return wchar_t(); }
static const wchar_t
denorm_min() { return wchar_t(); }
static const bool is_iec559 = false;
static const bool is_bounded = true;
static const bool is_modulo = !is_signed;
static const bool traps = __glibcxx_integral_traps;
static const bool tinyness_before = false;
static const float_round_style round_style
= round_toward_zero;
};
#if __cplusplus >= 201103L
/// numeric_limits specialization.
template<>
struct numeric_limits
{
static constexpr bool is_specialized = true;
static constexpr char16_t
min() noexcept { return __glibcxx_min (char16_t); }
static constexpr char16_t
max() noexcept { return __glibcxx_max (char16_t); }
static constexpr char16_t
lowest() noexcept { return min(); }
static constexpr int digits = __glibcxx_digits (char16_t);
static constexpr int digits10 = __glibcxx_digits10 (char16_t);
static constexpr int max_digits10 = 0;
static constexpr bool is_signed = __glibcxx_signed (char16_t);
static constexpr bool is_integer = true;
static constexpr bool is_exact = true;
static constexpr int radix = 2;
static constexpr char16_t
epsilon() noexcept { return 0; }
static constexpr char16_t
round_error() noexcept { return 0; }
static constexpr int min_exponent = 0;
static constexpr int min_exponent10 = 0;
static constexpr int max_exponent = 0;
static constexpr int max_exponent10 = 0;
static constexpr bool has_infinity = false;
static constexpr bool has_quiet_NaN = false;
static constexpr bool has_signaling_NaN = false;
static constexpr float_denorm_style has_denorm = denorm_absent;
static constexpr bool has_denorm_loss = false;
static constexpr char16_t
infinity() noexcept { return char16_t(); }
static constexpr char16_t
quiet_NaN() noexcept { return char16_t(); }
static constexpr char16_t
signaling_NaN() noexcept { return char16_t(); }
static constexpr char16_t
denorm_min() noexcept { return char16_t(); }
static constexpr bool is_iec559 = false;
static constexpr bool is_bounded = true;
static constexpr bool is_modulo = !is_signed;
static constexpr bool traps = __glibcxx_integral_traps;
static constexpr bool tinyness_before = false;
static constexpr float_round_style round_style = round_toward_zero;
};
/// numeric_limits specialization.
template<>
struct numeric_limits
{
static constexpr bool is_specialized = true;
static constexpr char32_t
min() noexcept { return __glibcxx_min (char32_t); }
static constexpr char32_t
max() noexcept { return __glibcxx_max (char32_t); }
static constexpr char32_t
lowest() noexcept { return min(); }
static constexpr int digits = __glibcxx_digits (char32_t);
static constexpr int digits10 = __glibcxx_digits10 (char32_t);
static constexpr int max_digits10 = 0;
static constexpr bool is_signed = __glibcxx_signed (char32_t);
static constexpr bool is_integer = true;
static constexpr bool is_exact = true;
static constexpr int radix = 2;
static constexpr char32_t
epsilon() noexcept { return 0; }
static constexpr char32_t
round_error() noexcept { return 0; }
static constexpr int min_exponent = 0;
static constexpr int min_exponent10 = 0;
static constexpr int max_exponent = 0;
static constexpr int max_exponent10 = 0;
static constexpr bool has_infinity = false;
static constexpr bool has_quiet_NaN = false;
static constexpr bool has_signaling_NaN = false;
static constexpr float_denorm_style has_denorm = denorm_absent;
static constexpr bool has_denorm_loss = false;
static constexpr char32_t
infinity() noexcept { return char32_t(); }
static constexpr char32_t
quiet_NaN() noexcept { return char32_t(); }
static constexpr char32_t
signaling_NaN() noexcept { return char32_t(); }
static constexpr char32_t
denorm_min() noexcept { return char32_t(); }
static constexpr bool is_iec559 = false;
static constexpr bool is_bounded = true;
static constexpr bool is_modulo = !is_signed;
static constexpr bool traps = __glibcxx_integral_traps;
static constexpr bool tinyness_before = false;
static constexpr float_round_style round_style = round_toward_zero;
};
#endif
/// numeric_limits specialization.
template<>
struct numeric_limits
{
static const bool is_specialized = true;
static const short
min() { return -SHRT_MAX - 1; }
static const short
max() { return SHRT_MAX; }
#if __cplusplus >= 201103L
static constexpr short
lowest() noexcept { return min(); }
#endif
static const int digits = __glibcxx_digits (short);
static const int digits10 = __glibcxx_digits10 (short);
#if __cplusplus >= 201103L
static constexpr int max_digits10 = 0;
#endif
static const bool is_signed = true;
static const bool is_integer = true;
static const bool is_exact = true;
static const int radix = 2;
static const short
epsilon() { return 0; }
static const short
round_error() { return 0; }
static const int min_exponent = 0;
static const int min_exponent10 = 0;
static const int max_exponent = 0;
static const int max_exponent10 = 0;
static const bool has_infinity = false;
static const bool has_quiet_NaN = false;
static const bool has_signaling_NaN = false;
static const float_denorm_style has_denorm
= denorm_absent;
static const bool has_denorm_loss = false;
static const short
infinity() { return short(); }
static const short
quiet_NaN() { return short(); }
static const short
signaling_NaN() { return short(); }
static const short
denorm_min() { return short(); }
static const bool is_iec559 = false;
static const bool is_bounded = true;
static const bool is_modulo = false;
static const bool traps = __glibcxx_integral_traps;
static const bool tinyness_before = false;
static const float_round_style round_style
= round_toward_zero;
};
/// numeric_limits specialization.
template<>
struct numeric_limits
{
static const bool is_specialized = true;
static const unsigned short
min() { return 0; }
static const unsigned short
max() { return SHRT_MAX * 2U + 1; }
#if __cplusplus >= 201103L
static constexpr unsigned short
lowest() noexcept { return min(); }
#endif
static const int digits
= __glibcxx_digits (unsigned short);
static const int digits10
= __glibcxx_digits10 (unsigned short);
#if __cplusplus >= 201103L
static constexpr int max_digits10 = 0;
#endif
static const bool is_signed = false;
static const bool is_integer = true;
static const bool is_exact = true;
static const int radix = 2;
static const unsigned short
epsilon() { return 0; }
static const unsigned short
round_error() { return 0; }
static const int min_exponent = 0;
static const int min_exponent10 = 0;
static const int max_exponent = 0;
static const int max_exponent10 = 0;
static const bool has_infinity = false;
static const bool has_quiet_NaN = false;
static const bool has_signaling_NaN = false;
static const float_denorm_style has_denorm
= denorm_absent;
static const bool has_denorm_loss = false;
static const unsigned short
infinity()
{ return static_cast(0); }
static const unsigned short
quiet_NaN()
{ return static_cast(0); }
static const unsigned short
signaling_NaN()
{ return static_cast(0); }
static const unsigned short
denorm_min()
{ return static_cast(0); }
static const bool is_iec559 = false;
static const bool is_bounded = true;
static const bool is_modulo = true;
static const bool traps = __glibcxx_integral_traps;
static const bool tinyness_before = false;
static const float_round_style round_style
= round_toward_zero;
};
/// numeric_limits specialization.
template<>
struct numeric_limits
{
static const bool is_specialized = true;
static const int
min() { return -__INT_MAX__ - 1; }
static const int
max() { return __INT_MAX__; }
#if __cplusplus >= 201103L
static constexpr int
lowest() noexcept { return min(); }
#endif
static const int digits = __glibcxx_digits (int);
static const int digits10 = __glibcxx_digits10 (int);
#if __cplusplus >= 201103L
static constexpr int max_digits10 = 0;
#endif
static const bool is_signed = true;
static const bool is_integer = true;
static const bool is_exact = true;
static const int radix = 2;
static const int
epsilon() { return 0; }
static const int
round_error() { return 0; }
static const int min_exponent = 0;
static const int min_exponent10 = 0;
static const int max_exponent = 0;
static const int max_exponent10 = 0;
static const bool has_infinity = false;
static const bool has_quiet_NaN = false;
static const bool has_signaling_NaN = false;
static const float_denorm_style has_denorm
= denorm_absent;
static const bool has_denorm_loss = false;
static const int
infinity() { return static_cast(0); }
static const int
quiet_NaN() { return static_cast(0); }
static const int
signaling_NaN() { return static_cast(0); }
static const int
denorm_min() { return static_cast(0); }
static const bool is_iec559 = false;
static const bool is_bounded = true;
static const bool is_modulo = false;
static const bool traps = __glibcxx_integral_traps;
static const bool tinyness_before = false;
static const float_round_style round_style
= round_toward_zero;
};
/// numeric_limits specialization.
template<>
struct numeric_limits
{
static const bool is_specialized = true;
static const unsigned int
min() { return 0; }
static const unsigned int
max() { return __INT_MAX__ * 2U + 1; }
#if __cplusplus >= 201103L
static constexpr unsigned int
lowest() noexcept { return min(); }
#endif
static const int digits
= __glibcxx_digits (unsigned int);
static const int digits10
= __glibcxx_digits10 (unsigned int);
#if __cplusplus >= 201103L
static constexpr int max_digits10 = 0;
#endif
static const bool is_signed = false;
static const bool is_integer = true;
static const bool is_exact = true;
static const int radix = 2;
static const unsigned int
epsilon() { return 0; }
static const unsigned int
round_error() { return 0; }
static const int min_exponent = 0;
static const int min_exponent10 = 0;
static const int max_exponent = 0;
static const int max_exponent10 = 0;
static const bool has_infinity = false;
static const bool has_quiet_NaN = false;
static const bool has_signaling_NaN = false;
static const float_denorm_style has_denorm
= denorm_absent;
static const bool has_denorm_loss = false;
static const unsigned int
infinity() { return static_cast(0); }
static const unsigned int
quiet_NaN()
{ return static_cast(0); }
static const unsigned int
signaling_NaN()
{ return static_cast(0); }
static const unsigned int
denorm_min()
{ return static_cast(0); }
static const bool is_iec559 = false;
static const bool is_bounded = true;
static const bool is_modulo = true;
static const bool traps = __glibcxx_integral_traps;
static const bool tinyness_before = false;
static const float_round_style round_style
= round_toward_zero;
};
/// numeric_limits specialization.
template<>
struct numeric_limits
{
static const bool is_specialized = true;
static const long
min() { return -__LONG_MAX__ - 1; }
static const long
max() { return __LONG_MAX__; }
#if __cplusplus >= 201103L
static constexpr long
lowest() noexcept { return min(); }
#endif
static const int digits = __glibcxx_digits (long);
static const int digits10 = __glibcxx_digits10 (long);
#if __cplusplus >= 201103L
static constexpr int max_digits10 = 0;
#endif
static const bool is_signed = true;
static const bool is_integer = true;
static const bool is_exact = true;
static const int radix = 2;
static const long
epsilon() { return 0; }
static const long
round_error() { return 0; }
static const int min_exponent = 0;
static const int min_exponent10 = 0;
static const int max_exponent = 0;
static const int max_exponent10 = 0;
static const bool has_infinity = false;
static const bool has_quiet_NaN = false;
static const bool has_signaling_NaN = false;
static const float_denorm_style has_denorm
= denorm_absent;
static const bool has_denorm_loss = false;
static const long
infinity() { return static_cast(0); }
static const long
quiet_NaN() { return static_cast(0); }
static const long
signaling_NaN() { return static_cast(0); }
static const long
denorm_min() { return static_cast(0); }
static const bool is_iec559 = false;
static const bool is_bounded = true;
static const bool is_modulo = false;
static const bool traps = __glibcxx_integral_traps;
static const bool tinyness_before = false;
static const float_round_style round_style
= round_toward_zero;
};
/// numeric_limits specialization.
template<>
struct numeric_limits
{
static const bool is_specialized = true;
static const unsigned long
min() { return 0; }
static const unsigned long
max() { return __LONG_MAX__ * 2UL + 1; }
#if __cplusplus >= 201103L
static constexpr unsigned long
lowest() noexcept { return min(); }
#endif
static const int digits
= __glibcxx_digits (unsigned long);
static const int digits10
= __glibcxx_digits10 (unsigned long);
#if __cplusplus >= 201103L
static constexpr int max_digits10 = 0;
#endif
static const bool is_signed = false;
static const bool is_integer = true;
static const bool is_exact = true;
static const int radix = 2;
static const unsigned long
epsilon() { return 0; }
static const unsigned long
round_error() { return 0; }
static const int min_exponent = 0;
static const int min_exponent10 = 0;
static const int max_exponent = 0;
static const int max_exponent10 = 0;
static const bool has_infinity = false;
static const bool has_quiet_NaN = false;
static const bool has_signaling_NaN = false;
static const float_denorm_style has_denorm
= denorm_absent;
static const bool has_denorm_loss = false;
static const unsigned long
infinity()
{ return static_cast(0); }
static const unsigned long
quiet_NaN()
{ return static_cast(0); }
static const unsigned long
signaling_NaN()
{ return static_cast(0); }
static const unsigned long
denorm_min()
{ return static_cast(0); }
static const bool is_iec559 = false;
static const bool is_bounded = true;
static const bool is_modulo = true;
static const bool traps = __glibcxx_integral_traps;
static const bool tinyness_before = false;
static const float_round_style round_style
= round_toward_zero;
};
/// numeric_limits specialization.
template<>
struct numeric_limits
{
static const bool is_specialized = true;
static const long long
min() { return -__LONG_LONG_MAX__ - 1; }
static const long long
max() { return __LONG_LONG_MAX__; }
#if __cplusplus >= 201103L
static constexpr long long
lowest() noexcept { return min(); }
#endif
static const int digits
= __glibcxx_digits (long long);
static const int digits10
= __glibcxx_digits10 (long long);
#if __cplusplus >= 201103L
static constexpr int max_digits10 = 0;
#endif
static const bool is_signed = true;
static const bool is_integer = true;
static const bool is_exact = true;
static const int radix = 2;
static const long long
epsilon() { return 0; }
static const long long
round_error() { return 0; }
static const int min_exponent = 0;
static const int min_exponent10 = 0;
static const int max_exponent = 0;
static const int max_exponent10 = 0;
static const bool has_infinity = false;
static const bool has_quiet_NaN = false;
static const bool has_signaling_NaN = false;
static const float_denorm_style has_denorm
= denorm_absent;
static const bool has_denorm_loss = false;
static const long long
infinity() { return static_cast(0); }
static const long long
quiet_NaN() { return static_cast(0); }
static const long long
signaling_NaN()
{ return static_cast(0); }
static const long long
denorm_min() { return static_cast(0); }
static const bool is_iec559 = false;
static const bool is_bounded = true;
static const bool is_modulo = false;
static const bool traps = __glibcxx_integral_traps;
static const bool tinyness_before = false;
static const float_round_style round_style
= round_toward_zero;
};
/// numeric_limits specialization.
template<>
struct numeric_limits
{
static const bool is_specialized = true;
static const unsigned long long
min() { return 0; }
static const unsigned long long
max() { return __LONG_LONG_MAX__ * 2ULL + 1; }
#if __cplusplus >= 201103L
static constexpr unsigned long long
lowest() noexcept { return min(); }
#endif
static const int digits
= __glibcxx_digits (unsigned long long);
static const int digits10
= __glibcxx_digits10 (unsigned long long);
#if __cplusplus >= 201103L
static constexpr int max_digits10 = 0;
#endif
static const bool is_signed = false;
static const bool is_integer = true;
static const bool is_exact = true;
static const int radix = 2;
static const unsigned long long
epsilon() { return 0; }
static const unsigned long long
round_error() { return 0; }
static const int min_exponent = 0;
static const int min_exponent10 = 0;
static const int max_exponent = 0;
static const int max_exponent10 = 0;
static const bool has_infinity = false;
static const bool has_quiet_NaN = false;
static const bool has_signaling_NaN = false;
static const float_denorm_style has_denorm
= denorm_absent;
static const bool has_denorm_loss = false;
static const unsigned long long
infinity()
{ return static_cast(0); }
static const unsigned long long
quiet_NaN()
{ return static_cast(0); }
static const unsigned long long
signaling_NaN()
{ return static_cast(0); }
static const unsigned long long
denorm_min()
{ return static_cast(0); }
static const bool is_iec559 = false;
static const bool is_bounded = true;
static const bool is_modulo = true;
static const bool traps = __glibcxx_integral_traps;
static const bool tinyness_before = false;
static const float_round_style round_style
= round_toward_zero;
};
#if !defined(__STRICT_ANSI__) && defined(_GLIBCXX_USE_INT128)
/// numeric_limits<__int128> specialization.
template<>
struct numeric_limits<__int128>
{
static const bool is_specialized = true;
static const __int128
min() { return __glibcxx_min (__int128); }
static const __int128
max() { return __glibcxx_max (__int128); }
#if __cplusplus >= 201103L
static constexpr __int128
lowest() noexcept { return min(); }
#endif
static const int digits
= __glibcxx_digits (__int128);
static const int digits10
= __glibcxx_digits10 (__int128);
#if __cplusplus >= 201103L
static constexpr int max_digits10 = 0;
#endif
static const bool is_signed = true;
static const bool is_integer = true;
static const bool is_exact = true;
static const int radix = 2;
static const __int128
epsilon() { return 0; }
static const __int128
round_error() { return 0; }
static const int min_exponent = 0;
static const int min_exponent10 = 0;
static const int max_exponent = 0;
static const int max_exponent10 = 0;
static const bool has_infinity = false;
static const bool has_quiet_NaN = false;
static const bool has_signaling_NaN = false;
static const float_denorm_style has_denorm
= denorm_absent;
static const bool has_denorm_loss = false;
static const __int128
infinity()
{ return static_cast<__int128>(0); }
static const __int128
quiet_NaN()
{ return static_cast<__int128>(0); }
static const __int128
signaling_NaN()
{ return static_cast<__int128>(0); }
static const __int128
denorm_min()
{ return static_cast<__int128>(0); }
static const bool is_iec559 = false;
static const bool is_bounded = true;
static const bool is_modulo = false;
static const bool traps
= __glibcxx_integral_traps;
static const bool tinyness_before = false;
static const float_round_style round_style
= round_toward_zero;
};
/// numeric_limits specialization.
template<>
struct numeric_limits
{
static const bool is_specialized = true;
static const unsigned __int128
min() { return 0; }
static const unsigned __int128
max() { return __glibcxx_max (unsigned __int128); }
#if __cplusplus >= 201103L
static constexpr unsigned __int128
lowest() noexcept { return min(); }
#endif
static const int digits
= __glibcxx_digits (unsigned __int128);
static const int digits10
= __glibcxx_digits10 (unsigned __int128);
#if __cplusplus >= 201103L
static constexpr int max_digits10 = 0;
#endif
static const bool is_signed = false;
static const bool is_integer = true;
static const bool is_exact = true;
static const int radix = 2;
static const unsigned __int128
epsilon() { return 0; }
static const unsigned __int128
round_error() { return 0; }
static const int min_exponent = 0;
static const int min_exponent10 = 0;
static const int max_exponent = 0;
static const int max_exponent10 = 0;
static const bool has_infinity = false;
static const bool has_quiet_NaN = false;
static const bool has_signaling_NaN = false;
static const float_denorm_style has_denorm
= denorm_absent;
static const bool has_denorm_loss = false;
static const unsigned __int128
infinity()
{ return static_cast(0); }
static const unsigned __int128
quiet_NaN()
{ return static_cast(0); }
static const unsigned __int128
signaling_NaN()
{ return static_cast(0); }
static const unsigned __int128
denorm_min()
{ return static_cast(0); }
static const bool is_iec559 = false;
static const bool is_bounded = true;
static const bool is_modulo = true;
static const bool traps = __glibcxx_integral_traps;
static const bool tinyness_before = false;
static const float_round_style round_style
= round_toward_zero;
};
#endif
/// numeric_limits specialization.
template<>
struct numeric_limits
{
static const bool is_specialized = true;
static const float
min() { return FLT_MIN; }
static const float
max() { return FLT_MAX; }
#if __cplusplus >= 201103L
static constexpr float
lowest() noexcept { return -FLT_MAX; }
#endif
static const int digits = FLT_MANT_DIG;
static const int digits10 = FLT_DIG;
#if __cplusplus >= 201103L
static constexpr int max_digits10
= __glibcxx_max_digits10 (FLT_MANT_DIG);
#endif
static const bool is_signed = true;
static const bool is_integer = false;
static const bool is_exact = false;
static const int radix = FLT_RADIX;
static const float
epsilon() { return FLT_EPSILON; }
static const float
round_error() { return 0.5F; }
static const int min_exponent = FLT_MIN_EXP;
static const int min_exponent10 = FLT_MIN_10_EXP;
static const int max_exponent = FLT_MAX_EXP;
static const int max_exponent10 = FLT_MAX_10_EXP;
static const bool has_infinity = true;
static const bool has_quiet_NaN = true;
static const bool has_signaling_NaN = false;
static const float_denorm_style has_denorm
= denorm_present;
static const bool has_denorm_loss
= __glibcxx_float_has_denorm_loss;
static const float
infinity() { return HUGE_VALF; }
static const float
quiet_NaN() { return nanf(""); }
static const float
signaling_NaN() { return nanf(""); }
static const float
denorm_min() { return FLT_MIN; }
static const bool is_iec559
= has_infinity && has_quiet_NaN && has_denorm == denorm_present;
static const bool is_bounded = true;
static const bool is_modulo = false;
static const bool traps = __glibcxx_float_traps;
static const bool tinyness_before
= __glibcxx_float_tinyness_before;
static const float_round_style round_style
= round_to_nearest;
};
#undef __glibcxx_float_has_denorm_loss
#undef __glibcxx_float_traps
#undef __glibcxx_float_tinyness_before
/// numeric_limits specialization.
template<>
struct numeric_limits
{
static const bool is_specialized = true;
static const double
min() { return DBL_MIN; }
static const double
max() { return DBL_MAX; }
#if __cplusplus >= 201103L
static constexpr double
lowest() noexcept { return -DBL_MAX; }
#endif
static const int digits = DBL_MANT_DIG;
static const int digits10 = DBL_DIG;
#if __cplusplus >= 201103L
static constexpr int max_digits10
= __glibcxx_max_digits10 (DBL_MANT_DIG);
#endif
static const bool is_signed = true;
static const bool is_integer = false;
static const bool is_exact = false;
static const int radix = FLT_RADIX;
static const double
epsilon() { return DBL_EPSILON; }
static const double
round_error() { return 0.5; }
static const int min_exponent = DBL_MIN_EXP;
static const int min_exponent10 = DBL_MIN_10_EXP;
static const int max_exponent = DBL_MAX_EXP;
static const int max_exponent10 = DBL_MAX_10_EXP;
static const bool has_infinity = true;
static const bool has_quiet_NaN = true;
static const bool has_signaling_NaN = false;
static const float_denorm_style has_denorm
= denorm_present;
static const bool has_denorm_loss
= __glibcxx_double_has_denorm_loss;
static const double
infinity() { return HUGE_VAL; }
static const double
quiet_NaN() { return nan(""); }
static const double
signaling_NaN() { return nan(""); }
static const double
denorm_min() { return DBL_MIN; }
static const bool is_iec559
= has_infinity && has_quiet_NaN && has_denorm == denorm_present;
static const bool is_bounded = true;
static const bool is_modulo = false;
static const bool traps = __glibcxx_double_traps;
static const bool tinyness_before
= __glibcxx_double_tinyness_before;
static const float_round_style round_style
= round_to_nearest;
};
#undef __glibcxx_double_has_denorm_loss
#undef __glibcxx_double_traps
#undef __glibcxx_double_tinyness_before
/// numeric_limits specialization.
template<>
struct numeric_limits
{
static const bool is_specialized = true;
static const long double
min() { return LDBL_MIN; }
static const long double
max() { return LDBL_MAX; }
#if __cplusplus >= 201103L
static constexpr long double
lowest() noexcept { return -LDBL_MAX; }
#endif
static const int digits = LDBL_MANT_DIG;
static const int digits10 = LDBL_DIG;
#if __cplusplus >= 201103L
static const int max_digits10
= __glibcxx_max_digits10 (LDBL_MANT_DIG);
#endif
static const bool is_signed = true;
static const bool is_integer = false;
static const bool is_exact = false;
static const int radix = FLT_RADIX;
static const long double
epsilon() { return LDBL_EPSILON; }
static const long double
round_error() { return 0.5L; }
static const int min_exponent = LDBL_MIN_EXP;
static const int min_exponent10 = LDBL_MIN_10_EXP;
static const int max_exponent = LDBL_MAX_EXP;
static const int max_exponent10 = LDBL_MAX_10_EXP;
static const bool has_infinity = true;
static const bool has_quiet_NaN = true;
static const bool has_signaling_NaN = false;
static const float_denorm_style has_denorm
= denorm_present;
static const bool has_denorm_loss
= __glibcxx_long_double_has_denorm_loss;
static const long double
infinity() { return HUGE_VAL; }
static const long double
quiet_NaN() { return nanl(""); }
static const long double
signaling_NaN() { return nanl(""); }
static const long double
denorm_min() { return LDBL_MIN; }
static const bool is_iec559
= has_infinity && has_quiet_NaN && has_denorm == denorm_present;
static const bool is_bounded = true;
static const bool is_modulo = false;
static const bool traps = __glibcxx_long_double_traps;
static const bool tinyness_before =
__glibcxx_long_double_tinyness_before;
static const float_round_style round_style =
round_to_nearest;
};
#undef __glibcxx_long_double_has_denorm_loss
#undef __glibcxx_long_double_traps
#undef __glibcxx_long_double_tinyness_before
} // namespace
#undef __glibcxx_signed
#undef __glibcxx_min
#undef __glibcxx_max
#undef __glibcxx_digits
#undef __glibcxx_digits10
#undef __glibcxx_max_digits10
#endif // _GLIBCXX_NUMERIC_LIMITS