/* Team functions */ /* ** Copyright 2001-2002, Travis Geiselbrecht. All rights reserved. ** Distributed under the terms of the NewOS License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct team_key { team_id id; }; struct team_arg { char *path; char **args; char **envp; unsigned int argc; unsigned int envc; }; // team list static void *team_hash = NULL; static team_id next_team_id = 1; static struct team *kernel_team = NULL; spinlock team_spinlock = 0; static struct team *create_team_struct(const char *name, bool kernel); static void delete_team_struct(struct team *p); static int team_struct_compare(void *_p, const void *_key); static uint32 team_struct_hash(void *_p, const void *_key, uint32 range); static void kfree_strings_array(char **strings, int strc); static int user_copy_strings_array(char **strings, int strc, char ***kstrings); static void _dump_team_info(struct team *p); static int dump_team_info(int argc, char **argv); static void _dump_team_info(struct team *p) { dprintf("TEAM: %p\n", p); dprintf("id: 0x%lx\n", p->id); dprintf("name: '%s'\n", p->name); dprintf("next: %p\n", p->next); dprintf("num_threads: %d\n", p->num_threads); dprintf("state: %d\n", p->state); dprintf("pending_signals: 0x%x\n", p->pending_signals); dprintf("io_context: %p\n", p->io_context); // dprintf("path: '%s'\n", p->path); dprintf("aspace_id: 0x%lx\n", p->_aspace_id); dprintf("aspace: %p\n", p->aspace); dprintf("kaspace: %p\n", p->kaspace); dprintf("main_thread: %p\n", p->main_thread); dprintf("thread_list: %p\n", p->thread_list); } static int dump_team_info(int argc, char **argv) { struct team *p; int id = -1; unsigned long num; struct hash_iterator i; if (argc < 2) { dprintf("team: not enough arguments\n"); return 0; } // if the argument looks like a hex number, treat it as such if (strlen(argv[1]) > 2 && argv[1][0] == '0' && argv[1][1] == 'x') { num = atoul(argv[1]); if (num > vm_get_kernel_aspace()->virtual_map.base) { // XXX semi-hack _dump_team_info((struct team*)num); return 0; } else { id = num; } } // walk through the thread list, trying to match name or id hash_open(team_hash, &i); while ((p = hash_next(team_hash, &i)) != NULL) { if ((p->name && strcmp(argv[1], p->name) == 0) || p->id == id) { _dump_team_info(p); break; } } hash_close(team_hash, &i, false); return 0; } int team_init(kernel_args *ka) { // create the team hash table team_hash = hash_init(15, (addr)&kernel_team->next - (addr)kernel_team, &team_struct_compare, &team_struct_hash); // create the kernel team kernel_team = create_team_struct("kernel_team", true); if (kernel_team == NULL) panic("could not create kernel team!\n"); kernel_team->state = TEAM_STATE_NORMAL; kernel_team->io_context = vfs_new_io_context(NULL); if (kernel_team->io_context == NULL) panic("could not create io_context for kernel team!\n"); //XXX should initialize kernel_team->path here. Set it to "/"? // stick it in the team hash hash_insert(team_hash, kernel_team); add_debugger_command("team", &dump_team_info, "list info about a particular team"); return 0; } /** Frees an array of strings in kernel space * Parameters * strings strings array * strc number of strings in array */ static void kfree_strings_array(char **strings, int strc) { int cnt = strc; if (strings != NULL) { for (cnt = 0; cnt < strc; cnt++){ free(strings[cnt]); } free(strings); } } /** Copy an array of strings from user space to kernel space * Parameters * strings userspace strings array * strc number of strings in array * kstrings pointer to the kernel copy * Returns < 0 on error and **kstrings = NULL */ static int user_copy_strings_array(char **strings, int strc, char ***kstrings) { char **lstrings; int err; int cnt; char *source; char buf[SYS_THREAD_STRING_LENGTH_MAX]; *kstrings = NULL; if ((addr)strings >= KERNEL_BASE && (addr)strings <= KERNEL_TOP) return ERR_VM_BAD_USER_MEMORY; lstrings = (char **)malloc((strc + 1) * sizeof(char *)); if (lstrings == NULL) return B_NO_MEMORY; // scan all strings and copy to kernel space for (cnt = 0; cnt < strc; cnt++) { err = user_memcpy(&source, &(strings[cnt]), sizeof(char *)); if(err < 0) goto error; if ((addr)source >= KERNEL_BASE && (addr)source <= KERNEL_TOP){ err = ERR_VM_BAD_USER_MEMORY; goto error; } err = user_strncpy(buf, source, SYS_THREAD_STRING_LENGTH_MAX - 1); if (err < 0) goto error; buf[SYS_THREAD_STRING_LENGTH_MAX - 1] = 0; lstrings[cnt] = strdup(buf); if (lstrings[cnt] == NULL){ err = ENOMEM; goto error; } } lstrings[strc] = NULL; *kstrings = lstrings; return B_NO_ERROR; error: kfree_strings_array(lstrings, cnt); dprintf("user_copy_strings_array failed %d \n", err); return err; } status_t wait_for_team(team_id id, status_t *_returnCode) { struct team *team; thread_id thread; cpu_status state; // find main thread and wait for that state = disable_interrupts(); GRAB_TEAM_LOCK(); team = team_get_team_struct_locked(id); if (team && team->main_thread) thread = team->main_thread->id; else thread = ERR_INVALID_HANDLE; RELEASE_TEAM_LOCK(); restore_interrupts(state); if (thread < 0) return thread; return wait_for_thread(thread, _returnCode); } struct team * team_get_team_struct(team_id id) { struct team *p; int state; state = disable_interrupts(); GRAB_TEAM_LOCK(); p = team_get_team_struct_locked(id); RELEASE_TEAM_LOCK(); restore_interrupts(state); return p; } struct team * team_get_team_struct_locked(team_id id) { struct team_key key; key.id = id; return hash_lookup(team_hash, &key); } static int team_struct_compare(void *_p, const void *_key) { struct team *p = _p; const struct team_key *key = _key; if (p->id == key->id) return 0; return 1; } static uint32 team_struct_hash(void *_p, const void *_key, uint32 range) { struct team *p = _p; const struct team_key *key = _key; if (p != NULL) return p->id % range; return key->id % range; } void team_remove_team_from_hash(struct team *team) { hash_remove(team_hash, team); } struct team * team_get_kernel_team(void) { return kernel_team; } team_id team_get_kernel_team_id(void) { if (!kernel_team) return 0; return kernel_team->id; } team_id team_get_current_team_id(void) { return thread_get_current_thread()->team->id; } static struct team * create_team_struct(const char *name, bool kernel) { struct team *team; team = (struct team *)malloc(sizeof(struct team)); if (team == NULL) goto error; team->id = atomic_add(&next_team_id, 1); strncpy(&team->name[0], name, SYS_MAX_OS_NAME_LEN-1); team->name[SYS_MAX_OS_NAME_LEN-1] = 0; team->num_threads = 0; team->io_context = NULL; team->_aspace_id = -1; team->aspace = NULL; team->kaspace = vm_get_kernel_aspace(); vm_put_aspace(team->kaspace); team->thread_list = NULL; team->main_thread = NULL; team->state = TEAM_STATE_BIRTH; team->pending_signals = 0; team->death_sem = -1; team->user_env_base = 0; list_init(&team->image_list); if (arch_team_init_team_struct(team, kernel) < 0) goto error1; return team; error1: free(team); error: return NULL; } static void delete_team_struct(struct team *team) { free(team); } static int get_arguments_data_size(char **args, int argc) { uint32 size = 0; int count; for (count = 0; count < argc; count++) size += strlen(args[count]) + 1; return size + (argc + 1) * sizeof(char *) + sizeof(struct uspace_program_args); } static int32 team_create_team2(void *args) { int err; struct thread *t; struct team *team; struct team_arg *teamArgs = args; char *path; addr entry; char ustack_name[128]; uint32 totalSize; char **uargs; char **uenv; char *udest; struct uspace_program_args *uspa; unsigned int arg_cnt; unsigned int env_cnt; t = thread_get_current_thread(); team = t->team; dprintf("team_create_team2: entry thread %ld\n", t->id); // create an initial primary stack region // ToDo: make ENV_SIZE variable? // ToDo: when B_BASE_ADDRESS is implemented, we could just allocate the stack from // the bottom of the USER_STACK_REGION. totalSize = PAGE_ALIGN(MAIN_THREAD_STACK_SIZE + TLS_SIZE + ENV_SIZE + get_arguments_data_size(teamArgs->args, teamArgs->argc)); t->user_stack_base = USER_STACK_REGION + USER_STACK_REGION_SIZE - totalSize; // the exact location at the end of the user stack region sprintf(ustack_name, "%s_primary_stack", team->name); t->user_stack_region_id = create_area_etc(team, ustack_name, (void **)&t->user_stack_base, B_EXACT_ADDRESS, totalSize, B_NO_LOCK, B_READ_AREA | B_WRITE_AREA); if (t->user_stack_region_id < 0) { panic("team_create_team2: could not create default user stack region\n"); return t->user_stack_region_id; } // now that the TLS area is allocated, initialize TLS arch_thread_init_tls(t); uspa = (struct uspace_program_args *)(t->user_stack_base + STACK_SIZE + TLS_SIZE + ENV_SIZE); uargs = (char **)(uspa + 1); udest = (char *)(uargs + teamArgs->argc + 1); // dprintf("addr: stack base=0x%x uargs = 0x%x udest=0x%x tot_top_size=%d \n\n",t->user_stack_base,uargs,udest,tot_top_size); for (arg_cnt = 0; arg_cnt < teamArgs->argc; arg_cnt++) { uargs[arg_cnt] = udest; user_strcpy(udest, teamArgs->args[arg_cnt]); udest += (strlen(teamArgs->args[arg_cnt]) + 1); } uargs[arg_cnt] = NULL; team->user_env_base = t->user_stack_base + STACK_SIZE + TLS_SIZE; uenv = (char **)team->user_env_base; udest = (char *)team->user_env_base + ENV_SIZE - 1; // dprintf("team_create_team2: envc: %d, envp: 0x%p\n", teamArgs->envc, (void *)teamArgs->envp); for (env_cnt = 0; env_cnt < teamArgs->envc; env_cnt++) { udest -= (strlen(teamArgs->envp[env_cnt]) + 1); uenv[env_cnt] = udest; user_strcpy(udest, teamArgs->envp[env_cnt]); } uenv[env_cnt] = NULL; user_memcpy(uspa->program_name, team->name, sizeof(uspa->program_name)); user_memcpy(uspa->program_path, teamArgs->path, sizeof(uspa->program_path)); uspa->argc = arg_cnt; uspa->argv = uargs; uspa->envc = env_cnt; uspa->envp = uenv; if (teamArgs->args != NULL) kfree_strings_array(teamArgs->args, teamArgs->argc); if (teamArgs->envp != NULL) kfree_strings_array(teamArgs->envp, teamArgs->envc); path = teamArgs->path; dprintf("team_create_team2: loading elf binary '%s'\n", path); err = elf_load_uspace("/boot/libexec/rld.so", team, 0, &entry); if (err < 0){ // XXX clean up team return err; } // free the args free(teamArgs->path); free(teamArgs); dprintf("team_create_team2: loaded elf. entry = 0x%lx\n", entry); team->state = TEAM_STATE_NORMAL; // jump to the entry point in user space arch_thread_enter_uspace(t, entry, uspa, NULL); // never gets here return 0; } team_id team_create_team(const char *path, const char *name, char **args, int argc, char **envp, int envc, int priority) { struct team *team; thread_id tid; team_id pid; int err; unsigned int state; // int sem_retcode; struct team_arg *teamArgs; dprintf("team_create_team: entry '%s', name '%s' args = %p argc = %d\n", path, name, args, argc); team = create_team_struct(name, false); if (team == NULL) return ENOMEM; pid = team->id; state = disable_interrupts(); GRAB_TEAM_LOCK(); hash_insert(team_hash, team); RELEASE_TEAM_LOCK(); restore_interrupts(state); // copy the args over teamArgs = (struct team_arg *)malloc(sizeof(struct team_arg)); if (teamArgs == NULL){ err = ENOMEM; goto err1; } teamArgs->path = strdup(path); if (teamArgs->path == NULL){ err = ENOMEM; goto err2; } teamArgs->argc = argc; teamArgs->args = args; teamArgs->envp = envp; teamArgs->envc = envc; // create a new io_context for this team team->io_context = vfs_new_io_context(thread_get_current_thread()->team->io_context); if (!team->io_context) { err = ENOMEM; goto err3; } // create an address space for this team team->_aspace_id = vm_create_aspace(team->name, USER_BASE, USER_SIZE, false); if (team->_aspace_id < 0) { err = team->_aspace_id; goto err4; } team->aspace = vm_get_aspace_by_id(team->_aspace_id); // create a kernel thread, but under the context of the new team tid = spawn_kernel_thread_etc(team_create_team2, name, B_NORMAL_PRIORITY, teamArgs, team->id); if (tid < 0) { err = tid; goto err5; } resume_thread(tid); return pid; err5: vm_put_aspace(team->aspace); vm_delete_aspace(team->_aspace_id); err4: vfs_free_io_context(team->io_context); err3: free(teamArgs->path); err2: free(teamArgs); err1: // remove the team structure from the team hash table and delete the team structure state = disable_interrupts(); GRAB_TEAM_LOCK(); hash_remove(team_hash, team); RELEASE_TEAM_LOCK(); restore_interrupts(state); delete_team_struct(team); //err: return err; } int team_kill_team(team_id id) { int state; struct team *team; // struct thread *t; thread_id tid = -1; int retval = 0; state = disable_interrupts(); GRAB_TEAM_LOCK(); team = team_get_team_struct_locked(id); if (team != NULL) tid = team->main_thread->id; else retval = ERR_INVALID_HANDLE; RELEASE_TEAM_LOCK(); restore_interrupts(state); if (retval < 0) return retval; // just kill the main thread in the team. The cleanup code there will // take care of the team return thread_kill_thread(tid); } /** Fills the team_info structure with information from the specified * team. * Team lock must be hold when called. */ static status_t fill_team_info(struct team *team, team_info *info, size_t size) { if (size != sizeof(team_info)) return B_BAD_VALUE; // ToDo: Set more informations for team_info memset(info, 0, size); info->team = team->id; info->thread_count = team->num_threads; info->image_count = count_images(team); //info->area_count = //info->debugger_nub_thread = //info->debugger_nub_port = //info->argc = //info->args[64] = //info->uid = //info->gid = // ToDo: make this to return real argc/argv strlcpy(info->args, team->name, sizeof(info->args)); info->argc = 1; return B_OK; } status_t _get_team_info(team_id id, team_info *info, size_t size) { int state; status_t rc = B_OK; struct team *team; state = disable_interrupts(); GRAB_TEAM_LOCK(); team = team_get_team_struct_locked(id); if (!team) { rc = B_BAD_TEAM_ID; goto err; } rc = fill_team_info(team, info, size); err: RELEASE_TEAM_LOCK(); restore_interrupts(state); return rc; } status_t _get_next_team_info(int32 *cookie, team_info *info, size_t size) { status_t status = B_BAD_TEAM_ID; struct team *team = NULL; int32 slot = *cookie; int state = disable_interrupts(); GRAB_TEAM_LOCK(); if (slot >= next_team_id) goto err; // get next valid team while ((slot < next_team_id) && !(team = team_get_team_struct_locked(slot))) slot++; if (team) { status = fill_team_info(team, info, size); *cookie = ++slot; } err: RELEASE_TEAM_LOCK(); restore_interrupts(state); return status; } int sys_setenv(const char *name, const char *value, int overwrite) { char var[SYS_THREAD_STRING_LENGTH_MAX]; int state; addr env_space; char **envp; int envc; bool var_exists = false; int var_pos = 0; int name_size; int rc = 0; int i; char *p; // ToDo: please put me out of the kernel into libroot.so! dprintf("sys_setenv: entry (name=%s, value=%s)\n", name, value); if (strlen(name) + strlen(value) + 1 >= SYS_THREAD_STRING_LENGTH_MAX) return -1; state = disable_interrupts(); GRAB_TEAM_LOCK(); strcpy(var, name); strncat(var, "=", SYS_THREAD_STRING_LENGTH_MAX-1); name_size = strlen(var); strncat(var, value, SYS_THREAD_STRING_LENGTH_MAX-1); env_space = (addr)thread_get_current_thread()->team->user_env_base; envp = (char **)env_space; for (envc = 0; envp[envc]; envc++) { if (!strncmp(envp[envc], var, name_size)) { var_exists = true; var_pos = envc; } } if (!var_exists) var_pos = envc; dprintf("sys_setenv: variable does%s exist\n", var_exists ? "" : " not"); if ((!var_exists) || (var_exists && overwrite)) { // XXX- make a better allocator if (var_exists) { if (strlen(var) <= strlen(envp[var_pos])) { strcpy(envp[var_pos], var); } else { for (p = (char *)env_space + ENV_SIZE - 1, i = 0; envp[i]; i++) if (envp[i] < p) p = envp[i]; p -= (strlen(var) + 1); if (p < (char *)env_space + (envc * sizeof(char *))) { rc = -1; } else { envp[var_pos] = p; strcpy(envp[var_pos], var); } } } else { for (p = (char *)env_space + ENV_SIZE - 1, i=0; envp[i]; i++) if (envp[i] < p) p = envp[i]; p -= (strlen(var) + 1); if (p < (char *)env_space + ((envc + 1) * sizeof(char *))) { rc = -1; } else { envp[envc] = p; strcpy(envp[envc], var); envp[envc + 1] = NULL; } } } dprintf("sys_setenv: variable set.\n"); RELEASE_TEAM_LOCK(); restore_interrupts(state); return rc; } int sys_getenv(const char *name, char **value) { char **envp; char *p; int state; int i; int len = strlen(name); int rc = -1; // ToDo: please put me out of the kernel into libroot.so! state = disable_interrupts(); GRAB_TEAM_LOCK(); envp = (char **)thread_get_current_thread()->team->user_env_base; for (i = 0; envp[i]; i++) { if (!strncmp(envp[i], name, len)) { p = envp[i] + len; if (*p == '=') { *value = (p + 1); rc = 0; break; } } } RELEASE_TEAM_LOCK(); restore_interrupts(state); return rc; } // #pragma mark - status_t user_wait_for_team(team_id id, status_t *_userReturnCode) { status_t returnCode; status_t status; if (!CHECK_USER_ADDRESS(_userReturnCode)) return B_BAD_ADDRESS; status = wait_for_team(id, &returnCode); if (status >= B_OK) { if (user_memcpy(_userReturnCode, &returnCode, sizeof(returnCode)) < B_OK) return B_BAD_ADDRESS; } return status; } team_id user_team_create_team(const char *upath, const char *uname, char **args, int argc, char **envp, int envc, int priority) { char path[SYS_MAX_PATH_LEN]; char name[SYS_MAX_OS_NAME_LEN]; char **kargs; char **kenv; int rc; dprintf("user_team_create_team : argc=%d \n",argc); if ((addr)upath >= KERNEL_BASE && (addr)upath <= KERNEL_TOP) return ERR_VM_BAD_USER_MEMORY; if ((addr)uname >= KERNEL_BASE && (addr)uname <= KERNEL_TOP) return ERR_VM_BAD_USER_MEMORY; rc = user_copy_strings_array(args, argc, &kargs); if (rc < 0) goto error; if (envp == NULL) { envp = (char **)thread_get_current_thread()->team->user_env_base; for (envc = 0; envp && (envp[envc]); envc++); } rc = user_copy_strings_array(envp, envc, &kenv); if (rc < 0) goto error; rc = user_strncpy(path, upath, SYS_MAX_PATH_LEN-1); if (rc < 0) goto error; path[SYS_MAX_PATH_LEN-1] = 0; rc = user_strncpy(name, uname, SYS_MAX_OS_NAME_LEN-1); if (rc < 0) goto error; name[SYS_MAX_OS_NAME_LEN-1] = 0; return team_create_team(path, name, kargs, argc, kenv, envc, priority); error: kfree_strings_array(kargs, argc); kfree_strings_array(kenv, envc); return rc; } status_t user_get_team_info(team_id id, team_info *info) { team_info kinfo; status_t rc = B_OK; status_t rc2; if ((addr)info >= KERNEL_BASE && (addr)info <= KERNEL_TOP) return ERR_VM_BAD_USER_MEMORY; rc = _get_team_info(id, &kinfo, sizeof(team_info)); if (rc != B_OK) return rc; rc2 = user_memcpy(info, &kinfo, sizeof(team_info)); if (rc2 < 0) return rc2; return rc; } status_t user_get_next_team_info(int32 *cookie, team_info *info) { int32 kcookie; team_info kinfo; status_t rc = B_OK; status_t rc2; if ((addr)cookie >= KERNEL_BASE && (addr)cookie <= KERNEL_TOP) return ERR_VM_BAD_USER_MEMORY; if ((addr)info >= KERNEL_BASE && (addr)info <= KERNEL_TOP) return ERR_VM_BAD_USER_MEMORY; rc2 = user_memcpy(&kcookie, cookie, sizeof(int32)); if (rc2 < 0) return rc2; rc = _get_next_team_info(&kcookie, &kinfo, sizeof(team_info)); if (rc != B_OK) return rc; rc2 = user_memcpy(cookie, &kcookie, sizeof(int32)); if (rc2 < 0) return rc2; rc2 = user_memcpy(info, &kinfo, sizeof(team_info)); if (rc2 < 0) return rc2; return rc; } int user_getenv(const char *userName, char **_userValue) { char name[SYS_THREAD_STRING_LENGTH_MAX]; char *value; int rc; if (!CHECK_USER_ADDRESS(userName) || !CHECK_USER_ADDRESS(_userValue) || user_strlcpy(name, userName, SYS_THREAD_STRING_LENGTH_MAX) < B_OK) return B_BAD_ADDRESS; rc = sys_getenv(name, &value); if (rc < 0) return rc; if (user_memcpy(_userValue, &value, sizeof(char *)) < B_OK) return B_BAD_ADDRESS; return rc; } int user_setenv(const char *userName, const char *userValue, int overwrite) { char name[SYS_THREAD_STRING_LENGTH_MAX]; char value[SYS_THREAD_STRING_LENGTH_MAX]; if (!CHECK_USER_ADDRESS(userName) || !CHECK_USER_ADDRESS(userValue) || user_strlcpy(name, userName, SYS_THREAD_STRING_LENGTH_MAX) < B_OK || user_strlcpy(value, userValue, SYS_THREAD_STRING_LENGTH_MAX) < B_OK) return B_BAD_ADDRESS; return sys_setenv(name, value, overwrite); }