/* Team functions */ /* ** Copyright 2002-2004, The Haiku Team. All rights reserved. ** Distributed under the terms of the Haiku License. ** ** Copyright 2001-2002, Travis Geiselbrecht. All rights reserved. ** Distributed under the terms of the NewOS License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include //#define TRACE_TEAM #ifdef TRACE_TEAM # define TRACE(x) dprintf x #else # define TRACE(x) ; #endif struct team_key { team_id id; }; struct team_arg { char *path; uint32 arg_count; char **args; uint32 env_count; char **env; }; // team list static void *team_hash = NULL; static team_id next_team_id = 1; static struct team *kernel_team = NULL; spinlock team_spinlock = 0; static struct team *create_team_struct(const char *name, bool kernel); static void delete_team_struct(struct team *p); static int team_struct_compare(void *_p, const void *_key); static uint32 team_struct_hash(void *_p, const void *_key, uint32 range); static void free_strings_array(char **strings, int32 count); static status_t user_copy_strings_array(char * const *strings, int32 count, char ***_strings); static void _dump_team_info(struct team *p); static int dump_team_info(int argc, char **argv); static void _dump_team_info(struct team *p) { dprintf("TEAM: %p\n", p); dprintf("id: 0x%lx\n", p->id); dprintf("name: '%s'\n", p->name); dprintf("next: %p\n", p->next); dprintf("parent: %p\n", p->parent); dprintf("children: %p\n", p->children); dprintf("num_threads: %d\n", p->num_threads); dprintf("state: %d\n", p->state); dprintf("pending_signals: 0x%x\n", p->pending_signals); dprintf("io_context: %p\n", p->io_context); // dprintf("path: '%s'\n", p->path); dprintf("aspace_id: 0x%lx\n", p->_aspace_id); dprintf("aspace: %p\n", p->aspace); dprintf("kaspace: %p\n", p->kaspace); dprintf("main_thread: %p\n", p->main_thread); dprintf("thread_list: %p\n", p->thread_list); } static int dump_team_info(int argc, char **argv) { struct team *p; int id = -1; unsigned long num; struct hash_iterator i; if (argc < 2) { dprintf("team: not enough arguments\n"); return 0; } // if the argument looks like a hex number, treat it as such if (strlen(argv[1]) > 2 && argv[1][0] == '0' && argv[1][1] == 'x') { num = strtoul(argv[1], NULL, 16); if (num > vm_get_kernel_aspace()->virtual_map.base) { // XXX semi-hack _dump_team_info((struct team*)num); return 0; } else { id = num; } } // walk through the thread list, trying to match name or id hash_open(team_hash, &i); while ((p = hash_next(team_hash, &i)) != NULL) { if ((p->name && strcmp(argv[1], p->name) == 0) || p->id == id) { _dump_team_info(p); break; } } hash_close(team_hash, &i, false); return 0; } int team_init(kernel_args *ka) { // create the team hash table team_hash = hash_init(15, (addr)&kernel_team->next - (addr)kernel_team, &team_struct_compare, &team_struct_hash); // create the kernel team kernel_team = create_team_struct("kernel_team", true); if (kernel_team == NULL) panic("could not create kernel team!\n"); kernel_team->state = TEAM_STATE_NORMAL; kernel_team->io_context = vfs_new_io_context(NULL); if (kernel_team->io_context == NULL) panic("could not create io_context for kernel team!\n"); //XXX should initialize kernel_team->path here. Set it to "/"? // stick it in the team hash hash_insert(team_hash, kernel_team); add_debugger_command("team", &dump_team_info, "list info about a particular team"); return 0; } /** Frees an array of strings in kernel space. * * \param strings strings array * \param count number of strings in array */ static void free_strings_array(char **strings, int32 count) { int32 i; if (strings == NULL) return; for (i = 0; i < count; i++) free(strings[i]); free(strings); } /** Copy an array of strings from user space to kernel space * * \param strings userspace strings array * \param count number of strings in array * \param kstrings pointer to the kernel copy * \return \c B_OK on success, or an appropriate error code on * failure. */ static status_t user_copy_strings_array(char * const *userStrings, int32 count, char ***_strings) { char buffer[SYS_THREAD_STRING_LENGTH_MAX]; char **strings; status_t err; int32 i = 0; if (!IS_USER_ADDRESS(userStrings)) return B_BAD_ADDRESS; strings = (char **)malloc((count + 1) * sizeof(char *)); if (strings == NULL) return B_NO_MEMORY; if ((err = user_memcpy(strings, userStrings, count * sizeof(char *))) < B_OK) goto error; // scan all strings and copy to kernel space for (; i < count; i++) { err = user_strlcpy(buffer, strings[i], SYS_THREAD_STRING_LENGTH_MAX); if (err < B_OK) goto error; strings[i] = strdup(buffer); if (strings[i] == NULL) { err = B_NO_MEMORY; goto error; } } strings[count] = NULL; *_strings = strings; return B_OK; error: free_strings_array(strings, i); TRACE(("user_copy_strings_array failed %d \n", err)); return err; } /** Quick check to see if we have a valid team ID. */ bool team_is_valid(team_id id) { struct team *team; int state; if (id <= 0) return false; state = disable_interrupts(); GRAB_TEAM_LOCK(); team = team_get_team_struct_locked(id); RELEASE_TEAM_LOCK(); restore_interrupts(state); return team != NULL; } struct team * team_get_team_struct_locked(team_id id) { struct team_key key; key.id = id; return hash_lookup(team_hash, &key); } static int team_struct_compare(void *_p, const void *_key) { struct team *p = _p; const struct team_key *key = _key; if (p->id == key->id) return 0; return 1; } static uint32 team_struct_hash(void *_p, const void *_key, uint32 range) { struct team *p = _p; const struct team_key *key = _key; if (p != NULL) return p->id % range; return key->id % range; } static void insert_team_into_parent(struct team *parent, struct team *team) { ASSERT(parent != NULL); team->siblings_next = parent->children; parent->children = team; team->parent = parent; } /** Note: must have TEAM lock held */ static void remove_team_from_parent(struct team *parent, struct team *team) { struct team *child, *last = NULL; for (child = parent->children; child != NULL; child = child->siblings_next) { if (child == team) { if (last == NULL) parent->children = child->siblings_next; else last->siblings_next = child->siblings_next; team->parent = NULL; break; } last = child; } } /** Reparent each of our children * Note: must have TEAM lock held */ static void reparent_children(struct team *team) { struct team *child = team->children; while (child != NULL) { // remove the child from the current proc and add to the parent remove_team_from_parent(team, child); insert_team_into_parent(team->parent, child); child = team->children; } } struct team * team_get_kernel_team(void) { return kernel_team; } team_id team_get_kernel_team_id(void) { if (!kernel_team) return 0; return kernel_team->id; } team_id team_get_current_team_id(void) { return thread_get_current_thread()->team->id; } static struct team * create_team_struct(const char *name, bool kernel) { struct team *team = (struct team *)malloc(sizeof(struct team)); if (team == NULL) return NULL; team->next = team->siblings_next = team->children = team->parent = NULL; team->id = atomic_add(&next_team_id, 1); strlcpy(team->name, name, B_OS_NAME_LENGTH); team->num_threads = 0; team->io_context = NULL; team->_aspace_id = -1; team->aspace = NULL; team->kaspace = vm_get_kernel_aspace(); vm_put_aspace(team->kaspace); team->thread_list = NULL; team->main_thread = NULL; team->state = TEAM_STATE_BIRTH; team->pending_signals = 0; team->death_sem = -1; team->user_env_base = 0; list_init(&team->image_list); if (arch_team_init_team_struct(team, kernel) < 0) goto error; return team; error: free(team); return NULL; } static void delete_team_struct(struct team *team) { free(team); } void team_remove_team(struct team *team) { hash_remove(team_hash, team); team->state = TEAM_STATE_DEATH; // reparent each of the team's children reparent_children(team); // remove us from our parent remove_team_from_parent(team->parent, team); } void team_delete_team(struct team *team) { if (team->num_threads > 0) { // there are other threads still in this team, // cycle through and signal kill on each of the threads // XXX this can be optimized. There's got to be a better solution. cpu_status state; struct thread *temp_thread; char death_sem_name[B_OS_NAME_LENGTH]; sprintf(death_sem_name, "team %ld death sem", team->id); team->death_sem = create_sem(0, death_sem_name); if (team->death_sem < 0) panic("thread_exit: cannot init death sem for team %ld\n", team->id); state = disable_interrupts(); GRAB_TEAM_LOCK(); // we can safely walk the list because of the lock. no new threads can be created // because of the TEAM_STATE_DEATH flag on the team temp_thread = team->thread_list; while (temp_thread) { struct thread *next = temp_thread->team_next; send_signal_etc(temp_thread->id, SIGKILLTHR, B_DO_NOT_RESCHEDULE); temp_thread = next; } RELEASE_TEAM_LOCK(); restore_interrupts(state); // wait until all threads in team are dead. acquire_sem_etc(team->death_sem, team->num_threads, 0, 0); delete_sem(team->death_sem); } // free team resources vm_put_aspace(team->aspace); vm_delete_aspace(team->_aspace_id); delete_owned_ports(team->id); sem_delete_owned_sems(team->id); remove_images(team); vfs_free_io_context(team->io_context); free(team); } static int get_arguments_data_size(char **args, int argc) { uint32 size = 0; int count; for (count = 0; count < argc; count++) size += strlen(args[count]) + 1; return size + (argc + 1) * sizeof(char *) + sizeof(struct uspace_program_args); } static void free_team_arg(struct team_arg *teamArg) { free(teamArg->path); free(teamArg); } static struct team_arg * create_team_arg(const char *path, int32 argc, char **args, int32 envCount, char **env) { struct team_arg *teamArg = (struct team_arg *)malloc(sizeof(struct team_arg)); if (teamArg == NULL) return NULL; teamArg->path = strdup(path); if (teamArg->path == NULL) { free(teamArg); return NULL; } teamArg->arg_count = argc; teamArg->args = args; teamArg->env_count = envCount; teamArg->env = env; return teamArg; } static int32 team_create_team2(void *args) { int err; struct thread *t; struct team *team; struct team_arg *teamArgs = args; char *path; addr entry; char ustack_name[128]; uint32 sizeLeft; char **uargs; char **uenv; char *udest; struct uspace_program_args *uspa; uint32 argCount, envCount, i; t = thread_get_current_thread(); team = t->team; TRACE(("team_create_team2: entry thread %ld\n", t->id)); // create an initial primary stack region // ToDo: make ENV_SIZE variable and put it on the heap? // ToDo: we could reserve the whole USER_STACK_REGION upfront... sizeLeft = PAGE_ALIGN(MAIN_THREAD_STACK_SIZE + TLS_SIZE + ENV_SIZE + get_arguments_data_size(teamArgs->args, teamArgs->arg_count)); t->user_stack_base = USER_STACK_REGION + USER_STACK_REGION_SIZE - sizeLeft; t->user_stack_size = MAIN_THREAD_STACK_SIZE; // the exact location at the end of the user stack region sprintf(ustack_name, "%s_main_stack", team->name); t->user_stack_region_id = create_area_etc(team, ustack_name, (void **)&t->user_stack_base, B_EXACT_ADDRESS, sizeLeft, B_NO_LOCK, B_READ_AREA | B_WRITE_AREA); if (t->user_stack_region_id < 0) { dprintf("team_create_team2: could not create default user stack region\n"); return t->user_stack_region_id; } // now that the TLS area is allocated, initialize TLS arch_thread_init_tls(t); argCount = teamArgs->arg_count; envCount = teamArgs->env_count; uspa = (struct uspace_program_args *)(t->user_stack_base + STACK_SIZE + TLS_SIZE + ENV_SIZE); uargs = (char **)(uspa + 1); udest = (char *)(uargs + argCount + 1); TRACE(("addr: stack base = 0x%lx, uargs = %p, udest = %p, sizeLeft = %lu\n", t->user_stack_base, uargs, udest, sizeLeft)); for (i = 0; i < argCount; i++) { ssize_t length = user_strlcpy(udest, teamArgs->args[i], sizeLeft) + 1; uargs[i] = udest; udest += length; sizeLeft -= length; } uargs[argCount] = NULL; team->user_env_base = t->user_stack_base + t->user_stack_size + TLS_SIZE; uenv = (char **)team->user_env_base; udest = (char *)team->user_env_base + ENV_SIZE - 1; TRACE(("team_create_team2: envc: %d, envp: 0x%p\n", teamArgs->env_count, (void *)teamArgs->env)); for (i = 0; i < envCount; i++) { ssize_t length = user_strlcpy(udest, teamArgs->env[i], sizeLeft) + 1; uenv[i] = udest; udest += length; sizeLeft -= length; } uenv[envCount] = NULL; user_memcpy(uspa->program_name, team->name, sizeof(uspa->program_name)); user_memcpy(uspa->program_path, teamArgs->path, sizeof(uspa->program_path)); uspa->argc = argCount; uspa->argv = uargs; uspa->envc = envCount; uspa->envp = uenv; free_strings_array(teamArgs->args, teamArgs->arg_count); free_strings_array(teamArgs->env, teamArgs->env_count); path = teamArgs->path; TRACE(("team_create_team2: loading elf binary '%s'\n", path)); // ToDo: don't use fixed paths! err = elf_load_user_image("/boot/beos/system/lib/rld.so", team, 0, &entry); // free the args free_team_arg(teamArgs); if (err < 0) { // Luckily, we don't have to clean up the mess we created - that's // done for us by the normal team deletion process return err; } TRACE(("team_create_team2: loaded elf. entry = 0x%lx\n", entry)); team->state = TEAM_STATE_NORMAL; // jump to the entry point in user space arch_thread_enter_uspace(t, entry, uspa, NULL); // never gets here return 0; } team_id team_create_team(const char *path, const char *name, char **args, int argc, char **env, int envCount, int priority) { struct team *team, *parent; const char *threadName; thread_id tid; team_id pid; int err; cpu_status state; struct team_arg *teamArgs; TRACE(("team_create_team: entry '%s', name '%s' args = %p argc = %d\n", path, name, args, argc)); team = create_team_struct(name, false); if (team == NULL) return B_NO_MEMORY; pid = team->id; parent = thread_get_current_thread()->team; state = disable_interrupts(); GRAB_TEAM_LOCK(); hash_insert(team_hash, team); insert_team_into_parent(parent, team); RELEASE_TEAM_LOCK(); restore_interrupts(state); // copy the args over teamArgs = create_team_arg(path, argc, args, envCount, env); if (teamArgs == NULL) { err = B_NO_MEMORY; goto err1; } // create a new io_context for this team team->io_context = vfs_new_io_context(thread_get_current_thread()->team->io_context); if (!team->io_context) { err = B_NO_MEMORY; goto err2; } // create an address space for this team team->_aspace_id = vm_create_aspace(team->name, USER_BASE, USER_SIZE, false); if (team->_aspace_id < 0) { err = team->_aspace_id; goto err3; } team->aspace = vm_get_aspace_by_id(team->_aspace_id); // cut the path from the main thread name threadName = strrchr(name, '/'); if (threadName != NULL) threadName++; else threadName = name; // create a kernel thread, but under the context of the new team tid = spawn_kernel_thread_etc(team_create_team2, threadName, B_NORMAL_PRIORITY, teamArgs, team->id); if (tid < 0) { err = tid; goto err4; } resume_thread(tid); return pid; err4: vm_put_aspace(team->aspace); vm_delete_aspace(team->_aspace_id); err3: vfs_free_io_context(team->io_context); err2: free_team_arg(teamArgs); err1: // remove the team structure from the team hash table and delete the team structure state = disable_interrupts(); GRAB_TEAM_LOCK(); remove_team_from_parent(parent, team); hash_remove(team_hash, team); RELEASE_TEAM_LOCK(); restore_interrupts(state); delete_team_struct(team); return err; } static status_t exec_team(const char *path, int32 argCount, char **args, int32 envCount, char **env) { struct team *team = thread_get_current_thread()->team; struct team_arg *teamArgs; status_t status; TRACE(("exec_team(path = \"%s\", argc = %ld, envCount = %ld\n", path, argCount, envCount)); // switching the kernel at run time is probably not a good idea :) if (team == team_get_kernel_team()) return B_NOT_ALLOWED; // we currently need to be single threaded here // ToDo: maybe we should just kill all other threads and // make the current thread the team's main thread? if (team->main_thread != thread_get_current_thread() || team->main_thread != team->thread_list || team->main_thread->team_next != NULL) return B_NOT_ALLOWED; // ToDo: maybe we should make sure upfront that the target path is an app? teamArgs = create_team_arg(path, argCount, args, envCount, env); if (teamArgs == NULL) return B_NO_MEMORY; // ToDo: remove team resources if there are any left vm_delete_areas(team->aspace); delete_owned_ports(team->id); sem_delete_owned_sems(team->id); remove_images(team); vfs_exec_io_context(team->io_context); status = team_create_team2(teamArgs); // this one usually doesn't return... // sorry, we have to kill us, there is no way out anymore (without any areas left and all that) exit_thread(status); } /** This is the kernel backend for waitpid(). It is a bit more powerful when it comes * to the reason why a thread has died than waitpid() can be. */ static thread_id wait_for_child(thread_id child, uint32 flags, int32 *_reason, status_t *_returnCode) { // ToDo: implement me! We need to store the death of children in the team structure! dprintf("wait_for_child(child = %ld, flags = %lu) is not yet implemented\n", child, flags); if (child > 0) { // wait for the specified child } else if (child == -1) { // wait for any children of this team to die } else if (child == 0) { // wait for any children of this process group to die } else { // wait for any children with progress group of the absolute value of "child" } return B_ERROR; } // #pragma mark - // public team API status_t wait_for_team(team_id id, status_t *_returnCode) { struct team *team; thread_id thread; cpu_status state; // find main thread and wait for that state = disable_interrupts(); GRAB_TEAM_LOCK(); team = team_get_team_struct_locked(id); if (team && team->main_thread) thread = team->main_thread->id; else thread = B_BAD_THREAD_ID; RELEASE_TEAM_LOCK(); restore_interrupts(state); if (thread < 0) return thread; return wait_for_thread(thread, _returnCode); } status_t kill_team(team_id id) { int state; struct team *team; // struct thread *t; thread_id tid = -1; int retval = 0; state = disable_interrupts(); GRAB_TEAM_LOCK(); team = team_get_team_struct_locked(id); if (team != NULL) tid = team->main_thread->id; else retval = B_BAD_THREAD_ID; RELEASE_TEAM_LOCK(); restore_interrupts(state); if (retval < 0) return retval; // just kill the main thread in the team. The cleanup code there will // take care of the team return kill_thread(tid); } /** Fills the team_info structure with information from the specified * team. * The team lock must be held when called. */ static status_t fill_team_info(struct team *team, team_info *info, size_t size) { if (size != sizeof(team_info)) return B_BAD_VALUE; // ToDo: Set more informations for team_info memset(info, 0, size); info->team = team->id; info->thread_count = team->num_threads; info->image_count = count_images(team); //info->area_count = //info->debugger_nub_thread = //info->debugger_nub_port = //info->argc = //info->args[64] = //info->uid = //info->gid = // ToDo: make this to return real argc/argv strlcpy(info->args, team->name, sizeof(info->args)); info->argc = 1; return B_OK; } status_t _get_team_info(team_id id, team_info *info, size_t size) { int state; status_t rc = B_OK; struct team *team; state = disable_interrupts(); GRAB_TEAM_LOCK(); team = team_get_team_struct_locked(id); if (!team) { rc = B_BAD_TEAM_ID; goto err; } rc = fill_team_info(team, info, size); err: RELEASE_TEAM_LOCK(); restore_interrupts(state); return rc; } status_t _get_next_team_info(int32 *cookie, team_info *info, size_t size) { status_t status = B_BAD_TEAM_ID; struct team *team = NULL; int32 slot = *cookie; int state = disable_interrupts(); GRAB_TEAM_LOCK(); if (slot >= next_team_id) goto err; // get next valid team while ((slot < next_team_id) && !(team = team_get_team_struct_locked(slot))) slot++; if (team) { status = fill_team_info(team, info, size); *cookie = ++slot; } err: RELEASE_TEAM_LOCK(); restore_interrupts(state); return status; } int sys_setenv(const char *name, const char *value, int overwrite) { char var[SYS_THREAD_STRING_LENGTH_MAX]; int state; addr env_space; char **envp; int envc; bool var_exists = false; int var_pos = 0; int name_size; int rc = 0; int i; char *p; // ToDo: please put me out of the kernel into libroot.so! TRACE(("sys_setenv: entry (name=%s, value=%s)\n", name, value)); if (strlen(name) + strlen(value) + 1 >= SYS_THREAD_STRING_LENGTH_MAX) return -1; state = disable_interrupts(); GRAB_TEAM_LOCK(); strcpy(var, name); strncat(var, "=", SYS_THREAD_STRING_LENGTH_MAX-1); name_size = strlen(var); strncat(var, value, SYS_THREAD_STRING_LENGTH_MAX-1); env_space = (addr)thread_get_current_thread()->team->user_env_base; envp = (char **)env_space; for (envc = 0; envp[envc]; envc++) { if (!strncmp(envp[envc], var, name_size)) { var_exists = true; var_pos = envc; } } if (!var_exists) var_pos = envc; TRACE(("sys_setenv: variable does%s exist\n", var_exists ? "" : " not")); if ((!var_exists) || (var_exists && overwrite)) { // XXX- make a better allocator if (var_exists) { if (strlen(var) <= strlen(envp[var_pos])) { strcpy(envp[var_pos], var); } else { for (p = (char *)env_space + ENV_SIZE - 1, i = 0; envp[i]; i++) if (envp[i] < p) p = envp[i]; p -= (strlen(var) + 1); if (p < (char *)env_space + (envc * sizeof(char *))) { rc = -1; } else { envp[var_pos] = p; strcpy(envp[var_pos], var); } } } else { for (p = (char *)env_space + ENV_SIZE - 1, i=0; envp[i]; i++) if (envp[i] < p) p = envp[i]; p -= (strlen(var) + 1); if (p < (char *)env_space + ((envc + 1) * sizeof(char *))) { rc = -1; } else { envp[envc] = p; strcpy(envp[envc], var); envp[envc + 1] = NULL; } } } TRACE(("sys_setenv: variable set.\n")); RELEASE_TEAM_LOCK(); restore_interrupts(state); return rc; } int sys_getenv(const char *name, char **value) { char **envp; char *p; int state; int i; int len = strlen(name); int rc = -1; // ToDo: please put me out of the kernel into libroot.so! state = disable_interrupts(); GRAB_TEAM_LOCK(); envp = (char **)thread_get_current_thread()->team->user_env_base; for (i = 0; envp[i]; i++) { if (!strncmp(envp[i], name, len)) { p = envp[i] + len; if (*p == '=') { *value = (p + 1); rc = 0; break; } } } RELEASE_TEAM_LOCK(); restore_interrupts(state); return rc; } // #pragma mark - // User syscalls status_t _user_exec(const char *userPath, int32 argCount, char * const *userArgs, int32 envCount, char * const *userEnvironment) { char path[B_PATH_NAME_LENGTH]; status_t status; char **args; char **env; if (!IS_USER_ADDRESS(userPath) || !IS_USER_ADDRESS(userArgs) || !IS_USER_ADDRESS(userEnvironment) || user_strlcpy(path, userPath, sizeof(path)) < B_OK) return B_BAD_ADDRESS; status = user_copy_strings_array(userArgs, argCount, &args); if (status < B_OK) return status; status = user_copy_strings_array(userEnvironment, envCount, &env); if (status < B_OK) { free_strings_array(args, argCount); return status; } status = exec_team(path, argCount, args, envCount, env); // this one only returns in case of error free_strings_array(args, argCount); free_strings_array(env, envCount); return status; } thread_id _user_fork(void) { dprintf("fork() is not yet implemented!\n"); return B_ERROR; } thread_id _user_wait_for_child(thread_id child, uint32 flags, int32 *_userReason, status_t *_userReturnCode) { status_t returnCode; int32 reason; thread_id deadChild; if ((_userReason != NULL && !IS_USER_ADDRESS(_userReason)) || (_userReturnCode != NULL && !IS_USER_ADDRESS(_userReturnCode))) return B_BAD_ADDRESS; deadChild = wait_for_child(child, flags, &reason, &returnCode); if (deadChild >= B_OK) { // copy result data on successful completion if ((_userReason != NULL && user_memcpy(_userReason, &reason, sizeof(int32)) < B_OK) || (_userReturnCode != NULL && user_memcpy(_userReturnCode, &returnCode, sizeof(status_t)) < B_OK)) return B_BAD_ADDRESS; } return deadChild; } status_t _user_wait_for_team(team_id id, status_t *_userReturnCode) { status_t returnCode; status_t status; if (_userReturnCode != NULL && !IS_USER_ADDRESS(_userReturnCode)) return B_BAD_ADDRESS; status = wait_for_team(id, &returnCode); if (status >= B_OK && _userReturnCode != NULL) { if (user_memcpy(_userReturnCode, &returnCode, sizeof(returnCode)) < B_OK) return B_BAD_ADDRESS; } return status; } team_id _user_create_team(const char *userPath, const char *userName, char **userArgs, int argCount, char **userEnv, int envCount, int priority) { char path[SYS_MAX_PATH_LEN]; char name[B_OS_NAME_LENGTH]; char **args = NULL; char **env = NULL; int rc; TRACE(("user_team_create_team: argc = %d\n", argCount)); if (!IS_USER_ADDRESS(userPath) || !IS_USER_ADDRESS(userName)) return B_BAD_ADDRESS; rc = user_copy_strings_array(userArgs, argCount, &args); if (rc < 0) goto error; if (userEnv == NULL) { // ToDo: this doesn't look particularly safe to me - where // is user_env_base? userEnv = (char **)thread_get_current_thread()->team->user_env_base; for (envCount = 0; userEnv && (userEnv[envCount]); envCount++); } if (user_copy_strings_array(userEnv, envCount, &env) < B_OK || user_strlcpy(path, userPath, SYS_MAX_PATH_LEN) < B_OK || user_strlcpy(name, userName, B_OS_NAME_LENGTH) < B_OK) { rc = B_BAD_ADDRESS; goto error; } return team_create_team(path, name, args, argCount, env, envCount, priority); error: free_strings_array(args, argCount); free_strings_array(env, envCount); return rc; } status_t _user_kill_team(team_id team) { return kill_team(team); } status_t _user_get_team_info(team_id id, team_info *userInfo) { status_t status; team_info info; if (!IS_USER_ADDRESS(userInfo)) return B_BAD_ADDRESS; status = _get_team_info(id, &info, sizeof(team_info)); if (status == B_OK) { if (user_memcpy(userInfo, &info, sizeof(team_info)) < B_OK) return B_BAD_ADDRESS; } return status; } status_t _user_get_next_team_info(int32 *userCookie, team_info *userInfo) { status_t status; team_info info; int32 cookie; if (!IS_USER_ADDRESS(userCookie) || !IS_USER_ADDRESS(userInfo) || user_memcpy(&cookie, userCookie, sizeof(int32)) < B_OK) return B_BAD_ADDRESS; status = _get_next_team_info(&cookie, &info, sizeof(team_info)); if (status != B_OK) return status; if (user_memcpy(userCookie, &cookie, sizeof(int32)) < B_OK || user_memcpy(userInfo, &info, sizeof(team_info)) < B_OK) return B_BAD_ADDRESS; return status; } team_id _user_get_current_team(void) { return team_get_current_team_id(); } int _user_getenv(const char *userName, char **_userValue) { char name[SYS_THREAD_STRING_LENGTH_MAX]; char *value; int rc; if (!IS_USER_ADDRESS(userName) || !IS_USER_ADDRESS(_userValue) || user_strlcpy(name, userName, SYS_THREAD_STRING_LENGTH_MAX) < B_OK) return B_BAD_ADDRESS; rc = sys_getenv(name, &value); if (rc < 0) return rc; if (user_memcpy(_userValue, &value, sizeof(char *)) < B_OK) return B_BAD_ADDRESS; return rc; } int _user_setenv(const char *userName, const char *userValue, int overwrite) { char name[SYS_THREAD_STRING_LENGTH_MAX]; char value[SYS_THREAD_STRING_LENGTH_MAX]; if (!IS_USER_ADDRESS(userName) || !IS_USER_ADDRESS(userValue) || user_strlcpy(name, userName, SYS_THREAD_STRING_LENGTH_MAX) < B_OK || user_strlcpy(value, userValue, SYS_THREAD_STRING_LENGTH_MAX) < B_OK) return B_BAD_ADDRESS; return sys_setenv(name, value, overwrite); }