//---------------------------------------------------------------------------- // Anti-Grain Geometry - Version 2.4 // Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com) // Copyright (C) 2005 Tony Juricic (tonygeek@yahoo.com) // // Permission to copy, use, modify, sell and distribute this software // is granted provided this copyright notice appears in all copies. // This software is provided "as is" without express or implied // warranty, and with no claim as to its suitability for any purpose. // //---------------------------------------------------------------------------- // Contact: mcseem@antigrain.com // mcseemagg@yahoo.com // http://www.antigrain.com //---------------------------------------------------------------------------- #ifndef AGG_CURVES_INCLUDED #define AGG_CURVES_INCLUDED #include "agg_array.h" namespace agg { // See Implementation agg_curves.cpp //--------------------------------------------curve_approximation_method_e enum curve_approximation_method_e { curve_inc, curve_div }; //--------------------------------------------------------------curve3_inc class curve3_inc { public: curve3_inc() : m_num_steps(0), m_step(0), m_scale(1.0) { } curve3_inc(double x1, double y1, double x2, double y2, double x3, double y3) : m_num_steps(0), m_step(0), m_scale(1.0) { init(x1, y1, x2, y2, x3, y3); } void reset() { m_num_steps = 0; m_step = -1; } void init(double x1, double y1, double x2, double y2, double x3, double y3); void approximation_method(curve_approximation_method_e) {} curve_approximation_method_e approximation_method() const { return curve_inc; } void approximation_scale(double s); double approximation_scale() const; void angle_tolerance(double) {} double angle_tolerance() const { return 0.0; } void cusp_limit(double) {} double cusp_limit() const { return 0.0; } void rewind(unsigned path_id); unsigned vertex(double* x, double* y); private: int m_num_steps; int m_step; double m_scale; double m_start_x; double m_start_y; double m_end_x; double m_end_y; double m_fx; double m_fy; double m_dfx; double m_dfy; double m_ddfx; double m_ddfy; double m_saved_fx; double m_saved_fy; double m_saved_dfx; double m_saved_dfy; }; //-------------------------------------------------------------curve3_div class curve3_div { public: curve3_div() : m_approximation_scale(1.0), m_angle_tolerance(0.0), m_count(0), m_distance_tolerance_square(0.0) {} curve3_div(double x1, double y1, double x2, double y2, double x3, double y3) : m_approximation_scale(1.0), m_angle_tolerance(0.0), m_count(0) { init(x1, y1, x2, y2, x3, y3); } void reset() { m_points.remove_all(); m_count = 0; } void init(double x1, double y1, double x2, double y2, double x3, double y3); void approximation_method(curve_approximation_method_e) {} curve_approximation_method_e approximation_method() const { return curve_div; } void approximation_scale(double s) { m_approximation_scale = s; } double approximation_scale() const { return m_approximation_scale; } void angle_tolerance(double a) { m_angle_tolerance = a; } double angle_tolerance() const { return m_angle_tolerance; } void cusp_limit(double) {} double cusp_limit() const { return 0.0; } void rewind(unsigned) { m_count = 0; } unsigned vertex(double* x, double* y) { if(m_count >= m_points.size()) return path_cmd_stop; const point_d& p = m_points[m_count++]; *x = p.x; *y = p.y; return (m_count == 1) ? path_cmd_move_to : path_cmd_line_to; } private: void bezier(double x1, double y1, double x2, double y2, double x3, double y3); void recursive_bezier(double x1, double y1, double x2, double y2, double x3, double y3, unsigned level); double m_approximation_scale; double m_distance_tolerance_square; double m_angle_tolerance; unsigned m_count; pod_bvector m_points; }; //-------------------------------------------------------------curve4_points struct curve4_points { double cp[8]; curve4_points() {} curve4_points(double x1, double y1, double x2, double y2, double x3, double y3, double x4, double y4) { cp[0] = x1; cp[1] = y1; cp[2] = x2; cp[3] = y2; cp[4] = x3; cp[5] = y3; cp[6] = x4; cp[7] = y4; } void init(double x1, double y1, double x2, double y2, double x3, double y3, double x4, double y4) { cp[0] = x1; cp[1] = y1; cp[2] = x2; cp[3] = y2; cp[4] = x3; cp[5] = y3; cp[6] = x4; cp[7] = y4; } double operator [] (unsigned i) const { return cp[i]; } double& operator [] (unsigned i) { return cp[i]; } }; //-------------------------------------------------------------curve4_inc class curve4_inc { public: curve4_inc() : m_num_steps(0), m_step(0), m_scale(1.0) { } curve4_inc(double x1, double y1, double x2, double y2, double x3, double y3, double x4, double y4) : m_num_steps(0), m_step(0), m_scale(1.0) { init(x1, y1, x2, y2, x3, y3, x4, y4); } curve4_inc(const curve4_points& cp) : m_num_steps(0), m_step(0), m_scale(1.0) { init(cp[0], cp[1], cp[2], cp[3], cp[4], cp[5], cp[6], cp[7]); } void reset() { m_num_steps = 0; m_step = -1; } void init(double x1, double y1, double x2, double y2, double x3, double y3, double x4, double y4); void init(const curve4_points& cp) { init(cp[0], cp[1], cp[2], cp[3], cp[4], cp[5], cp[6], cp[7]); } void approximation_method(curve_approximation_method_e) {} curve_approximation_method_e approximation_method() const { return curve_inc; } void approximation_scale(double s); double approximation_scale() const; void angle_tolerance(double) {} double angle_tolerance() const { return 0.0; } void cusp_limit(double) {} double cusp_limit() const { return 0.0; } void rewind(unsigned path_id); unsigned vertex(double* x, double* y); private: int m_num_steps; int m_step; double m_scale; double m_start_x; double m_start_y; double m_end_x; double m_end_y; double m_fx; double m_fy; double m_dfx; double m_dfy; double m_ddfx; double m_ddfy; double m_dddfx; double m_dddfy; double m_saved_fx; double m_saved_fy; double m_saved_dfx; double m_saved_dfy; double m_saved_ddfx; double m_saved_ddfy; }; //-------------------------------------------------------catrom_to_bezier inline curve4_points catrom_to_bezier(double x1, double y1, double x2, double y2, double x3, double y3, double x4, double y4) { // Trans. matrix Catmull-Rom to Bezier // // 0 1 0 0 // -1/6 1 1/6 0 // 0 1/6 1 -1/6 // 0 0 1 0 // return curve4_points( x2, y2, (-x1 + 6*x2 + x3) / 6, (-y1 + 6*y2 + y3) / 6, ( x2 + 6*x3 - x4) / 6, ( y2 + 6*y3 - y4) / 6, x3, y3); } //----------------------------------------------------------------------- inline curve4_points catrom_to_bezier(const curve4_points& cp) { return catrom_to_bezier(cp[0], cp[1], cp[2], cp[3], cp[4], cp[5], cp[6], cp[7]); } //-----------------------------------------------------ubspline_to_bezier inline curve4_points ubspline_to_bezier(double x1, double y1, double x2, double y2, double x3, double y3, double x4, double y4) { // Trans. matrix Uniform BSpline to Bezier // // 1/6 4/6 1/6 0 // 0 4/6 2/6 0 // 0 2/6 4/6 0 // 0 1/6 4/6 1/6 // return curve4_points( (x1 + 4*x2 + x3) / 6, (y1 + 4*y2 + y3) / 6, (4*x2 + 2*x3) / 6, (4*y2 + 2*y3) / 6, (2*x2 + 4*x3) / 6, (2*y2 + 4*y3) / 6, (x2 + 4*x3 + x4) / 6, (y2 + 4*y3 + y4) / 6); } //----------------------------------------------------------------------- inline curve4_points ubspline_to_bezier(const curve4_points& cp) { return ubspline_to_bezier(cp[0], cp[1], cp[2], cp[3], cp[4], cp[5], cp[6], cp[7]); } //------------------------------------------------------hermite_to_bezier inline curve4_points hermite_to_bezier(double x1, double y1, double x2, double y2, double x3, double y3, double x4, double y4) { // Trans. matrix Hermite to Bezier // // 1 0 0 0 // 1 0 1/3 0 // 0 1 0 -1/3 // 0 1 0 0 // return curve4_points( x1, y1, (3*x1 + x3) / 3, (3*y1 + y3) / 3, (3*x2 - x4) / 3, (3*y2 - y4) / 3, x2, y2); } //----------------------------------------------------------------------- inline curve4_points hermite_to_bezier(const curve4_points& cp) { return hermite_to_bezier(cp[0], cp[1], cp[2], cp[3], cp[4], cp[5], cp[6], cp[7]); } //-------------------------------------------------------------curve4_div class curve4_div { public: curve4_div() : m_approximation_scale(1.0), m_angle_tolerance(0.0), m_cusp_limit(0.0), m_count(0), m_distance_tolerance_square(0.0) {} curve4_div(double x1, double y1, double x2, double y2, double x3, double y3, double x4, double y4) : m_approximation_scale(1.0), m_angle_tolerance(0.0), m_cusp_limit(0.0), m_count(0) { init(x1, y1, x2, y2, x3, y3, x4, y4); } curve4_div(const curve4_points& cp) : m_approximation_scale(1.0), m_angle_tolerance(0.0), m_count(0) { init(cp[0], cp[1], cp[2], cp[3], cp[4], cp[5], cp[6], cp[7]); } void reset() { m_points.remove_all(); m_count = 0; } void init(double x1, double y1, double x2, double y2, double x3, double y3, double x4, double y4); void init(const curve4_points& cp) { init(cp[0], cp[1], cp[2], cp[3], cp[4], cp[5], cp[6], cp[7]); } void approximation_method(curve_approximation_method_e) {} curve_approximation_method_e approximation_method() const { return curve_div; } void approximation_scale(double s) { m_approximation_scale = s; } double approximation_scale() const { return m_approximation_scale; } void angle_tolerance(double a) { m_angle_tolerance = a; } double angle_tolerance() const { return m_angle_tolerance; } void cusp_limit(double v) { m_cusp_limit = (v == 0.0) ? 0.0 : pi - v; } double cusp_limit() const { return (m_cusp_limit == 0.0) ? 0.0 : pi - m_cusp_limit; } void rewind(unsigned) { m_count = 0; } unsigned vertex(double* x, double* y) { if(m_count >= m_points.size()) return path_cmd_stop; const point_d& p = m_points[m_count++]; *x = p.x; *y = p.y; return (m_count == 1) ? path_cmd_move_to : path_cmd_line_to; } private: void bezier(double x1, double y1, double x2, double y2, double x3, double y3, double x4, double y4); void recursive_bezier(double x1, double y1, double x2, double y2, double x3, double y3, double x4, double y4, unsigned level); double m_approximation_scale; double m_distance_tolerance_square; double m_angle_tolerance; double m_cusp_limit; unsigned m_count; pod_bvector m_points; }; //-----------------------------------------------------------------curve3 class curve3 { public: curve3() : m_approximation_method(curve_div) {} curve3(double x1, double y1, double x2, double y2, double x3, double y3) : m_approximation_method(curve_div) { init(x1, y1, x2, y2, x3, y3); } void reset() { m_curve_inc.reset(); m_curve_div.reset(); } void init(double x1, double y1, double x2, double y2, double x3, double y3) { if(m_approximation_method == curve_inc) { m_curve_inc.init(x1, y1, x2, y2, x3, y3); } else { m_curve_div.init(x1, y1, x2, y2, x3, y3); } } void approximation_method(curve_approximation_method_e v) { m_approximation_method = v; } curve_approximation_method_e approximation_method() const { return m_approximation_method; } void approximation_scale(double s) { m_curve_inc.approximation_scale(s); m_curve_div.approximation_scale(s); } double approximation_scale() const { return m_curve_inc.approximation_scale(); } void angle_tolerance(double a) { m_curve_div.angle_tolerance(a); } double angle_tolerance() const { return m_curve_div.angle_tolerance(); } void cusp_limit(double v) { m_curve_div.cusp_limit(v); } double cusp_limit() const { return m_curve_div.cusp_limit(); } void rewind(unsigned path_id) { if(m_approximation_method == curve_inc) { m_curve_inc.rewind(path_id); } else { m_curve_div.rewind(path_id); } } unsigned vertex(double* x, double* y) { if(m_approximation_method == curve_inc) { return m_curve_inc.vertex(x, y); } return m_curve_div.vertex(x, y); } private: curve3_inc m_curve_inc; curve3_div m_curve_div; curve_approximation_method_e m_approximation_method; }; //-----------------------------------------------------------------curve4 class curve4 { public: curve4() : m_approximation_method(curve_div) {} curve4(double x1, double y1, double x2, double y2, double x3, double y3, double x4, double y4) : m_approximation_method(curve_div) { init(x1, y1, x2, y2, x3, y3, x4, y4); } curve4(const curve4_points& cp) : m_approximation_method(curve_div) { init(cp[0], cp[1], cp[2], cp[3], cp[4], cp[5], cp[6], cp[7]); } void reset() { m_curve_inc.reset(); m_curve_div.reset(); } void init(double x1, double y1, double x2, double y2, double x3, double y3, double x4, double y4) { if(m_approximation_method == curve_inc) { m_curve_inc.init(x1, y1, x2, y2, x3, y3, x4, y4); } else { m_curve_div.init(x1, y1, x2, y2, x3, y3, x4, y4); } } void init(const curve4_points& cp) { init(cp[0], cp[1], cp[2], cp[3], cp[4], cp[5], cp[6], cp[7]); } void approximation_method(curve_approximation_method_e v) { m_approximation_method = v; } curve_approximation_method_e approximation_method() const { return m_approximation_method; } void approximation_scale(double s) { m_curve_inc.approximation_scale(s); m_curve_div.approximation_scale(s); } double approximation_scale() const { return m_curve_inc.approximation_scale(); } void angle_tolerance(double v) { m_curve_div.angle_tolerance(v); } double angle_tolerance() const { return m_curve_div.angle_tolerance(); } void cusp_limit(double v) { m_curve_div.cusp_limit(v); } double cusp_limit() const { return m_curve_div.cusp_limit(); } void rewind(unsigned path_id) { if(m_approximation_method == curve_inc) { m_curve_inc.rewind(path_id); } else { m_curve_div.rewind(path_id); } } unsigned vertex(double* x, double* y) { if(m_approximation_method == curve_inc) { return m_curve_inc.vertex(x, y); } return m_curve_div.vertex(x, y); } private: curve4_inc m_curve_inc; curve4_div m_curve_div; curve_approximation_method_e m_approximation_method; }; } #endif