/* Operations on file descriptors * * Copyright 2002-2005, Axel Dörfler, axeld@pinc-software.de. * Distributed under the terms of the MIT License. */ #include #include #include #include #include #include //#define TRACE_FD #ifdef TRACE_FD # define TRACE(x) dprintf x #else # define TRACE(x) #endif /*** General fd routines ***/ #ifdef DEBUG void dump_fd(int fd, struct file_descriptor *descriptor); void dump_fd(int fd,struct file_descriptor *descriptor) { dprintf("fd[%d] = %p: type = %ld, ref_count = %ld, ops = %p, u.vnode = %p, u.mount = %p, cookie = %p, open_mode = %lx, pos = %Ld\n", fd, descriptor, descriptor->type, descriptor->ref_count, descriptor->ops, descriptor->u.vnode, descriptor->u.mount, descriptor->cookie, descriptor->open_mode, descriptor->pos); } #endif /** Allocates and initializes a new file_descriptor */ struct file_descriptor * alloc_fd(void) { struct file_descriptor *descriptor; descriptor = malloc(sizeof(struct file_descriptor)); if (descriptor == NULL) return NULL; descriptor->u.vnode = NULL; descriptor->cookie = NULL; descriptor->ref_count = 1; descriptor->open_count = 0; descriptor->open_mode = 0; descriptor->pos = 0; return descriptor; } /** Searches a free slot in the FD table of the provided I/O context, and inserts * the specified descriptor into it. */ int new_fd_etc(struct io_context *context, struct file_descriptor *descriptor, int firstIndex) { int fd = -1; uint32 i; mutex_lock(&context->io_mutex); for (i = firstIndex; i < context->table_size; i++) { if (!context->fds[i]) { fd = i; break; } } if (fd < 0) { fd = B_NO_MORE_FDS; goto err; } context->fds[fd] = descriptor; context->num_used_fds++; atomic_add(&descriptor->open_count, 1); err: mutex_unlock(&context->io_mutex); return fd; } int new_fd(struct io_context *context, struct file_descriptor *descriptor) { return new_fd_etc(context, descriptor, 0); } /** Reduces the descriptor's reference counter, and frees all resources * when it's no longer used. */ void put_fd(struct file_descriptor *descriptor) { TRACE(("put_fd(descriptor = %p [ref = %ld, cookie = %p])\n", descriptor, descriptor->ref_count, descriptor->cookie)); // free the descriptor if we don't need it anymore if (atomic_add(&descriptor->ref_count, -1) == 1) { // free the underlying object if (descriptor->ops->fd_free) descriptor->ops->fd_free(descriptor); free(descriptor); } } /** Decrements the open counter of the file descriptor and invokes * its close hook when appropriate. */ void close_fd(struct file_descriptor *descriptor) { if (atomic_add(&descriptor->open_count, -1) == 1) { if (descriptor->ops->fd_close) descriptor->ops->fd_close(descriptor); } } struct file_descriptor * get_fd(struct io_context *context, int fd) { struct file_descriptor *descriptor = NULL; if (fd < 0) return NULL; mutex_lock(&context->io_mutex); if ((uint32)fd < context->table_size) descriptor = context->fds[fd]; if (descriptor != NULL) // fd is valid atomic_add(&descriptor->ref_count, 1); mutex_unlock(&context->io_mutex); return descriptor; } /** Removes the file descriptor from the specified slot. */ static struct file_descriptor * remove_fd(struct io_context *context, int fd) { struct file_descriptor *descriptor = NULL; if (fd < 0) return NULL; mutex_lock(&context->io_mutex); if ((uint32)fd < context->table_size) descriptor = context->fds[fd]; if (descriptor) { // fd is valid context->fds[fd] = NULL; context->num_used_fds--; } mutex_unlock(&context->io_mutex); return descriptor; } static int dup_fd(int fd, bool kernel) { struct io_context *context = get_current_io_context(kernel); struct file_descriptor *descriptor; int status; TRACE(("dup_fd: fd = %d\n", fd)); // Try to get the fd structure descriptor = get_fd(context, fd); if (descriptor == NULL) return B_FILE_ERROR; // now put the fd in place status = new_fd(context, descriptor); if (status < 0) put_fd(descriptor); return status; } static int dup2_fd(int oldfd, int newfd, bool kernel) { struct file_descriptor *evicted = NULL; struct io_context *context; TRACE(("dup2_fd: ofd = %d, nfd = %d\n", oldfd, newfd)); // quick check if (oldfd < 0 || newfd < 0) return B_FILE_ERROR; // Get current I/O context and lock it context = get_current_io_context(kernel); mutex_lock(&context->io_mutex); // Check if the fds are valid (mutex must be locked because // the table size could be changed) if ((uint32)oldfd >= context->table_size || (uint32)newfd >= context->table_size || context->fds[oldfd] == NULL) { mutex_unlock(&context->io_mutex); return B_FILE_ERROR; } // Check for identity, note that it cannot be made above // because we always want to return an error on invalid // handles if (oldfd != newfd) { // Now do the work evicted = context->fds[newfd]; atomic_add(&context->fds[oldfd]->ref_count, 1); atomic_add(&context->fds[oldfd]->open_count, 1); context->fds[newfd] = context->fds[oldfd]; if (evicted == NULL) context->num_used_fds++; } mutex_unlock(&context->io_mutex); // Say bye bye to the evicted fd if (evicted) put_fd(evicted); return newfd; } status_t select_fd(int fd, uint8 event, uint32 ref, struct select_sync *sync, bool kernel) { struct file_descriptor *descriptor; status_t status; TRACE(("select_fd(fd = %d, event = %u, ref = %lu, selectsync = %p)\n", fd, event, ref, sync)); descriptor = get_fd(get_current_io_context(kernel), fd); if (descriptor == NULL) return B_FILE_ERROR; if (descriptor->ops->fd_select) { status = descriptor->ops->fd_select(descriptor, event, ref, sync); } else { // if the I/O subsystem doesn't support select(), we will // immediately notify the select call status = notify_select_event((void *)sync, ref, event); } put_fd(descriptor); return status; } status_t deselect_fd(int fd, uint8 event, struct select_sync *sync, bool kernel) { struct file_descriptor *descriptor; status_t status; TRACE(("deselect_fd(fd = %d, event = %u, selectsync = %p)\n", fd, event, sync)); descriptor = get_fd(get_current_io_context(kernel), fd); if (descriptor == NULL) return B_FILE_ERROR; if (descriptor->ops->fd_deselect) status = descriptor->ops->fd_deselect(descriptor, event, sync); else status = B_OK; put_fd(descriptor); return status; } /** This function checks if the specified fd is valid in the current * context. It can be used for a quick check; the fd is not locked * so it could become invalid immediately after this check. */ bool fd_is_valid(int fd, bool kernel) { struct file_descriptor *descriptor = get_fd(get_current_io_context(kernel), fd); if (descriptor == NULL) return false; put_fd(descriptor); return true; } static status_t common_close(int fd, bool kernel) { struct io_context *io = get_current_io_context(kernel); struct file_descriptor *descriptor = remove_fd(io, fd); if (descriptor == NULL) return B_FILE_ERROR; #ifdef TRACE_FD if (!kernel) TRACE(("_user_close(descriptor = %p)\n", descriptor)); #endif close_fd(descriptor); put_fd(descriptor); // the reference associated with the slot return B_OK; } // #pragma mark - // User syscalls ssize_t _user_read(int fd, off_t pos, void *buffer, size_t length) { struct file_descriptor *descriptor; ssize_t bytesRead; /* This is a user_function, so abort if we have a kernel address */ if (!IS_USER_ADDRESS(buffer)) return B_BAD_ADDRESS; descriptor = get_fd(get_current_io_context(false), fd); if (!descriptor) return B_FILE_ERROR; if ((descriptor->open_mode & O_RWMASK) == O_WRONLY) { put_fd(descriptor); return B_FILE_ERROR; } if (pos == -1) pos = descriptor->pos; if (descriptor->ops->fd_read) { bytesRead = descriptor->ops->fd_read(descriptor, pos, buffer, &length); if (bytesRead >= B_OK) { if (length > SSIZE_MAX) bytesRead = SSIZE_MAX; else bytesRead = (ssize_t)length; descriptor->pos = pos + length; } } else bytesRead = B_BAD_VALUE; put_fd(descriptor); return bytesRead; } ssize_t _user_readv(int fd, off_t pos, const iovec *userVecs, size_t count) { struct file_descriptor *descriptor; ssize_t bytesRead = 0; status_t status; iovec *vecs; uint32 i; /* This is a user_function, so abort if we have a kernel address */ if (!IS_USER_ADDRESS(userVecs)) return B_BAD_ADDRESS; descriptor = get_fd(get_current_io_context(false), fd); if (!descriptor) return B_FILE_ERROR; if ((descriptor->open_mode & O_RWMASK) == O_WRONLY) { status = B_FILE_ERROR; goto err1; } vecs = malloc(sizeof(iovec) * count); if (vecs == NULL) { status = B_NO_MEMORY; goto err1; } if (user_memcpy(vecs, userVecs, sizeof(iovec) * count) < B_OK) { status = B_BAD_ADDRESS; goto err2; } if (pos == -1) pos = descriptor->pos; if (descriptor->ops->fd_read) { for (i = 0; i < count; i++) { size_t length = vecs[i].iov_len; status = descriptor->ops->fd_read(descriptor, pos, vecs[i].iov_base, &length); if (status < B_OK) { bytesRead = status; break; } if ((uint32)bytesRead + length > SSIZE_MAX) bytesRead = SSIZE_MAX; else bytesRead += (ssize_t)length; descriptor->pos = pos + length; } } else bytesRead = B_BAD_VALUE; status = bytesRead; err2: free(vecs); err1: put_fd(descriptor); return status; } ssize_t _user_write(int fd, off_t pos, const void *buffer, size_t length) { struct file_descriptor *descriptor; ssize_t bytesWritten = 0; if (IS_KERNEL_ADDRESS(buffer)) return B_BAD_ADDRESS; descriptor = get_fd(get_current_io_context(false), fd); if (!descriptor) return B_FILE_ERROR; if ((descriptor->open_mode & O_RWMASK) == O_RDONLY) { put_fd(descriptor); return B_FILE_ERROR; } if (pos == -1) pos = descriptor->pos; if (descriptor->ops->fd_write) { bytesWritten = descriptor->ops->fd_write(descriptor, pos, buffer, &length); if (bytesWritten >= B_OK) { if (length > SSIZE_MAX) bytesWritten = SSIZE_MAX; else bytesWritten = (ssize_t)length; descriptor->pos = pos + length; } } else bytesWritten = B_BAD_VALUE; put_fd(descriptor); return bytesWritten; } ssize_t _user_writev(int fd, off_t pos, const iovec *userVecs, size_t count) { struct file_descriptor *descriptor; ssize_t bytesWritten = 0; status_t status; iovec *vecs; uint32 i; /* This is a user_function, so abort if we have a kernel address */ if (!IS_USER_ADDRESS(userVecs)) return B_BAD_ADDRESS; descriptor = get_fd(get_current_io_context(false), fd); if (!descriptor) return B_FILE_ERROR; if ((descriptor->open_mode & O_RWMASK) == O_RDONLY) { status = B_FILE_ERROR; goto err1; } vecs = malloc(sizeof(iovec) * count); if (vecs == NULL) { status = B_NO_MEMORY; goto err1; } if (user_memcpy(vecs, userVecs, sizeof(iovec) * count) < B_OK) { status = B_BAD_ADDRESS; goto err2; } if (pos == -1) pos = descriptor->pos; if (descriptor->ops->fd_write) { for (i = 0; i < count; i++) { size_t length = vecs[i].iov_len; status = descriptor->ops->fd_write(descriptor, pos, vecs[i].iov_base, &length); if (status < B_OK) { bytesWritten = status; break; } if ((uint32)bytesWritten + length > SSIZE_MAX) bytesWritten = SSIZE_MAX; else bytesWritten += (ssize_t)length; descriptor->pos = pos + length; } } else bytesWritten = B_BAD_VALUE; status = bytesWritten; err2: free(vecs); err1: put_fd(descriptor); return status; } off_t _user_seek(int fd, off_t pos, int seekType) { struct file_descriptor *descriptor; descriptor = get_fd(get_current_io_context(false), fd); if (!descriptor) return B_FILE_ERROR; TRACE(("user_seek(descriptor = %p)\n", descriptor)); if (descriptor->ops->fd_seek) pos = descriptor->ops->fd_seek(descriptor, pos, seekType); else pos = ESPIPE; put_fd(descriptor); return pos; } status_t _user_ioctl(int fd, ulong op, void *buffer, size_t length) { struct file_descriptor *descriptor; int status; if (IS_KERNEL_ADDRESS(buffer)) return B_BAD_ADDRESS; TRACE(("user_ioctl: fd %d\n", fd)); descriptor = get_fd(get_current_io_context(false), fd); if (!descriptor) return B_FILE_ERROR; if (descriptor->ops->fd_ioctl) status = descriptor->ops->fd_ioctl(descriptor, op, buffer, length); else status = EOPNOTSUPP; put_fd(descriptor); return status; } ssize_t _user_read_dir(int fd, struct dirent *buffer, size_t bufferSize, uint32 maxCount) { struct file_descriptor *descriptor; ssize_t retval; if (IS_KERNEL_ADDRESS(buffer)) return B_BAD_ADDRESS; TRACE(("user_read_dir(fd = %d, buffer = %p, bufferSize = %ld, count = %lu)\n", fd, buffer, bufferSize, maxCount)); descriptor = get_fd(get_current_io_context(false), fd); if (descriptor == NULL) return B_FILE_ERROR; if (descriptor->ops->fd_read_dir) { uint32 count = maxCount; retval = descriptor->ops->fd_read_dir(descriptor, buffer, bufferSize, &count); if (retval >= 0) retval = count; } else retval = EOPNOTSUPP; put_fd(descriptor); return retval; } status_t _user_rewind_dir(int fd) { struct file_descriptor *descriptor; status_t status; TRACE(("user_rewind_dir(fd = %d)\n", fd)); descriptor = get_fd(get_current_io_context(false), fd); if (descriptor == NULL) return B_FILE_ERROR; if (descriptor->ops->fd_rewind_dir) status = descriptor->ops->fd_rewind_dir(descriptor); else status = EOPNOTSUPP; put_fd(descriptor); return status; } status_t _user_close(int fd) { return common_close(fd, false); } int _user_dup(int fd) { return dup_fd(fd, false); } int _user_dup2(int ofd, int nfd) { return dup2_fd(ofd, nfd, false); } // #pragma mark - // Kernel calls ssize_t _kern_read(int fd, off_t pos, void *buffer, size_t length) { struct file_descriptor *descriptor; ssize_t bytesRead; descriptor = get_fd(get_current_io_context(true), fd); if (!descriptor) return B_FILE_ERROR; if ((descriptor->open_mode & O_RWMASK) == O_WRONLY) { put_fd(descriptor); return B_FILE_ERROR; } if (pos == -1) pos = descriptor->pos; if (descriptor->ops->fd_read) { bytesRead = descriptor->ops->fd_read(descriptor, pos, buffer, &length); if (bytesRead >= B_OK) { if (length > SSIZE_MAX) bytesRead = SSIZE_MAX; else bytesRead = (ssize_t)length; descriptor->pos = pos + length; } } else bytesRead = B_BAD_VALUE; put_fd(descriptor); return bytesRead; } ssize_t _kern_readv(int fd, off_t pos, const iovec *vecs, size_t count) { struct file_descriptor *descriptor; ssize_t bytesRead = 0; status_t status; uint32 i; descriptor = get_fd(get_current_io_context(false), fd); if (!descriptor) return B_FILE_ERROR; if ((descriptor->open_mode & O_RWMASK) == O_WRONLY) { put_fd(descriptor); return B_FILE_ERROR; } if (pos == -1) pos = descriptor->pos; if (descriptor->ops->fd_read) { for (i = 0; i < count; i++) { size_t length = vecs[i].iov_len; status = descriptor->ops->fd_read(descriptor, pos, vecs[i].iov_base, &length); if (status < B_OK) { bytesRead = status; break; } if ((uint32)bytesRead + length > SSIZE_MAX) bytesRead = SSIZE_MAX; else bytesRead += (ssize_t)length; descriptor->pos = pos + length; } } else bytesRead = B_BAD_VALUE; put_fd(descriptor); return bytesRead; } ssize_t _kern_write(int fd, off_t pos, const void *buffer, size_t length) { struct file_descriptor *descriptor; ssize_t bytesWritten; descriptor = get_fd(get_current_io_context(true), fd); if (descriptor == NULL) return B_FILE_ERROR; if ((descriptor->open_mode & O_RWMASK) == O_RDONLY) { put_fd(descriptor); return B_FILE_ERROR; } if (pos == -1) pos = descriptor->pos; if (descriptor->ops->fd_write) { bytesWritten = descriptor->ops->fd_write(descriptor, pos, buffer, &length); if (bytesWritten >= B_OK) { if (length > SSIZE_MAX) bytesWritten = SSIZE_MAX; else bytesWritten = (ssize_t)length; descriptor->pos = pos + length; } } else bytesWritten = B_BAD_VALUE; put_fd(descriptor); return bytesWritten; } ssize_t _kern_writev(int fd, off_t pos, const iovec *vecs, size_t count) { struct file_descriptor *descriptor; ssize_t bytesWritten = 0; status_t status; uint32 i; descriptor = get_fd(get_current_io_context(false), fd); if (!descriptor) return B_FILE_ERROR; if ((descriptor->open_mode & O_RWMASK) == O_RDONLY) { put_fd(descriptor); return B_FILE_ERROR; } if (pos == -1) pos = descriptor->pos; if (descriptor->ops->fd_write) { for (i = 0; i < count; i++) { size_t length = vecs[i].iov_len; status = descriptor->ops->fd_write(descriptor, pos, vecs[i].iov_base, &length); if (status < B_OK) { bytesWritten = status; break; } if ((uint32)bytesWritten + length > SSIZE_MAX) bytesWritten = SSIZE_MAX; else bytesWritten += (ssize_t)length; descriptor->pos = pos + length; } } else bytesWritten = B_BAD_VALUE; put_fd(descriptor); return bytesWritten; } off_t _kern_seek(int fd, off_t pos, int seekType) { struct file_descriptor *descriptor; descriptor = get_fd(get_current_io_context(true), fd); if (!descriptor) return B_FILE_ERROR; if (descriptor->ops->fd_seek) pos = descriptor->ops->fd_seek(descriptor, pos, seekType); else pos = ESPIPE; put_fd(descriptor); return pos; } status_t _kern_ioctl(int fd, ulong op, void *buffer, size_t length) { struct file_descriptor *descriptor; int status; TRACE(("sys_ioctl: fd %d\n", fd)); descriptor = get_fd(get_current_io_context(true), fd); if (descriptor == NULL) return B_FILE_ERROR; if (descriptor->ops->fd_ioctl) status = descriptor->ops->fd_ioctl(descriptor, op, buffer, length); else status = EOPNOTSUPP; put_fd(descriptor); return status; } ssize_t _kern_read_dir(int fd, struct dirent *buffer, size_t bufferSize, uint32 maxCount) { struct file_descriptor *descriptor; ssize_t retval; TRACE(("sys_read_dir(fd = %d, buffer = %p, bufferSize = %ld, count = %lu)\n",fd, buffer, bufferSize, maxCount)); descriptor = get_fd(get_current_io_context(true), fd); if (descriptor == NULL) return B_FILE_ERROR; if (descriptor->ops->fd_read_dir) { uint32 count = maxCount; retval = descriptor->ops->fd_read_dir(descriptor, buffer, bufferSize, &count); if (retval >= 0) retval = count; } else retval = EOPNOTSUPP; put_fd(descriptor); return retval; } status_t _kern_rewind_dir(int fd) { struct file_descriptor *descriptor; status_t status; TRACE(("sys_rewind_dir(fd = %d)\n",fd)); descriptor = get_fd(get_current_io_context(true), fd); if (descriptor == NULL) return B_FILE_ERROR; if (descriptor->ops->fd_rewind_dir) status = descriptor->ops->fd_rewind_dir(descriptor); else status = EOPNOTSUPP; put_fd(descriptor); return status; } status_t _kern_close(int fd) { return common_close(fd, true); } int _kern_dup(int fd) { return dup_fd(fd, true); } int _kern_dup2(int ofd, int nfd) { return dup2_fd(ofd, nfd, true); }