/* * Copyright 2003-2008, Axel Dörfler, axeld@pinc-software.de. * Distributed under the terms of the MIT License. */ #include <kernel_daemon.h> #include <new> #include <signal.h> #include <stdlib.h> #include <KernelExport.h> #include <elf.h> #include <lock.h> #include <util/AutoLock.h> #include <util/DoublyLinkedList.h> // The use of snooze() in the kernel_daemon() function is very inaccurate, of // course - the time the daemons need to execute add up in each iteration. // But since the kernel daemon is documented to be very inaccurate, this // actually might be okay (and that's why it's implemented this way now :-). // BeOS R5 seems to do it in the same way, anyway. struct daemon : DoublyLinkedListLinkImpl<struct daemon> { daemon_hook function; void* arg; int32 frequency; int32 offset; }; typedef DoublyLinkedList<struct daemon> DaemonList; class KernelDaemon { public: status_t Init(const char* name); status_t Register(daemon_hook function, void* arg, int frequency); status_t Unregister(daemon_hook function, void* arg); void Dump(); private: static status_t _DaemonThreadEntry(void* data); struct daemon* _NextDaemon(struct daemon& marker); status_t _DaemonThread(); private: recursive_lock fLock; DaemonList fDaemons; thread_id fThread; }; static KernelDaemon sKernelDaemon; static KernelDaemon sResourceResizer; status_t KernelDaemon::Init(const char* name) { recursive_lock_init(&fLock, name); fThread = spawn_kernel_thread(&_DaemonThreadEntry, name, B_LOW_PRIORITY, this); if (fThread < 0) return fThread; send_signal_etc(fThread, SIGCONT, B_DO_NOT_RESCHEDULE); return B_OK; } status_t KernelDaemon::Register(daemon_hook function, void* arg, int frequency) { if (function == NULL || frequency < 1) return B_BAD_VALUE; struct ::daemon* daemon = new(std::nothrow) (struct ::daemon); if (daemon == NULL) return B_NO_MEMORY; daemon->function = function; daemon->arg = arg; daemon->frequency = frequency; RecursiveLocker _(fLock); if (frequency > 1) { // we try to balance the work-load for each daemon run // (beware, it's a very simple algorithm, yet effective) DaemonList::Iterator iterator = fDaemons.GetIterator(); int32 num = 0; while (iterator.HasNext()) { if (iterator.Next()->frequency == frequency) num++; } daemon->offset = num % frequency; } else daemon->offset = 0; fDaemons.Add(daemon); return B_OK; } status_t KernelDaemon::Unregister(daemon_hook function, void* arg) { RecursiveLocker _(fLock); DaemonList::Iterator iterator = fDaemons.GetIterator(); // search for the daemon and remove it from the list while (iterator.HasNext()) { struct daemon* daemon = iterator.Next(); if (daemon->function == function && daemon->arg == arg) { // found it! iterator.Remove(); delete daemon; return B_OK; } } return B_ENTRY_NOT_FOUND; } void KernelDaemon::Dump() { DaemonList::Iterator iterator = fDaemons.GetIterator(); while (iterator.HasNext()) { struct daemon* daemon = iterator.Next(); const char *symbol, *imageName; bool exactMatch; status_t status = elf_debug_lookup_symbol_address( (addr_t)daemon->function, NULL, &symbol, &imageName, &exactMatch); if (status == B_OK && exactMatch) { if (strchr(imageName, '/') != NULL) imageName = strrchr(imageName, '/') + 1; kprintf("\t%s:%s (%p), arg %p\n", imageName, symbol, daemon->function, daemon->arg); } else { kprintf("\t%p, arg %p\n", daemon->function, daemon->arg); } } } /*static*/ status_t KernelDaemon::_DaemonThreadEntry(void* data) { return ((KernelDaemon*)data)->_DaemonThread(); } struct daemon* KernelDaemon::_NextDaemon(struct daemon& marker) { struct daemon* daemon; if (marker.GetDoublyLinkedListLink()->next == NULL && marker.GetDoublyLinkedListLink()->previous == NULL && fDaemons.Head() != &marker) { // Marker is not part of the list yet, just return the first entry daemon = fDaemons.Head(); } else { daemon = marker.GetDoublyLinkedListLink()->next; fDaemons.Remove(&marker); } if (daemon != NULL) fDaemons.Insert(daemon->GetDoublyLinkedListLink()->next, &marker); return daemon; } status_t KernelDaemon::_DaemonThread() { struct daemon marker; int32 iteration = 0; while (true) { RecursiveLocker locker(fLock); // iterate through the list and execute each daemon if needed while (struct daemon* daemon = _NextDaemon(marker)) { if (((iteration + daemon->offset) % daemon->frequency) == 0) daemon->function(daemon->arg, iteration); } locker.Unlock(); iteration++; snooze(100000); // 0.1 seconds } return B_OK; } // #pragma mark - static int dump_daemons(int argc, char** argv) { kprintf("kernel daemons:\n"); sKernelDaemon.Dump(); kprintf("\nresource resizers:\n"); sResourceResizer.Dump(); return 0; } // #pragma mark - extern "C" status_t register_kernel_daemon(daemon_hook function, void* arg, int frequency) { return sKernelDaemon.Register(function, arg, frequency); } extern "C" status_t unregister_kernel_daemon(daemon_hook function, void* arg) { return sKernelDaemon.Unregister(function, arg); } extern "C" status_t register_resource_resizer(daemon_hook function, void* arg, int frequency) { return sResourceResizer.Register(function, arg, frequency); } extern "C" status_t unregister_resource_resizer(daemon_hook function, void* arg) { return sResourceResizer.Unregister(function, arg); } // #pragma mark - extern "C" status_t kernel_daemon_init(void) { new(&sKernelDaemon) KernelDaemon; if (sKernelDaemon.Init("kernel daemon") != B_OK) panic("kernel_daemon_init(): failed to init kernel daemon"); new(&sResourceResizer) KernelDaemon; if (sResourceResizer.Init("resource resizer") != B_OK) panic("kernel_daemon_init(): failed to init resource resizer"); add_debugger_command("daemons", dump_daemons, "Shows registered kernel daemons."); return B_OK; }