When an ARMv7 CPU is detected, immediately turn on the FPU. This allows
us to use vsnprintf in the TRACE call in that function, as our libc is
compiled with floating point support and will trigger a fault if the FPU
is not available.
This lets the boot go further, and crash in mmu_init. Next steps:
* Find why mmu_init is crashing
* Setup some fault handlers, otherwise we call uboot ones, and they are
not very helpful. They will also probably not work once the mmu is
enabledvery helpful. They will also probably not work once the mmu is
enabledvery helpful. They will also probably not work once the mmu is
enabled...
* Use atomic_get_and_set for return value
* Atomics are no longer volatile
* Add missing arch_cpu_pause stub
* Move arch_cpu_idle to arch_cpu header to match
other architectures
This adds the -mapcs-frame compiler flag for ARM to have "stable"
stack frames, adds support to the kernel for dumping stack crawls,
and initial support for iframes. There' much more functionality
to unlock in KDL, but this makes debugging already a lot more
comfortable.....
This detects everything up to ARMv6 right now. Need to check more
recent ARM ARMs for ARMv7 detection.
The detected details get passed on to the kernel, which can use
the pre-detected info for selecting right pagetable format and such.
Copyright removal of Axel done after agreement with Axel @ BeGeistert
that for files that were copy/pasted from x86 arch and then fully
replaced the implementation, removal of original copyright holder is
allowed, since their actual code is gone ;)
This also implements the fault handler correctly now, and cleans up the
exception handling. Seems a lot more stable now, no unexpected panics or
faults happening anymore.