* Create new interface for cpuidle modules (similar to the cpufreq
interface)
* Generic cpuidle module is no longer needed
* Fix and update Intel C-State module
* pin idle threads to their specific CPUs
* allow scheduler to implement SMP_MSG_RESCHEDULE handler
* scheduler_set_thread_priority() reworked
* at reschedule: enqueue old thread after dequeueing the new one
* Thread::scheduler_lock protects thread state, priority, etc.
* sThreadCreationLock protects thread creation and removal and list of
threads in team.
* Team::signal_lock and Team::time_lock protect list of threads in team
as well.
* Scheduler uses its own internal locking.
* No need for the atomically changed variables to be declared as
volatile.
* Drop support for atomically getting and setting unaligned data.
* Introduce atomic_get_and_set[64]() which works the same as
atomic_set[64]() used to. atomic_set[64]() does not return the
previous value anymore.
The flag main purpose is to avoid race conditions between event handler
and cancel_timer(). However, cancel_timer() is safe even without
using gSchedulerLock.
If the event is scheduled to happen on other CPU than the CPU that
invokes cancel_timer() then cancel_timer() either disables the event
before its handler starts executing or waits until the event handler
is done.
If the event is scheduled on the same CPU that calls cancel_timer()
then, since cancel_timer() disables interrupts, the event is either
executed before cancel_timer() or when the timer interrupt handler
starts running the event is already disabled.
Simple scheduler behaves exactly the same as affine scheduler with a
single core. Obviously, affine scheduler is more complicated thus
introduces greater overhead but quite a lot of multicore logic has been
disabled on single core systems in the previous commit.
There is a global heap of cores, where the key is the highest priority
of threads running on that core. Moreover, for each core there is
a heap of logical processors on this core where the key is the priority
of currently running thread.
The per-core heap is used for load balancing among logical processors
on that core. The global heap is used in initial decision where to put
the thread (note that the algorithm that makes this decision is not
complete yet).