* define ELF32_COMPAT to enable ELF32 macros.
* add a flag ELF_LOAD_USER_IMAGE_TEST_EXECUTABLE to only check the format.
It will be used by load_image_internal() to check which mode to use when
loading an image.
* in arch_elf_relocate_rel(), switch to elf_addr instead of addr_t, which
would be the wrong size for elf32 on x86_64.
* the ELF compat loader reuses the relevant parts of elf.cpp and arch_elf.cpp,
excluding for instance load_kernel_add_on() or dump functions.
Change-Id: Ifa47334e5adefd45405a823a3accbd12eee5b116
There is absolutely no reason for these functions to be in commpage,
they don't do anything that involves the kernel in any way.
Additionaly, this patch rewrites memset and memcpy to C++, current
implementation is quite simple (though it may perform surprisingly
well when dealing with large buffers on cpus with ermsb). Better
versions are coming soon.
Signed-off-by: Paweł Dziepak <pdziepak@quarnos.org>
This patch introduces randomization of commpage position. From now on commpage
table contains offsets from begining to of the commpage to the particular
commpage entry. Similary addresses of symbols in ELF memory image "commpage"
are just offsets from the begining of the commpage.
This patch also updates KDL so that commpage entries are recognized and shown
correctly in stack trace. An update of Debugger is yet to be done.
x86_userspace_thread_exit() is a stub originally placed at the bottom of
each thread user stack that ensures any thread invokes exit_thread() upon
returning from its main higher level function.
Putting anything that is expected to be executed on a stack causes problems
when implementing data execution prevention. Code of x86_userspace_thread_exit()
is now moved to commpage which seems to be much more appropriate place for it.
Since the commpage is at a kernel address, changed 64-bit paging code
to match x86's behaviour of allowing user-accessible mappings to be
created in the kernel portion of the address space. This is also
required by some drivers.
* x86_64 is using the existing *_ia32 boot platforms.
* Special flags are required when compiling the loader to get GCC to compile
32-bit code. This adds a new set of rules for compiling boot code rather
than using the kernel rules, which compile using the necessary flags.
* Some x86_64 private headers have been stubbed by #include'ing the x86
versions. These will be replaced later.