* pin idle threads to their specific CPUs
* allow scheduler to implement SMP_MSG_RESCHEDULE handler
* scheduler_set_thread_priority() reworked
* at reschedule: enqueue old thread after dequeueing the new one
* Thread::scheduler_lock protects thread state, priority, etc.
* sThreadCreationLock protects thread creation and removal and list of
threads in team.
* Team::signal_lock and Team::time_lock protect list of threads in team
as well.
* Scheduler uses its own internal locking.
* No need for the atomically changed variables to be declared as
volatile.
* Drop support for atomically getting and setting unaligned data.
* Introduce atomic_get_and_set[64]() which works the same as
atomic_set[64]() used to. atomic_set[64]() does not return the
previous value anymore.
The flag main purpose is to avoid race conditions between event handler
and cancel_timer(). However, cancel_timer() is safe even without
using gSchedulerLock.
If the event is scheduled to happen on other CPU than the CPU that
invokes cancel_timer() then cancel_timer() either disables the event
before its handler starts executing or waits until the event handler
is done.
If the event is scheduled on the same CPU that calls cancel_timer()
then, since cancel_timer() disables interrupts, the event is either
executed before cancel_timer() or when the timer interrupt handler
starts running the event is already disabled.
Reads and writes to uid_t and gid_t are atomic anyway. The only real
problem that may happen here is inconsistent state of triples
effective_{u, g}id, saved_set_{u, g}id, real_{u, g}id, but team locks
protect us against that.
The fact that thread is waiting doesn't mean that it is nice to the others.
If the thread, indeed, waits for a longer time its penalty will be cancelled
anyway, however if the thread waits for a very short time do not count that
as being nice since lower priority threads didn't have much chance to run.