...from orientation params. Elaborated type specifiers are not needed
for C++ code and removing them makes doxygen happy. Verified working
on both gcc2h and gcc4h builds.
...on controls where it makes sense:
- BRadioButton and BCheckBox now return their preferred size as their
maximum.
- BRadioButton, BCheckBox and BTextControl now use left alignment by
default, as this is the most common use case for them.
Motivated by inconsistancies found while documenting BView.
Update copyright year, alphabetize
Variable names normalized:
* pt => point
* r => rect
* p => pattern
* c => color
* msg => message
* a, b and pt0, pt1 => start, end
* r, g, b, a => red, green, blue, alpha
A couple of white spaces fixes.
A couple of !pointer => pointer == NULL fixes.
GetPreferredSize params => _width and _height to indicate out params.
- The argument buffer contained in the debug_{pre,post}_syscall message structures wasn't large enough to accomodate all
arguments for some syscalls on x86-64, which could potentially have led to kernel memory corruption when using syscall
tracing via the debug API. As such, enlarge it to accomodate 64-bit platforms as well.
- Adjust TeamDebugger/SyscallInfo to discriminate the target architecture and read the arguments when trapping console
output. Gets the latter working on x86-64.
* The config space is larger than 255, we need to use an uint16 to access
offsets superior or equal to 256. The current API only proposes an uint8 for this.
This change switches the offset parameter to the uint16 type. Axel hinted that
the used values are the same with such a change (the doc says sign extended to 2 or
4 bytes).
I checked with GCC2 and it's indeed the case when inspecting the memory.
With GCC4, instructions are the same on function call.
* prints info about extended capabilities.
* struct pci_module_info and struct pci_device_module_info are extended with
pci_find_extended_capability().
* Also change kMinCellSize from a uint32 to a float so that it can be used
with std::min() and std::max() instead of min_c() and max_c().
* Set the text controls sizes and margins based on the font size. Also rework
_TextRectOffset() so that it will get the right spacing from by dividing the
palette frame by 3.
* Replace bare numbers and refactor with calculation or magic constant.
* Create a private method _TextRectOffset() which calculates and
returns the vertical text rect offset to use based on the font size.
* Replace 2.0 with new kBevelSpacing constant where appropriate.
* fPaletteFrame calculation in _LayoutView() was refactored but should
not have changed.
* If at least one image is either B_HAIKU_ABI_GCC_2_ANCIENT or
B_HAIKU_ABI_GCC_2_BEOS almost all areas are marked as executable.
* B_EXECUTE_AREA and B_STACK_AREA are made public. The former is enforced since
the introduction of DEP and apps need it to correctly set area protection.
The latter is currently needed only to recognize stack areas and fix their
protection in compatibility mode, but may also be useful if an app wants
to use sigaltstack from POSIX API.
... back to their previous void returning roles. AlertPosition() is used instead to
check that an alert fits within the sides of the screen and all that.
Also add another CenterOnScreen() method that takes a Screen ID
so you can center a window on another monitor that the one it is currently on
(theoretically someday anyway).
...to position alert's and open/save dialogs nicely inside of the parent window,
or if that is unavailable, the screen frame.
AlertPosition() is private (for now) but BAlert and BFilePanel are BWindow's friends so
BWindow allows those classes to touch it's privates.
* These methods now return the new point after centering.
* But more importantly CenterIn() does some new adjustments to keep the window
position inside the screen edge. If you pass the screen frame into CenterIn()
it skips these adjustments.
In sake of consistency with other Windows CP encodings:
* print_name is expanded to "Windows Central European (CP 1250)";
* B_MS_WINDOWS_1250_CONVERSION id looks like should be added into UTF8.h;
* mime_name set to NULL as other windows codepages have. That prevents
at least from duplicating too much 1250's in the Terminal, Mail and
StyledEdit encodings menus.
This address specification is actually not needed since PIC images can be
located anywhere. Only their size is restriced but that is the compiler and
linker concern. Thanks to Alex Smith for pointing that out.
Improve the unicode character processing and classifying routines by
wrapping up the UChar32 procedures from ICU. That fixes functional
regression introduced in hrev38017 and allows to fix East Asian Width
problems int the Temrinal.
This means the B_COLOR_WHICH_COUNT goes from being a public constant to a
private one. It sill looks like a public constant starting with a B_ though.
I hope that's not a big deal. Too bad we can't get the count of an enum.
This fixes a maintainance problem where you have to update this otherwise
unrelated file to keep it in sync whenever you add a color constant.
I've added a B_COLOR_WHICH_COUNT constant to the color_which enum which should
be updated to point to the newest color constants as new ones are added. I
reworked ServerReadOnlyMemory to use this constant instead of using to the
current largest color constant directly. If you use B_COLOR_WHICH_COUNT to
refer to a color in your code expect to get unpredictable and nonsensical
results. Most likely you'll get an undefined result which will return black
but don't depend on it.
The net effect of this is that ServerReadOnlyMemory doesn't need to be updated
anymore when new color constants are introduced but will continue to produce
correct results.
Eliminate kNumColors constant, replace it with B_COLOR_WHICH_COUNT
This allows you to change the scrollbar thumb color in Appearance preferences.
The default color is 216, 216, 216 so the scroll bar thumb looks the same by
default. Perhaps someday this can be updated to something a bit more colorful.
On some 64 bit architectures program and library images have to be mapped in
the lower 2 GB of the address space (due to instruction pointer relative
addressing). Address specification B_RANDOMIZED_IMAGE_ADDRESS ensures that
created area satisfies that requirement.
Randomized equivalent of B_ANY_ADDRESS. When a free space is found (as in
B_ANY_ADDRESS) the base adress is then randomized using _RandomizeAddress
pretty much like it is done in B_RANDOMIZED_BASE_ADDRESS.
B_RAND_BASE_ADDRESS is basically B_BASE_ADDRESS with non-deterministic created
area's base address.
Initial start address is randomized and then the algorithm looks for a large
enough free space in the interval [randomized start, end]. If it fails then
the search is repeated in the interval [original start, randomized start]. In
case it also fails the algorithm falls back to B_ANY_ADDRESS
(B_RANDOMIZED_ANY_ADDRESS when it is implemented) just like B_BASE_ADDRESS does.
Randomization range is limited by kMaxRandomize and kMaxInitialRandomize.
This allows to reuse BMessenger objects for different targets, or to
recheck validity after initial creation. With that one can use the same
BMessenger after launching an application that was previously not found
valid for example.