* Add minor_version to hpkg_header and hpkg_repo_header and make
heap_compression uint16.
* If the minor version of a package/repository file is greater than the
current one unknown attributes are ignored without error. This allows
introducing new harmless attributes without making the resulting files
unreadable for older package kit versions.
* ReaderImplBase:
- Add virtual CreateCachedHeapReader() which can create a cached
reader based on the given heap reader.
- Rename HeapReader() to RawHeapReader() and add HeapReader() for the
cached heap reader.
- Add DetachHeapReader() to allow a clients to remove the heap
reader(s) after deleting the ReaderImplBase object.
* packagefs:
- Add CachedDataReader class, which wraps a given
BAbstractBufferedDataReader and provides caching for it using a
VMCache. The implementation is based on the IOCache implementation.
- Use CachedDataReader to wrap the heap reader. For file data that
means they are cached twice -- in the heap reader cache and in the
file cache -- but due to the heap reader using a VMCache as well,
the pages will be recycled automatically anyway. For attribute data
the cache should be very helpful, since they weren't cached at all
before.
* Add flags parameter to Init() of BPackageReader and friends.
* Introduce flag B_HPKG_READER_DONT_PRINT_VERSION_MISMATCH_MESSAGE and
don't print a version mismatch error when given.
* package extract/list: Use the new flag.
* Pull _UnwriteLastPartialChunk() out of Reinit() for reuse.
* _UnwriteLastPartialChunk(): fPendingDataSize wasn't set.
* _PushChunks(): Some simplifications for clarity.
* ChunkBuffer/RemoveDataRanges(): Use data reading and decompression
methods provided by our base class instead of duplicating the
implementation.
* RemoveDataRanges():
- _FlushPendingData() before starting, so we don't ignore the pending
data and _UnwriteLastPartialChunk() when done, so a partial chunk
is read back into the pending data buffer.
- fUncompressedHeapSize wasn't reset before the main processing loop,
thus resulting in an erroneous size later on.
* Introduce BPackageWriterParameters which comprises all parameters
for package creation, currently flags and compression level. Such an
object can be passed to BPackageWriter::Init() and is passed on to
PackageWriterImpl and WriterImplBase.
* PackageFileHeapWriter: Add compressionLevel property and pass the
value on to ZlibCompressor.
* package add/create: Add options -0 ... -9 to specify the compression
level to be used.
Instead of handling compression for individual file/attribute data we
do now compress the whole heap where they are stored. This
significantly improves compression ratios. We still divide the
uncompressed data into 64 KiB chunks and use a chunk offset array for
the compressed chunks to allow for quick random access without too much
overhead. The tradeoff is a limited possible compression ratio -- i.e.
we won't be as good as tar.gz (though surprisingly with my test
archives we did better than zip).
The other package file sections (package attributes and TOC) are no
longer compressed individually. Their uncompressed data are simply
pushed onto the heap where the usual compression strategy applies. To
simplify things the repository format has been changed in the same
manner although it doesn't otherwise use the heap, since it only stores
meta data.
Due to the data compression having been exposed in public and private
API, this change touches a lot of package kit using code, including
packagefs and the boot loader packagefs support. The latter two haven't
been tested yet. Moreover packagefs needs a new kind of cache so we
avoid re-reading the same heap chunk for two different data items it
contains.
It is no longer public (or even private) API. BPackageDataReaderFactory
returns a BAbstractBufferedDataReader instead. The advantage is that
the latter doesn't have hpkg format specific dependencies.
It doesn't do much in terms of buffering, but defines an interface
buffered readers can implement, namely the additional
ReadDataToOutput() which currently BPackageDataReader specifies.
It uses sub-namespace BPackage::BHPKG::V1. Unlike the one for the
current format version, the V1 version of BPackageInfoContentHandler
lives in BHPKG(::V1) sub-namespace and is private.
* Use enums/constants/functions instead of preprocessor macros.
* Missing include in PackageInfoAttributeValue.h.
* PackageReaderImpl::Init(): Check version before header size and
return B_MISMATCHED_VALUES instead of B_BAD_DATA, if the version
doesn't match. This allows callers to determine the condition and
try a reader for a different version. A more flexible interface for
that case would be nice, but since we want to support the old package
version only temporarily, the current solution should be good enough.
* Switch bash, debugger, less, telnet[d] and top apps to use termcap
functionality provided by ncurses lib instead of GNU libtermcap.so;
* NetBSD version of tput utility replaced with ncurses' one. Fixes#9606;
* terminfo database is provided as mandatory package installed during
building target system;
* Remove libtermcap module. The termcap database source and
corresponding build rules are not removed to provide backward compatibility -
until all optional packages will be rebuild on upcoming system version
using terminfo. Note that gcc2 builds may require to provide termcap a bit
longer in the sake of binary compatibility with R5 era apps.
* If at least one image is either B_HAIKU_ABI_GCC_2_ANCIENT or
B_HAIKU_ABI_GCC_2_BEOS almost all areas are marked as executable.
* B_EXECUTE_AREA and B_STACK_AREA are made public. The former is enforced since
the introduction of DEP and apps need it to correctly set area protection.
The latter is currently needed only to recognize stack areas and fix their
protection in compatibility mode, but may also be useful if an app wants
to use sigaltstack from POSIX API.
* Factor out the code to add some data to the about window, with a header and a content under it
* Make this method public so it's possible to add custom entries in an about box
* If the method is called with only the header or only the content, the text is added non-bold and non-indented (like the description entry*).
* Make the header text bold. I'm not sure it looks that good, after all. Thoughts ?
This means the build tools will no longer be built against the host
platform's libbe, which avoids compatibility problems -- e.g. an
older Haiku host libbe may not have certain features the build tools
require -- and also makes the build behave more similiar on Haiku and
other platforms. The host libroot dependency still remains and is not
easy to get rid of.
Also remove some bits of BeOS/Dano/Zeta build support.
* Pull out base class MimeEntryProcessor out of AppMetaMimeCreator.
* Pull class MimeInfoUpdater out of UpdateMimeInfoThread and derive it
from MimeEntryProcessor.
* MimeInfoUpdater: Instead of BMimeType::GuessMimeType(), use
Database::GuessMimeType() directly.
* This pulls in some more stuff, like libicon and agg which are also
included in libbe_build, now.
* Update a few libbe_build classes and headers needed to get things
building.
* This likely breaks the <build>mimeset build on Haiku.
* Add class DatabaseLocation. It contains a list of the MIME DB
directory paths plus methods to access type files.
* Move all low-level MIME DB access functions from
database_{support,access} to DatabaseLocation. All code that formerly
used those now requires a DatabaseLocation object. In BMimeType and in
the registrar the default object is used, but the low-level classes
can now be reused with different locations.
* Move get_icon_data() from database_access to database_support and
delete the former, which is now empty.
* Together with database_{access,support}.cpp it is built into a static
library.
* Add new interfaces MimeSniffer and Database::NotificationListener for
plugging in registrar specific functionality (the sniffer add-on
support and the notification mechanism).
Each installation location (system, common, common/non-packaged,
~/config, ~/config/non-package) can now have a read-only data/mime_db
directory. ~/config/settings/beos_mime is now named mime_db as well. The
contents of all directories makes up the MIME DB. Entries in more
specific locations shadow entries in more general locations. Only the
directory in ~/config/settings is where the registrar writes changes to.
The new layout allows packages to contribute entries to the MIME DB by
simply providing the respective files in data/mime_db. Consequently the
user settings directory is supposed to contain only the things the user
has actually changed.
Seems to work fine as far as tested. A few issues, though:
* The registrar doesn't monitor the directories yet, so it doesn't
notice entry changes due to package de-/activation.
* ATM it is not possible to remove a MIME type that is not in the user
settings directory, although the FileTypes GUI suggests that it is.
We'd have to work with white-outs, since we cannot remove the files in
the data/mime_db directories. Or, alternatively, the API has to be
extended and the FileTypes GUI adjusted to disable the "Remove" button
in such a case.
An arbitrary number of directories can be added, which the implemented
BEntryList interface presents as a single merged entry list. Three
different merge policies are supported which define how entries that
appear in more than one directory are treated.
Remove no longer needed header includes, most that I recently added
a few that were already there but just aren't needed anymore. Don't
use BPrivate::MenuPrivate namespace.
Just a few commits ago I moved the label truncation code out of
BMenuItem and into BMCMenuBar because the truncation had to happen
outside of BMenuItem. Turns out, that wasn't true so I'm moving the
label truncation back into BMenuItem and removing the _DrawItems()
method from BMCMenuBar.
Note that the code is not a copy of what was there before, but, the
updated version I created for BMCMenuBar. The main difference is that
I use menuPrivate.Padding() instead of GetItemMargins() and I always
use the width of the parent menu frame instead of using fBounds even
if the state is not MENU_STATE_CLOSED. These are changes needed for
BMCMenuBar but should work just as well for a regular BMenu.
...instead of in BMenuItem and remove the truncation code from BMenuItem.
The label truncation code cannot work in BMenuItem because the super
menu helpfully resizes itself to fit the menu item. So, instead we do the label
truncation in BMCPrivate making sure that BMenuItem there can't expand the
BMCMenuBar because we set the width to fMenuField->_MenuBarWidth()
explicity.
Note that this only truncates the label in BMCMenuField, i.e. the label inside
the menufield, it does nothing to the labels of the menu items in the attached
BMenu or BPopUpMenu which is exactly what we want.
Was passing !fixedSize into the view flags of BMenuBar, which made no sense.
Stop doing that, set fixedSize to true instead.
Remove the fixedSize parameter from this contructor, it's too late for that.
* Add optional packages Zlib and Zlib-devel.
* Simplify the build feature section for zlib and also extract the
source package.
* Replace all remaining references to the zlib instance in the tree and
remove it.
In some cases, BStringColumn wouldn't properly detect that an update was
needed, and would consequently fail to truncate a string as needed with
a column resize.
* Set its type to B_MODAL_WINDO, and also set B_NOT_MOVABLE
* Since this removes the window tab, add an "Ok" button to close the window
* Remove the GetWindow mess and just use it as any regular window
* Adjust all callers again
The AlertPosition method doesn't seem to work right, the window pops up
offset to the right. I also noticed that some of our calls to BAboutWindow
are actually not reacable because we removed Abutrequested from the apps.
Maybe we should clean them up (locale preflet and activity monitor are examples)
More annoying is the fact that opening a modal window from a deskbar replicant
is modal against the whole deskbar. Not sure what to do about that.
- debug_create_symbol_lookup_context() now takes an image ID
parameter that can optionally be used to restrict the symbols
it gathers to only those of the targeted image rather than the
entire team, allowing for significantly more lightweight usage
when the desired image is known. The previous behavior can still
be obtained if desired by passing -1 as said ID.
- Adjust callers.
... back to their previous void returning roles. AlertPosition() is used instead to
check that an alert fits within the sides of the screen and all that.
Also add another CenterOnScreen() method that takes a Screen ID
so you can center a window on another monitor that the one it is currently on
(theoretically someday anyway).
...to position alert's and open/save dialogs nicely inside of the parent window,
or if that is unavailable, the screen frame.
AlertPosition() is private (for now) but BAlert and BFilePanel are BWindow's friends so
BWindow allows those classes to touch it's privates.
BAboutWindow returned false in QuitRequested in order to hide instead of closing.
Not only this keeps a BLooper running for a rarely used window, but it also
prevents quitting an application in the window was not destroyed first.
* Remove aforementioned QuitRequested method,
* Add a static GetWindow method that returns the existing about window, if there
is one, or creates one if there is not. A boolean can be set to tell the caller
what happened,
* Adjust all callers to use that new method, instead of managing the window themselves.
* These methods now return the new point after centering.
* But more importantly CenterIn() does some new adjustments to keep the window
position inside the screen edge. If you pass the screen frame into CenterIn()
it skips these adjustments.
- Instead of implicitly registering and unregistering a service
instance on construction/destruction, DefaultNotificationService
now exports explicit Register()/Unregister() calls, which subclasses
are expected to call when they're ready.
- Adjust all implementing subclasses. Resolves an issue with deadlocks
when booting a DEBUG=1 build.
* Add "bool kernel" parameter to vfs_entry_ref_to_path(), so it can be
specified for which I/O context the entry ref shall be translated.
* _user_entry_ref_to_path(): Use the calling team's I/O context instead
of the kernel's. Fixes the bug that in a chroot the syscall would
return a path for outside the chroot.
* BActivationTransaction:
- Remove non-trivial constructor.
- Remove package list parameters from SetTo().
- Add AddPackageTo{Dea,A}ctivate().
* BDaemonClient:
- Add CreateTransaction(). It creates a transaction directory and
initializes a BActivationTransaction. Packages to de-/activate have
to be added afterwards.
- Add BCommitTransactionResult::FullErrorMessage().
The name of the package file is not part of the package-info.
CanonicalFileName() constructs the name the file should have (not
enforced anywhere (yet)).
* daemon: Handle new request B_MESSAGE_COMMIT_TRANSACTION. It activates
and deactivates given sets of packages. The new packages must be
placed in a directory in the administrative directory. The daemon
moves them to the packages directory and the deactivated packages to
a subdirectory it creates. It also save the old activation state
there.
* Add private BActivationTransaction, describing an activation change
transaction.
* BDaemonClient: Add CommitTransaction(), which sends a given
BActivationTransaction as a B_MESSAGE_COMMIT_TRANSACTION request to
the daemon.
Completely untested yet.
* ... to avoid confusion with the preRelease property. It's also called
"revision" in the HaikuPorts recipes.
* Update libsolv package. Was necessary due to the BPackageVersion
change, but also includes a few more changes.
In sake of consistency with other Windows CP encodings:
* print_name is expanded to "Windows Central European (CP 1250)";
* B_MS_WINDOWS_1250_CONVERSION id looks like should be added into UTF8.h;
* mime_name set to NULL as other windows codepages have. That prevents
at least from duplicating too much 1250's in the Terminal, Mail and
StyledEdit encodings menus.
* Rename PackageDaemonDefs.h to DaemonDefs.h.
* Replace the MESSAGE_GET_PACKAGES by the new
B_MESSAGE_GET_INSTALLATION_LOCATION_INFO, which not only returns the
packages, but also other information about the installation location.
* daemon: Volume: Implement a change count which is bumped whenever
packages are activated/deactivated/added/removed. Cache the reply
for a location info request, using the change count to check whether
it is still up-to-date.
* Add private BDaemonClient for communication with the daemon.
* BRoster:
- Add GetInstallationLocationInfo() using BDaemonClient.
- Reimplement GetActivePackages(), using
GetInstallationLocationInfo().
* Implement copy-on-write support.
* Add copy constructor and assignment operator.
* Remove Init(). Initialize lazily instead. Since AddInfo() can fail
and we check initialization anyway, there's no point in having an
explicit Init(). Given that there was only one invocation of Init()
in the package kit and its users, it was very likely missing in some
places.
* Fix a few places where we ignored that the PackageMap actually
contains lists of PackageInfo objects.
* It no longer consists of a BPackageResolvableExpression and a
repository. Instead it can now either refer to a package directly or
consist of a search string.
* SolverPackageSpecifierList: Add AppendSpecifier() convenience
versions.
* Adjust LibsolvSolver and pkgman accordingly.
* BSolver/LibsolvSolver:
* Add B_FIND_IN_NAME and make searching in the names explicit.
* Add B_FIND_IN_PROVIDES to search the packages' provides list.
* pkgman: Also search in provides.
Currently there are two generators. The fast one is the same one the scheduler
is using. The standard one is the same algorithm libroot's rand() uses. Should
there be a need for more cryptographically PRNG MD4 or MD5 might be a good
candidates.
* daemon: Implement private message protocol to retrieve the active
packages.
* BPackageRoster::GetActivePackages(): Get the active packages list
from the daemon.
This address specification is actually not needed since PIC images can be
located anywhere. Only their size is restriced but that is the compiler and
linker concern. Thanks to Alex Smith for pointing that out.
* We first process the node monitoring events, collecting the required
package activation changes, then apply all changes together.
* Change the PackageFSActivationChangeItem/-Request structs. The former
is no longer variable in size, which makes it easier to work with.
Improve the unicode character processing and classifying routines by
wrapping up the UChar32 procedures from ICU. That fixes functional
regression introduced in hrev38017 and allows to fix East Asian Width
problems int the Temrinal.
* Add PACKAGE_FS_OPERATION_GET_PACKAGE_INFOS which returns the node refs
of all packages activated.
* Add PACKAGE_FS_OPERATION_CHANGE_ACTIVATION to activate/deactivate
multiple packages.
This means the B_COLOR_WHICH_COUNT goes from being a public constant to a
private one. It sill looks like a public constant starting with a B_ though.
I hope that's not a big deal. Too bad we can't get the count of an enum.
This fixes a maintainance problem where you have to update this otherwise
unrelated file to keep it in sync whenever you add a color constant.
I've added a B_COLOR_WHICH_COUNT constant to the color_which enum which should
be updated to point to the newest color constants as new ones are added. I
reworked ServerReadOnlyMemory to use this constant instead of using to the
current largest color constant directly. If you use B_COLOR_WHICH_COUNT to
refer to a color in your code expect to get unpredictable and nonsensical
results. Most likely you'll get an undefined result which will return black
but don't depend on it.
The net effect of this is that ServerReadOnlyMemory doesn't need to be updated
anymore when new color constants are introduced but will continue to produce
correct results.
Eliminate kNumColors constant, replace it with B_COLOR_WHICH_COUNT
This allows you to change the scrollbar thumb color in Appearance preferences.
The default color is 216, 216, 216 so the scroll bar thumb looks the same by
default. Perhaps someday this can be updated to something a bit more colorful.
On some 64 bit architectures program and library images have to be mapped in
the lower 2 GB of the address space (due to instruction pointer relative
addressing). Address specification B_RANDOMIZED_IMAGE_ADDRESS ensures that
created area satisfies that requirement.
Placing commpage and team user data somewhere at the top of the user accessible
virtual address space prevents these areas from conflicting with elf images
that require to be mapped at exact address (in most cases: runtime_loader).
This patch introduces randomization of commpage position. From now on commpage
table contains offsets from begining to of the commpage to the particular
commpage entry. Similary addresses of symbols in ELF memory image "commpage"
are just offsets from the begining of the commpage.
This patch also updates KDL so that commpage entries are recognized and shown
correctly in stack trace. An update of Debugger is yet to be done.
Set execute disable bit for any page that belongs to area with neither
B_EXECUTE_AREA nor B_KERNEL_EXECUTE_AREA set.
In order to take advanage of NX bit in 32 bit protected mode PAE must be
enabled. Thus, from now on it is also enabled when the CPU supports NX bit.
vm_page_fault() takes additional argument which indicates whether page fault
was caused by an illegal instruction fetch.
x86_userspace_thread_exit() is a stub originally placed at the bottom of
each thread user stack that ensures any thread invokes exit_thread() upon
returning from its main higher level function.
Putting anything that is expected to be executed on a stack causes problems
when implementing data execution prevention. Code of x86_userspace_thread_exit()
is now moved to commpage which seems to be much more appropriate place for it.
Randomized equivalent of B_ANY_ADDRESS. When a free space is found (as in
B_ANY_ADDRESS) the base adress is then randomized using _RandomizeAddress
pretty much like it is done in B_RANDOMIZED_BASE_ADDRESS.
B_RAND_BASE_ADDRESS is basically B_BASE_ADDRESS with non-deterministic created
area's base address.
Initial start address is randomized and then the algorithm looks for a large
enough free space in the interval [randomized start, end]. If it fails then
the search is repeated in the interval [original start, randomized start]. In
case it also fails the algorithm falls back to B_ANY_ADDRESS
(B_RANDOMIZED_ANY_ADDRESS when it is implemented) just like B_BASE_ADDRESS does.
Randomization range is limited by kMaxRandomize and kMaxInitialRandomize.
Inside the page randomization of initial user stack pointer is not only a part
of ASLR implementation but also a performance improvement that helps
eliminating aligned 64 kB data access.
Minimal user stack size is increased to 8 kB in order to ensure that regardless
of initial stack pointer value there is still enough space on stack.
* Reorganize things a bit:
- BSolver is now an abstract base class.
- A libsolv based implementation, LibsolvSolver, lives in a new
add-on, which is loaded lazily.
- Get rid of libpackage_solver. Save for LibsolvSolver everything
is moved to libpackage.
- This is a nicer solution for the cyclic dependency caused by
libsolv (libsolvext to be precise) using the package kit for
reading repositories and package files.
* Add a solver result data structure and and an accessor the solver.
* Add problem reporting support to the solver. There aren't data
structures for the problem solutions yet and support for selecting
solutions and re-solving is missing as well.
* BPackageVersion: Add respective constructor and SetTo().
* BPackageInfo: Add static ParseVersionString() utility method. It's
only there because the parser lives in the BPackageInfo
implementation.
* If we have a configured network, then we always try to connect to it
as soon as the interface has been brought up.
* If we don't have a configured network and are auto configuring, we
use the AutoconfigLooper to also do initial auto joins.
* Before issuing auto joins we need to wait for scan results to come
in, so we watch for corresponding messages.
For now auto joining is a one shot attempt as the infrastructure to
properly tell reasons for scans apart is not yet there.
* Move StandardErrorOutput to libpackage and into proper namespace to
avoid "package_repo" having to reuse the "package" source file.
* package_repo: Fix incorrect includes of "package.h".
Not functional (or tested) yet. The libsolv setup for a somewhat
simplified installation case should be more or less complete, though.
The solution conversion to to-be-created Haiku data structures and the
handling of problems is still missing, though.
This allows to reuse BMessenger objects for different targets, or to
recheck validity after initial creation. With that one can use the same
BMessenger after launching an application that was previously not found
valid for example.
The physical memory map area was not included in the kernel virtual
address space range (it was below KERNEL_BASE). This caused problems
if an I/O operation took place on physical memory mapped there (the
bad address error seen in #9547 was occurring in lock_memory_etc()).
Changed KERNEL_BASE and KERNEL_SIZE to cover the area and add a null
area that covers all of it. Also changed X86VMTranslationMap64Bit to
handle large pages in Query(), as the physical map area uses large
pages.
* This parses the reported CPU name, and tries to translate it to a normal
and concise identifier.
* For example, it will translate "AMD FX(tm)-8320 Eight-core Processor" into
"FX™ 8320" or "Dual Core AMD Opteron(tm) Processor 275 HE" into
"Opteron™ 275 HE".
* This means we can remove AMD strings for those models for which this
function produces useful results.
* Make pointer style consistent, const char* name instead of const char *name.
* Lots of parameter renaming.
* in parameters don't get anything special, just font, or length instead of
inFont, inLength.
* out parameters get a leading _ so *outWidth becomes *_width for example.
* We don't detail private function in the Haiku book and this class has a bunch
so keep the documentation in the file but use regular comments instead.
* Normalize the parameter names between cpp file and header.
* Some minor whitespace fixes.
No functional change intended.
* Replace {Set|Remove}MasterKey() by generic {Set|Remove}UnlockKey()
that works on a keyring.
* Implement {Set|Remove}MasterUnlockKey() on top of that.
* Rename the commands and constants accrodingly.
* Implement setting and removing keyring unlock keys.
As there aren't any more generic meta data containers inside BKey,
there's no real way to distinguish different instances with the same
identifiers. This may be added later, for example the same index system
as used in BMessage could apply.
The application access concept is on the keyring level only for now.
Generally it probably would get pretty complicated and therefore harder
to use when application access needs to be granted on a per key basis.
The type is relevant and required as it determines the type of the
handed in key. The purpose however isn't actually needed and rather
inconvenient to get by depending on the situation.
* The keystore backend will (at least for the time being) reside in a
separate server. This one can be reached via normal messaging, so use
a BMessenger for sending key messages.
* Move the message constants from RegistrarDefs.h into a new
KeyStoreDefs.h that also contains the server signature.
* Update the message constants to reflect the new situation.
* Add all relevant message constants.
* Implement the messaging to send/retrieve key info.
* Implement _Flatten/_Unflatten for sending flat BKey objects.
* Remove application list from BKey, the key can't only differ by
allowed applications as the identifiers would still collide, so the
comparison isn't needed to uniquely identify the key. The applications
can be enumerated via the BKeyStore instead.
* Modified the API greatly to be based on BKey* instead of BPassword*.
* Added BKeyPurpose and used it instead of BKeyType. It is supposed to
indicate the purpose of a key so that an app can look up keys on a
more granular level. The BKeyType on the other hand actually
identifies the type (i.e. subclass of BKey) so an app knows how to
handle a given key or may only enumerate/use keys it is compatible
with.
* Made everything based on a raw data buffer for now, only BPasswordKey
is implemented yet which stores the (0 terminated) string into that
data buffer.
* Removed the additional data BMessage as I don't yet see where it fits
in. While I could imagine adding meta data to a key may be nice it
might be an interoperability concern when keys are shared by
different apps.
* Moved the app functions to the keystore as per the TODO, but not sure
how to actually implement them.
With this commit every class in the storage kit is now documented
in the Haiku book!
Thanks to Ingo, Axel, Vincent Dominguez, Tyler Dauwalder, and
everyone who helped document these classes.
* Remove docs from Resources.cpp (leaving the brief description).
* Reformat Resources.h to style it like so many other header files.
* There is one not-entirely style based change. I renamed the outSize
parameter or the LoadResource method to _size as is our convention for out
parameters.
And clean it up a bit. Kept brief description in source.
* Also added Axel to authors in Path.dox and Path.cpp because his name
appears in git blame as working on the docs and code for the file.
I hope he doesn't mind.
* Delete the docs from NodeInfo.cpp and NodeInfo.h
* I snuck a couple of style fixes into NodeInfo.cpp
* I had to make a small modification to MimeType.dox to prevent it
from overriding the docs of one of the methods in NodeInfo.dox.
* The user of an editor needed knowledge about the editor in order to make
use of it.
* Furthermore, the BPartitionParameterEditor exposed type specific
functionality that it shouldn't know anything about, either.
* We may now define a number of known parameters per editor type; right now
there is only "type" as it's needed by DriveSetup.
* Adapted all disk systems, and DriveSetup to the new API.
* Renamed CreateParamsPanel, and InitializeParamsPanel to *ParametersPanel
in DriveSetup.
* They now share a common base class AbstractParametersPanel.
* edid1_detailed_timing_raw was missing
a field which threw off the sync bits.
* The result was the monitor will receive
a different sync polarity than it requested.
Most monitors handle this, but it is still
a bug
This replaces the use of a few BSD-specific functions, as well
as the direct references to _open/_close et-al.
BFS doesn't support the FTS_NOSTAT directory link count optimization,
and no statfs() function is available, so we simply turn that off.
* Added the aforementioned functions.
* create_area_etc() now takes a guard size parameter.
* The thread_info::stack_base/end range now refers to the usable range
only.
* sys/select.h was not self contained before, this fixes#9327
* index is defined as a function in string.h, fixed resulting name
collision in glut_shapes.c