Applied our style guide.

Commented the debug welcome message in rtc_init().
Moved the seconds per year calculation into a separate function.


git-svn-id: file:///srv/svn/repos/haiku/trunk/current@5140 a95241bf-73f2-0310-859d-f6bbb57e9c96
This commit is contained in:
Axel Dörfler 2003-10-24 12:01:25 +00:00
parent a34e8cc39f
commit f328aeecb6
2 changed files with 177 additions and 139 deletions

View File

@ -7,6 +7,7 @@
#include <arch/real_time_clock.h>
#include <arch/cpu.h>
#define CMOS_ADDR_PORT 0x70
#define CMOS_DATA_PORT 0x71
#define BASE_YEAR 1970
@ -29,8 +30,10 @@ uint32 secs_per_month[12] = {SECONDS_31, SECONDS_28, SECONDS_31, SECONDS_30,
SECONDS_31, SECONDS_30, SECONDS_31, SECONDS_31, SECONDS_30, SECONDS_31, SECONDS_30,
SECONDS_31};
static uint32
bcd_to_int(uint8 bcd) {
bcd_to_int(uint8 bcd)
{
uint32 numl;
uint32 numh;
@ -40,8 +43,10 @@ bcd_to_int(uint8 bcd) {
return numh * 10 + numl;
}
static uint8
int_to_bcd(uint32 number) {
int_to_bcd(uint32 number)
{
uint8 low;
uint8 high;
@ -54,8 +59,10 @@ int_to_bcd(uint32 number) {
return (high << 4) | low;
}
static int
leap_year(uint32 year) {
leap_year(uint32 year)
{
if (year % 400 == 0)
return 1;
@ -68,43 +75,51 @@ leap_year(uint32 year) {
return 0;
}
static int
same_time(const cmos_time* time1, const cmos_time* time2) {
return (time1->second == time2->second) &&
(time1->minute == time2->minute) &&
(time1->hour == time2->hour) &&
(time1->day == time2->day) &&
(time1->month == time2->month) &&
(time1->year == time2->year) &&
(time1->century == time2->century);
same_time(const cmos_time *time1, const cmos_time *time2)
{
return time1->second == time2->second
&& time1->minute == time2->minute
&& time1->hour == time2->hour
&& time1->day == time2->day
&& time1->month == time2->month
&& time1->year == time2->year
&& time1->century == time2->century;
}
static uint8
cmos_read(uint8 addr) {
cmos_read(uint8 addr)
{
int wait_time;
wait_time = 10000;
// Wait until bit 7 of Status Register A (indicating whether or not an update is in
// progress) is clear if we are reading one of the clock data registers...
if (addr < 0x0a) {
// Wait until bit 7 of Status Register A (indicating whether or not an update is in
// progress) is clear if we are reading one of the clock data registers...
if (addr < 0x0a) {
out8(0x0a, CMOS_ADDR_PORT);
while ( (in8(CMOS_DATA_PORT) & 0x80) && --wait_time );
while ((in8(CMOS_DATA_PORT) & 0x80) && --wait_time);
}
// then read the value.
// then read the value.
out8(addr, CMOS_ADDR_PORT);
return in8(CMOS_DATA_PORT);
}
static void
cmos_write(uint8 addr, uint8 data) {
cmos_write(uint8 addr, uint8 data)
{
out8(addr, CMOS_ADDR_PORT);
out8(data, CMOS_DATA_PORT);
}
static void
set_24_hour_mode(void) {
set_24_hour_mode(void)
{
uint8 status_b;
status_b = cmos_read(0x0b);
@ -112,8 +127,10 @@ set_24_hour_mode(void) {
cmos_write(0x0b, status_b);
}
static void
read_cmos_clock(cmos_time* cmos) {
read_cmos_clock(cmos_time *cmos)
{
set_24_hour_mode();
cmos->century = cmos_read(0x32);
@ -125,8 +142,10 @@ read_cmos_clock(cmos_time* cmos) {
cmos->second = cmos_read(0x00);
}
static void
write_cmos_clock(cmos_time* cmos) {
write_cmos_clock(cmos_time *cmos)
{
set_24_hour_mode();
cmos_write(0x32, cmos->century);
@ -138,32 +157,40 @@ write_cmos_clock(cmos_time* cmos) {
cmos_write(0x00, cmos->second);
}
static inline uint32
secs_this_year(uint32 year)
{
if (leap_year(year))
return 31622400;
return 31536000;
}
static uint32
cmos_to_secs(const cmos_time* cmos) {
uint32 whole_year;
cmos_to_secs(const cmos_time *cmos)
{
uint32 wholeYear;
uint32 time = 0;
int i;
whole_year = bcd_to_int(cmos->century) * 100 + bcd_to_int(cmos->year);
wholeYear = bcd_to_int(cmos->century) * 100 + bcd_to_int(cmos->year);
// Add up the seconds from all years since 1970 that have elapsed.
for (i = BASE_YEAR; i < whole_year; ++i) {
if ( leap_year(i) )
time += 31622400;
else
time += 31536000;
// Add up the seconds from all years since 1970 that have elapsed.
for (i = BASE_YEAR; i < wholeYear; ++i) {
time += secs_this_year(i);
}
// Add up the seconds from all months passed this year.
// Add up the seconds from all months passed this year.
for (i = 0; i < bcd_to_int(cmos->month) - 1 && i < 12; ++i)
time += secs_per_month[i];
// Add up the seconds from all days passed this month.
if ( leap_year(whole_year) && bcd_to_int(cmos->month) > 2 )
// Add up the seconds from all days passed this month.
if (leap_year(wholeYear) && bcd_to_int(cmos->month) > 2)
time += SECONDS_DAY;
time += ( bcd_to_int(cmos->day) - 1 ) * SECONDS_DAY;
time += (bcd_to_int(cmos->day) - 1) * SECONDS_DAY;
time += bcd_to_int(cmos->hour) * 3600;
time += bcd_to_int(cmos->minute) * 60;
time += bcd_to_int(cmos->second);
@ -171,49 +198,45 @@ cmos_to_secs(const cmos_time* cmos) {
return time;
}
static void
secs_to_cmos(uint32 seconds, cmos_time* cmos) {
uint32 whole_year = BASE_YEAR;
uint32 secs_this_year;
secs_to_cmos(uint32 seconds, cmos_time *cmos)
{
uint32 wholeYear = BASE_YEAR;
uint32 secsThisYear;
bool keepLooping;
bool isLeapYear;
int i;
int temp;
int is_leapyear;
int month;
int keep_looping;
keep_looping = 1;
keepLooping = 1;
// Determine the current year by starting at 1970 and incrementing whole_year as long as
// we can keep subtracting secs_this_year from seconds.
while (keep_looping) {
if ( leap_year(whole_year) )
secs_this_year = 31622400;
// Determine the current year by starting at 1970 and incrementing whole_year as long as
// we can keep subtracting secs_this_year from seconds.
while (keepLooping) {
secsThisYear = secs_this_year(wholeYear);
else
secs_this_year = 31536000;
if (seconds >= secs_this_year) {
seconds -= secs_this_year;
++whole_year;
}
else
keep_looping = 0;
if (seconds >= secsThisYear) {
seconds -= secsThisYear;
++wholeYear;
} else
keepLooping = false;
}
cmos->century = int_to_bcd(whole_year / 100);
cmos->year = int_to_bcd(whole_year % 100);
cmos->century = int_to_bcd(wholeYear / 100);
cmos->year = int_to_bcd(wholeYear % 100);
// Determine the current month
// Determine the current month
month = 1;
is_leapyear = leap_year(whole_year);
do {
isLeapYear = leap_year(wholeYear);
do {
temp = seconds - secs_per_month[month - 1];
if (is_leapyear && month == 2)
if (isLeapYear && month == 2)
temp -= SECONDS_DAY;
if (temp >= 0) {
if (temp >= 0) {
seconds = temp;
++month;
}
@ -233,31 +256,34 @@ secs_to_cmos(uint32 seconds, cmos_time* cmos) {
cmos->second = int_to_bcd(seconds);
}
uint32
arch_rtc_get_hw_time(void) {
int wait_time;
arch_rtc_get_hw_time(void)
{
int waitTime;
cmos_time cmos1;
cmos_time cmos2;
wait_time = 1000;
waitTime = 1000;
// We will read the clock twice and make sure both reads are equal. This will prevent
// problems that would occur if the clock is read during an update (e.g. if we read the hour
// at 8:59:59, the clock gets changed, and then we read the minute and second, we would
// be off by a whole hour)
do {
// We will read the clock twice and make sure both reads are equal. This will prevent
// problems that would occur if the clock is read during an update (e.g. if we read the hour
// at 8:59:59, the clock gets changed, and then we read the minute and second, we would
// be off by a whole hour)
do {
read_cmos_clock(&cmos1);
read_cmos_clock(&cmos2);
} while ( !same_time(&cmos1, &cmos2) && --wait_time );
} while (!same_time(&cmos1, &cmos2) && --waitTime);
// Convert the CMOS data to seconds since 1970.
// Convert the CMOS data to seconds since 1970.
return cmos_to_secs(&cmos1);
}
void
arch_rtc_set_hw_time(uint32 seconds) {
arch_rtc_set_hw_time(uint32 seconds)
{
cmos_time cmos;
uint32 read_back;
secs_to_cmos(seconds, &cmos);
write_cmos_clock(&cmos);

View File

@ -11,74 +11,86 @@
#include <arch/real_time_clock.h>
#include <real_time_clock.h>
static bigtime_t boot_time;
static bigtime_t sBootTime;
static void
rtc_print(void) {
uint32 current_time;
rtc_print(void)
{
uint32 currentTime;
current_time = (boot_time + system_time()) / 1000000;
currentTime = (sBootTime + system_time()) / 1000000;
dprintf("system_time: %u\n", (unsigned)system_time());
dprintf("boot_time: %u\n", (unsigned)boot_time);
dprintf("current_time: %u\n", (unsigned)current_time);
dprintf("boot_time: %u\n", (unsigned)sBootTime);
dprintf("current_time: %u\n", (unsigned)currentTime);
}
static int
rtc_debug(int argc, char** argv) {
// If no arguments were given, output all usefull data.
if (argc < 2)
rtc_print();
// If there was an argument, reset the system and hw time.
else {
rtc_set_system_time( strtoul(argv[1], NULL, 10) );
static int
rtc_debug(int argc, char **argv)
{
if (argc < 2) {
// If no arguments were given, output all usefull data.
rtc_print();
} else {
// If there was an argument, reset the system and hw time.
rtc_set_system_time(strtoul(argv[1], NULL, 10));
rtc_system_to_hw();
}
return 0;
}
int
rtc_init(kernel_args *ka) {
dprintf("rtc_init: entry\n");
status_t
rtc_init(kernel_args *ka)
{
//dprintf("rtc_init: entry\n");
add_debugger_command("rtc", &rtc_debug, "Set and test the real-time clock");
rtc_hw_to_system();
return 0;
return B_OK;
}
void
rtc_set_system_time(uint32 current_time) {
rtc_set_system_time(uint32 current_time)
{
uint64 useconds;
useconds = (uint64)current_time * 1000000;
boot_time = useconds - system_time();
sBootTime = useconds - system_time();
}
/** Write the system time to CMOS. */
void
rtc_system_to_hw(void) {
static void
rtc_system_to_hw(void)
{
uint32 seconds;
seconds = (boot_time + system_time()) / 1000000;
seconds = (sBootTime + system_time()) / 1000000;
arch_rtc_set_hw_time(seconds);
}
/** Read the CMOS clock and update the system time accordingly. */
void
rtc_hw_to_system(void) {
static void
rtc_hw_to_system(void)
{
uint32 current_time;
current_time = arch_rtc_get_hw_time();
rtc_set_system_time(current_time);
}
bigtime_t
rtc_boot_time(void) {
return boot_time;
rtc_boot_time(void)
{
return sBootTime;
}