headers/libs/agg Fix PVS 11, PVS12
* Replace hard-coded math constants with M_SQRT1_2 (math.h was already included) * also trailing whitespace removal Change-Id: I5e9511060d2f812830f7621bee3aff9a517576e5 Reviewed-on: https://review.haiku-os.org/c/956 Reviewed-by: waddlesplash <waddlesplash@gmail.com>
This commit is contained in:
parent
cf77ef1857
commit
d1f885b435
@ -2,8 +2,8 @@
|
||||
// Anti-Grain Geometry - Version 2.4
|
||||
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
|
||||
//
|
||||
// Permission to copy, use, modify, sell and distribute this software
|
||||
// is granted provided this copyright notice appears in all copies.
|
||||
// Permission to copy, use, modify, sell and distribute this software
|
||||
// is granted provided this copyright notice appears in all copies.
|
||||
// This software is provided "as is" without express or implied
|
||||
// warranty, and with no claim as to its suitability for any purpose.
|
||||
//
|
||||
@ -31,32 +31,32 @@ namespace agg
|
||||
// See Implementation agg_trans_affine.cpp
|
||||
//
|
||||
// Affine transformation are linear transformations in Cartesian coordinates
|
||||
// (strictly speaking not only in Cartesian, but for the beginning we will
|
||||
// think so). They are rotation, scaling, translation and skewing.
|
||||
// After any affine transformation a line segment remains a line segment
|
||||
// and it will never become a curve.
|
||||
// (strictly speaking not only in Cartesian, but for the beginning we will
|
||||
// think so). They are rotation, scaling, translation and skewing.
|
||||
// After any affine transformation a line segment remains a line segment
|
||||
// and it will never become a curve.
|
||||
//
|
||||
// There will be no math about matrix calculations, since it has been
|
||||
// There will be no math about matrix calculations, since it has been
|
||||
// described many times. Ask yourself a very simple question:
|
||||
// "why do we need to understand and use some matrix stuff instead of just
|
||||
// "why do we need to understand and use some matrix stuff instead of just
|
||||
// rotating, scaling and so on". The answers are:
|
||||
//
|
||||
// 1. Any combination of transformations can be done by only 4 multiplications
|
||||
// and 4 additions in floating point.
|
||||
// 2. One matrix transformation is equivalent to the number of consecutive
|
||||
// discrete transformations, i.e. the matrix "accumulates" all transformations
|
||||
// in the order of their settings. Suppose we have 4 transformations:
|
||||
// discrete transformations, i.e. the matrix "accumulates" all transformations
|
||||
// in the order of their settings. Suppose we have 4 transformations:
|
||||
// * rotate by 30 degrees,
|
||||
// * scale X to 2.0,
|
||||
// * scale Y to 1.5,
|
||||
// * move to (100, 100).
|
||||
// The result will depend on the order of these transformations,
|
||||
// * scale X to 2.0,
|
||||
// * scale Y to 1.5,
|
||||
// * move to (100, 100).
|
||||
// The result will depend on the order of these transformations,
|
||||
// and the advantage of matrix is that the sequence of discret calls:
|
||||
// rotate(30), scaleX(2.0), scaleY(1.5), move(100,100)
|
||||
// rotate(30), scaleX(2.0), scaleY(1.5), move(100,100)
|
||||
// will have exactly the same result as the following matrix transformations:
|
||||
//
|
||||
//
|
||||
// affine_matrix m;
|
||||
// m *= rotate_matrix(30);
|
||||
// m *= rotate_matrix(30);
|
||||
// m *= scaleX_matrix(2.0);
|
||||
// m *= scaleY_matrix(1.5);
|
||||
// m *= move_matrix(100,100);
|
||||
@ -64,7 +64,7 @@ namespace agg
|
||||
// m.transform_my_point_at_last(x, y);
|
||||
//
|
||||
// What is the good of it? In real life we will set-up the matrix only once
|
||||
// and then transform many points, let alone the convenience to set any
|
||||
// and then transform many points, let alone the convenience to set any
|
||||
// combination of transformations.
|
||||
//
|
||||
// So, how to use it? Very easy - literally as it's shown above. Not quite,
|
||||
@ -77,9 +77,9 @@ namespace agg
|
||||
// m.transform(&x, &y);
|
||||
//
|
||||
// The affine matrix is all you need to perform any linear transformation,
|
||||
// but all transformations have origin point (0,0). It means that we need to
|
||||
// but all transformations have origin point (0,0). It means that we need to
|
||||
// use 2 translations if we want to rotate someting around (100,100):
|
||||
//
|
||||
//
|
||||
// m *= agg::trans_affine_translation(-100.0, -100.0); // move to (0,0)
|
||||
// m *= agg::trans_affine_rotation(30.0 * 3.1415926 / 180.0); // rotate
|
||||
// m *= agg::trans_affine_translation(100.0, 100.0); // move back to (100,100)
|
||||
@ -105,14 +105,14 @@ namespace agg
|
||||
}
|
||||
|
||||
// Construct a matrix to transform a rectangle to a parallelogram.
|
||||
trans_affine(double x1, double y1, double x2, double y2,
|
||||
trans_affine(double x1, double y1, double x2, double y2,
|
||||
const double* parl)
|
||||
{
|
||||
rect_to_parl(x1, y1, x2, y2, parl);
|
||||
}
|
||||
|
||||
// Construct a matrix to transform a parallelogram to a rectangle.
|
||||
trans_affine(const double* parl,
|
||||
trans_affine(const double* parl,
|
||||
double x1, double y1, double x2, double y2)
|
||||
{
|
||||
parl_to_rect(parl, x1, y1, x2, y2);
|
||||
@ -121,20 +121,20 @@ namespace agg
|
||||
|
||||
//---------------------------------- Parellelogram transformations
|
||||
// Calculate a matrix to transform a parallelogram to another one.
|
||||
// src and dst are pointers to arrays of three points
|
||||
// (double[6], x,y,...) that identify three corners of the
|
||||
// src and dst are pointers to arrays of three points
|
||||
// (double[6], x,y,...) that identify three corners of the
|
||||
// parallelograms assuming implicit fourth points.
|
||||
// There are also transformations rectangtle to parallelogram and
|
||||
// There are also transformations rectangtle to parallelogram and
|
||||
// parellelogram to rectangle
|
||||
const trans_affine& parl_to_parl(const double* src,
|
||||
const trans_affine& parl_to_parl(const double* src,
|
||||
const double* dst);
|
||||
|
||||
const trans_affine& rect_to_parl(double x1, double y1,
|
||||
double x2, double y2,
|
||||
const trans_affine& rect_to_parl(double x1, double y1,
|
||||
double x2, double y2,
|
||||
const double* parl);
|
||||
|
||||
const trans_affine& parl_to_rect(const double* parl,
|
||||
double x1, double y1,
|
||||
const trans_affine& parl_to_rect(const double* parl,
|
||||
double x1, double y1,
|
||||
double x2, double y2);
|
||||
|
||||
|
||||
@ -154,8 +154,8 @@ namespace agg
|
||||
// Multiply inverse of "m" to "this" and assign the result to "this"
|
||||
const trans_affine& premultiply_inv(const trans_affine& m);
|
||||
|
||||
// Invert matrix. Do not try to invert degenerate matrices,
|
||||
// there's no check for validity. If you set scale to 0 and
|
||||
// Invert matrix. Do not try to invert degenerate matrices,
|
||||
// there's no check for validity. If you set scale to 0 and
|
||||
// then try to invert matrix, expect unpredictable result.
|
||||
const trans_affine& invert();
|
||||
|
||||
@ -180,7 +180,7 @@ namespace agg
|
||||
}
|
||||
|
||||
//------------------------------------------- Operators
|
||||
|
||||
|
||||
// Multiply current matrix to another one
|
||||
const trans_affine& operator *= (const trans_affine& m)
|
||||
{
|
||||
@ -200,7 +200,7 @@ namespace agg
|
||||
return trans_affine(*this).multiply(m);
|
||||
}
|
||||
|
||||
// Multiply current matrix to inverse of another one
|
||||
// Multiply current matrix to inverse of another one
|
||||
// and return the result in a separete matrix.
|
||||
trans_affine operator / (const trans_affine& m) const
|
||||
{
|
||||
@ -233,8 +233,8 @@ namespace agg
|
||||
// Direct transformation x and y, 2x2 matrix only, no translation
|
||||
void transform_2x2(double* x, double* y) const;
|
||||
|
||||
// Inverse transformation x and y. It works slower than the
|
||||
// direct transformation, so if the performance is critical
|
||||
// Inverse transformation x and y. It works slower than the
|
||||
// direct transformation, so if the performance is critical
|
||||
// it's better to invert() the matrix and then use transform()
|
||||
void inverse_transform(double* x, double* y) const;
|
||||
|
||||
@ -245,7 +245,7 @@ namespace agg
|
||||
return 1.0 / (m0 * m3 - m1 * m2);
|
||||
}
|
||||
|
||||
// Get the average scale (by X and Y).
|
||||
// Get the average scale (by X and Y).
|
||||
// Basically used to calculate the approximation_scale when
|
||||
// decomposinting curves into line segments.
|
||||
double scale() const;
|
||||
@ -304,8 +304,8 @@ namespace agg
|
||||
//------------------------------------------------------------------------
|
||||
inline double trans_affine::scale() const
|
||||
{
|
||||
double x = 0.707106781 * m0 + 0.707106781 * m2;
|
||||
double y = 0.707106781 * m1 + 0.707106781 * m3;
|
||||
double x = M_SQRT1_2 * m0 + M_SQRT1_2 * m2;
|
||||
double y = M_SQRT1_2 * m1 + M_SQRT1_2 * m3;
|
||||
return sqrt(x*x + y*y);
|
||||
}
|
||||
|
||||
@ -336,12 +336,12 @@ namespace agg
|
||||
//====================================================trans_affine_rotation
|
||||
// Rotation matrix. sin() and cos() are calculated twice for the same angle.
|
||||
// There's no harm because the performance of sin()/cos() is very good on all
|
||||
// modern processors. Besides, this operation is not going to be invoked too
|
||||
// modern processors. Besides, this operation is not going to be invoked too
|
||||
// often.
|
||||
class trans_affine_rotation : public trans_affine
|
||||
{
|
||||
public:
|
||||
trans_affine_rotation(double a) :
|
||||
trans_affine_rotation(double a) :
|
||||
trans_affine(cos(a), sin(a), -sin(a), cos(a), 0.0, 0.0)
|
||||
{}
|
||||
};
|
||||
@ -351,11 +351,11 @@ namespace agg
|
||||
class trans_affine_scaling : public trans_affine
|
||||
{
|
||||
public:
|
||||
trans_affine_scaling(double sx, double sy) :
|
||||
trans_affine_scaling(double sx, double sy) :
|
||||
trans_affine(sx, 0.0, 0.0, sy, 0.0, 0.0)
|
||||
{}
|
||||
|
||||
trans_affine_scaling(double s) :
|
||||
trans_affine_scaling(double s) :
|
||||
trans_affine(s, 0.0, 0.0, s, 0.0, 0.0)
|
||||
{}
|
||||
};
|
||||
@ -365,7 +365,7 @@ namespace agg
|
||||
class trans_affine_translation : public trans_affine
|
||||
{
|
||||
public:
|
||||
trans_affine_translation(double tx, double ty) :
|
||||
trans_affine_translation(double tx, double ty) :
|
||||
trans_affine(1.0, 0.0, 0.0, 1.0, tx, ty)
|
||||
{}
|
||||
};
|
||||
@ -375,19 +375,19 @@ namespace agg
|
||||
class trans_affine_skewing : public trans_affine
|
||||
{
|
||||
public:
|
||||
trans_affine_skewing(double sx, double sy) :
|
||||
trans_affine_skewing(double sx, double sy) :
|
||||
trans_affine(1.0, tan(sy), tan(sx), 1.0, 0.0, 0.0)
|
||||
{}
|
||||
};
|
||||
|
||||
|
||||
//===============================================trans_affine_line_segment
|
||||
// Rotate, Scale and Translate, associating 0...dist with line segment
|
||||
// Rotate, Scale and Translate, associating 0...dist with line segment
|
||||
// x1,y1,x2,y2
|
||||
class trans_affine_line_segment : public trans_affine
|
||||
{
|
||||
public:
|
||||
trans_affine_line_segment(double x1, double y1, double x2, double y2,
|
||||
trans_affine_line_segment(double x1, double y1, double x2, double y2,
|
||||
double dist)
|
||||
{
|
||||
double dx = x2 - x1;
|
||||
|
Loading…
x
Reference in New Issue
Block a user