added a arch directory for GLibC (based on 2.2.5)
generic files are used by archs with source search feature of Jam when no specialized version exists git-svn-id: file:///srv/svn/repos/haiku/trunk/current@11643 a95241bf-73f2-0310-859d-f6bbb57e9c96
This commit is contained in:
parent
cd623098da
commit
c862c0e4a4
4
src/kernel/libroot/posix/glibc/arch/Jamfile
Normal file
4
src/kernel/libroot/posix/glibc/arch/Jamfile
Normal file
@ -0,0 +1,4 @@
|
||||
SubDir OBOS_TOP src kernel libroot posix glibc arch ;
|
||||
|
||||
SubInclude OBOS_TOP src kernel libroot posix glibc arch $(OBOS_ARCH) ;
|
||||
|
56
src/kernel/libroot/posix/glibc/arch/cmp.c
Normal file
56
src/kernel/libroot/posix/glibc/arch/cmp.c
Normal file
@ -0,0 +1,56 @@
|
||||
/* mpn_cmp -- Compare two low-level natural-number integers.
|
||||
|
||||
Copyright (C) 1991, 1993, 1994, 1996 Free Software Foundation, Inc.
|
||||
|
||||
This file is part of the GNU MP Library.
|
||||
|
||||
The GNU MP Library is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU Lesser General Public License as published by
|
||||
the Free Software Foundation; either version 2.1 of the License, or (at your
|
||||
option) any later version.
|
||||
|
||||
The GNU MP Library is distributed in the hope that it will be useful, but
|
||||
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
||||
License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public License
|
||||
along with the GNU MP Library; see the file COPYING.LIB. If not, write to
|
||||
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
|
||||
MA 02111-1307, USA. */
|
||||
|
||||
#include "gmp.h"
|
||||
#include "gmp-impl.h"
|
||||
|
||||
/* Compare OP1_PTR/OP1_SIZE with OP2_PTR/OP2_SIZE.
|
||||
There are no restrictions on the relative sizes of
|
||||
the two arguments.
|
||||
Return 1 if OP1 > OP2, 0 if they are equal, and -1 if OP1 < OP2. */
|
||||
|
||||
int
|
||||
#if __STDC__
|
||||
mpn_cmp (mp_srcptr op1_ptr, mp_srcptr op2_ptr, mp_size_t size)
|
||||
#else
|
||||
mpn_cmp (op1_ptr, op2_ptr, size)
|
||||
mp_srcptr op1_ptr;
|
||||
mp_srcptr op2_ptr;
|
||||
mp_size_t size;
|
||||
#endif
|
||||
{
|
||||
mp_size_t i;
|
||||
mp_limb_t op1_word, op2_word;
|
||||
|
||||
for (i = size - 1; i >= 0; i--)
|
||||
{
|
||||
op1_word = op1_ptr[i];
|
||||
op2_word = op2_ptr[i];
|
||||
if (op1_word != op2_word)
|
||||
goto diff;
|
||||
}
|
||||
return 0;
|
||||
diff:
|
||||
/* This can *not* be simplified to
|
||||
op2_word - op2_word
|
||||
since that expression might give signed overflow. */
|
||||
return (op1_word > op2_word) ? 1 : -1;
|
||||
}
|
107
src/kernel/libroot/posix/glibc/arch/dbl2mpn.c
Normal file
107
src/kernel/libroot/posix/glibc/arch/dbl2mpn.c
Normal file
@ -0,0 +1,107 @@
|
||||
/* Copyright (C) 1993, 1994, 1995, 1996, 1997 Free Software Foundation, Inc.
|
||||
This file is part of the GNU C Library.
|
||||
|
||||
The GNU C Library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
The GNU C Library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with the GNU C Library; if not, write to the Free
|
||||
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
|
||||
02111-1307 USA. */
|
||||
|
||||
#include "gmp.h"
|
||||
#include "gmp-impl.h"
|
||||
#include "longlong.h"
|
||||
#include <ieee754.h>
|
||||
#include <float.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
/* Convert a `double' in IEEE754 standard double-precision format to a
|
||||
multi-precision integer representing the significand scaled up by its
|
||||
number of bits (52 for double) and an integral power of two (MPN frexp). */
|
||||
|
||||
mp_size_t
|
||||
__mpn_extract_double (mp_ptr res_ptr, mp_size_t size,
|
||||
int *expt, int *is_neg,
|
||||
double value)
|
||||
{
|
||||
union ieee754_double u;
|
||||
u.d = value;
|
||||
|
||||
*is_neg = u.ieee.negative;
|
||||
*expt = (int) u.ieee.exponent - IEEE754_DOUBLE_BIAS;
|
||||
|
||||
#if BITS_PER_MP_LIMB == 32
|
||||
res_ptr[0] = u.ieee.mantissa1; /* Low-order 32 bits of fraction. */
|
||||
res_ptr[1] = u.ieee.mantissa0; /* High-order 20 bits. */
|
||||
#define N 2
|
||||
#elif BITS_PER_MP_LIMB == 64
|
||||
/* Hopefully the compiler will combine the two bitfield extracts
|
||||
and this composition into just the original quadword extract. */
|
||||
res_ptr[0] = ((unsigned long int) u.ieee.mantissa0 << 32) | u.ieee.mantissa1;
|
||||
#define N 1
|
||||
#else
|
||||
#error "mp_limb size " BITS_PER_MP_LIMB "not accounted for"
|
||||
#endif
|
||||
/* The format does not fill the last limb. There are some zeros. */
|
||||
#define NUM_LEADING_ZEROS (BITS_PER_MP_LIMB \
|
||||
- (DBL_MANT_DIG - ((N - 1) * BITS_PER_MP_LIMB)))
|
||||
|
||||
if (u.ieee.exponent == 0)
|
||||
{
|
||||
/* A biased exponent of zero is a special case.
|
||||
Either it is a zero or it is a denormal number. */
|
||||
if (res_ptr[0] == 0 && res_ptr[N - 1] == 0) /* Assumes N<=2. */
|
||||
/* It's zero. */
|
||||
*expt = 0;
|
||||
else
|
||||
{
|
||||
/* It is a denormal number, meaning it has no implicit leading
|
||||
one bit, and its exponent is in fact the format minimum. */
|
||||
int cnt;
|
||||
|
||||
if (res_ptr[N - 1] != 0)
|
||||
{
|
||||
count_leading_zeros (cnt, res_ptr[N - 1]);
|
||||
cnt -= NUM_LEADING_ZEROS;
|
||||
#if N == 2
|
||||
res_ptr[N - 1] = res_ptr[1] << cnt
|
||||
| (N - 1)
|
||||
* (res_ptr[0] >> (BITS_PER_MP_LIMB - cnt));
|
||||
res_ptr[0] <<= cnt;
|
||||
#else
|
||||
res_ptr[N - 1] <<= cnt;
|
||||
#endif
|
||||
*expt = DBL_MIN_EXP - 1 - cnt;
|
||||
}
|
||||
else
|
||||
{
|
||||
count_leading_zeros (cnt, res_ptr[0]);
|
||||
if (cnt >= NUM_LEADING_ZEROS)
|
||||
{
|
||||
res_ptr[N - 1] = res_ptr[0] << (cnt - NUM_LEADING_ZEROS);
|
||||
res_ptr[0] = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
res_ptr[N - 1] = res_ptr[0] >> (NUM_LEADING_ZEROS - cnt);
|
||||
res_ptr[0] <<= BITS_PER_MP_LIMB - (NUM_LEADING_ZEROS - cnt);
|
||||
}
|
||||
*expt = DBL_MIN_EXP - 1
|
||||
- (BITS_PER_MP_LIMB - NUM_LEADING_ZEROS) - cnt;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
/* Add the implicit leading one bit for a normalized number. */
|
||||
res_ptr[N - 1] |= 1L << (DBL_MANT_DIG - 1 - ((N - 1) * BITS_PER_MP_LIMB));
|
||||
|
||||
return N;
|
||||
}
|
245
src/kernel/libroot/posix/glibc/arch/divrem.c
Normal file
245
src/kernel/libroot/posix/glibc/arch/divrem.c
Normal file
@ -0,0 +1,245 @@
|
||||
/* mpn_divrem -- Divide natural numbers, producing both remainder and
|
||||
quotient.
|
||||
|
||||
Copyright (C) 1993, 1994, 1995, 1996 Free Software Foundation, Inc.
|
||||
|
||||
This file is part of the GNU MP Library.
|
||||
|
||||
The GNU MP Library is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU Lesser General Public License as published by
|
||||
the Free Software Foundation; either version 2.1 of the License, or (at your
|
||||
option) any later version.
|
||||
|
||||
The GNU MP Library is distributed in the hope that it will be useful, but
|
||||
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
||||
License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public License
|
||||
along with the GNU MP Library; see the file COPYING.LIB. If not, write to
|
||||
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
|
||||
MA 02111-1307, USA. */
|
||||
|
||||
#include "gmp.h"
|
||||
#include "gmp-impl.h"
|
||||
#include "longlong.h"
|
||||
|
||||
/* Divide num (NP/NSIZE) by den (DP/DSIZE) and write
|
||||
the NSIZE-DSIZE least significant quotient limbs at QP
|
||||
and the DSIZE long remainder at NP. If QEXTRA_LIMBS is
|
||||
non-zero, generate that many fraction bits and append them after the
|
||||
other quotient limbs.
|
||||
Return the most significant limb of the quotient, this is always 0 or 1.
|
||||
|
||||
Preconditions:
|
||||
0. NSIZE >= DSIZE.
|
||||
1. The most significant bit of the divisor must be set.
|
||||
2. QP must either not overlap with the input operands at all, or
|
||||
QP + DSIZE >= NP must hold true. (This means that it's
|
||||
possible to put the quotient in the high part of NUM, right after the
|
||||
remainder in NUM.
|
||||
3. NSIZE >= DSIZE, even if QEXTRA_LIMBS is non-zero. */
|
||||
|
||||
mp_limb_t
|
||||
#if __STDC__
|
||||
mpn_divrem (mp_ptr qp, mp_size_t qextra_limbs,
|
||||
mp_ptr np, mp_size_t nsize,
|
||||
mp_srcptr dp, mp_size_t dsize)
|
||||
#else
|
||||
mpn_divrem (qp, qextra_limbs, np, nsize, dp, dsize)
|
||||
mp_ptr qp;
|
||||
mp_size_t qextra_limbs;
|
||||
mp_ptr np;
|
||||
mp_size_t nsize;
|
||||
mp_srcptr dp;
|
||||
mp_size_t dsize;
|
||||
#endif
|
||||
{
|
||||
mp_limb_t most_significant_q_limb = 0;
|
||||
|
||||
switch (dsize)
|
||||
{
|
||||
case 0:
|
||||
/* We are asked to divide by zero, so go ahead and do it! (To make
|
||||
the compiler not remove this statement, return the value.) */
|
||||
return 1 / dsize;
|
||||
|
||||
case 1:
|
||||
{
|
||||
mp_size_t i;
|
||||
mp_limb_t n1;
|
||||
mp_limb_t d;
|
||||
|
||||
d = dp[0];
|
||||
n1 = np[nsize - 1];
|
||||
|
||||
if (n1 >= d)
|
||||
{
|
||||
n1 -= d;
|
||||
most_significant_q_limb = 1;
|
||||
}
|
||||
|
||||
qp += qextra_limbs;
|
||||
for (i = nsize - 2; i >= 0; i--)
|
||||
udiv_qrnnd (qp[i], n1, n1, np[i], d);
|
||||
qp -= qextra_limbs;
|
||||
|
||||
for (i = qextra_limbs - 1; i >= 0; i--)
|
||||
udiv_qrnnd (qp[i], n1, n1, 0, d);
|
||||
|
||||
np[0] = n1;
|
||||
}
|
||||
break;
|
||||
|
||||
case 2:
|
||||
{
|
||||
mp_size_t i;
|
||||
mp_limb_t n1, n0, n2;
|
||||
mp_limb_t d1, d0;
|
||||
|
||||
np += nsize - 2;
|
||||
d1 = dp[1];
|
||||
d0 = dp[0];
|
||||
n1 = np[1];
|
||||
n0 = np[0];
|
||||
|
||||
if (n1 >= d1 && (n1 > d1 || n0 >= d0))
|
||||
{
|
||||
sub_ddmmss (n1, n0, n1, n0, d1, d0);
|
||||
most_significant_q_limb = 1;
|
||||
}
|
||||
|
||||
for (i = qextra_limbs + nsize - 2 - 1; i >= 0; i--)
|
||||
{
|
||||
mp_limb_t q;
|
||||
mp_limb_t r;
|
||||
|
||||
if (i >= qextra_limbs)
|
||||
np--;
|
||||
else
|
||||
np[0] = 0;
|
||||
|
||||
if (n1 == d1)
|
||||
{
|
||||
/* Q should be either 111..111 or 111..110. Need special
|
||||
treatment of this rare case as normal division would
|
||||
give overflow. */
|
||||
q = ~(mp_limb_t) 0;
|
||||
|
||||
r = n0 + d1;
|
||||
if (r < d1) /* Carry in the addition? */
|
||||
{
|
||||
add_ssaaaa (n1, n0, r - d0, np[0], 0, d0);
|
||||
qp[i] = q;
|
||||
continue;
|
||||
}
|
||||
n1 = d0 - (d0 != 0);
|
||||
n0 = -d0;
|
||||
}
|
||||
else
|
||||
{
|
||||
udiv_qrnnd (q, r, n1, n0, d1);
|
||||
umul_ppmm (n1, n0, d0, q);
|
||||
}
|
||||
|
||||
n2 = np[0];
|
||||
q_test:
|
||||
if (n1 > r || (n1 == r && n0 > n2))
|
||||
{
|
||||
/* The estimated Q was too large. */
|
||||
q--;
|
||||
|
||||
sub_ddmmss (n1, n0, n1, n0, 0, d0);
|
||||
r += d1;
|
||||
if (r >= d1) /* If not carry, test Q again. */
|
||||
goto q_test;
|
||||
}
|
||||
|
||||
qp[i] = q;
|
||||
sub_ddmmss (n1, n0, r, n2, n1, n0);
|
||||
}
|
||||
np[1] = n1;
|
||||
np[0] = n0;
|
||||
}
|
||||
break;
|
||||
|
||||
default:
|
||||
{
|
||||
mp_size_t i;
|
||||
mp_limb_t dX, d1, n0;
|
||||
|
||||
np += nsize - dsize;
|
||||
dX = dp[dsize - 1];
|
||||
d1 = dp[dsize - 2];
|
||||
n0 = np[dsize - 1];
|
||||
|
||||
if (n0 >= dX)
|
||||
{
|
||||
if (n0 > dX || mpn_cmp (np, dp, dsize - 1) >= 0)
|
||||
{
|
||||
mpn_sub_n (np, np, dp, dsize);
|
||||
n0 = np[dsize - 1];
|
||||
most_significant_q_limb = 1;
|
||||
}
|
||||
}
|
||||
|
||||
for (i = qextra_limbs + nsize - dsize - 1; i >= 0; i--)
|
||||
{
|
||||
mp_limb_t q;
|
||||
mp_limb_t n1, n2;
|
||||
mp_limb_t cy_limb;
|
||||
|
||||
if (i >= qextra_limbs)
|
||||
{
|
||||
np--;
|
||||
n2 = np[dsize];
|
||||
}
|
||||
else
|
||||
{
|
||||
n2 = np[dsize - 1];
|
||||
MPN_COPY_DECR (np + 1, np, dsize);
|
||||
np[0] = 0;
|
||||
}
|
||||
|
||||
if (n0 == dX)
|
||||
/* This might over-estimate q, but it's probably not worth
|
||||
the extra code here to find out. */
|
||||
q = ~(mp_limb_t) 0;
|
||||
else
|
||||
{
|
||||
mp_limb_t r;
|
||||
|
||||
udiv_qrnnd (q, r, n0, np[dsize - 1], dX);
|
||||
umul_ppmm (n1, n0, d1, q);
|
||||
|
||||
while (n1 > r || (n1 == r && n0 > np[dsize - 2]))
|
||||
{
|
||||
q--;
|
||||
r += dX;
|
||||
if (r < dX) /* I.e. "carry in previous addition?" */
|
||||
break;
|
||||
n1 -= n0 < d1;
|
||||
n0 -= d1;
|
||||
}
|
||||
}
|
||||
|
||||
/* Possible optimization: We already have (q * n0) and (1 * n1)
|
||||
after the calculation of q. Taking advantage of that, we
|
||||
could make this loop make two iterations less. */
|
||||
|
||||
cy_limb = mpn_submul_1 (np, dp, dsize, q);
|
||||
|
||||
if (n2 != cy_limb)
|
||||
{
|
||||
mpn_add_n (np, np, dp, dsize);
|
||||
q--;
|
||||
}
|
||||
|
||||
qp[i] = q;
|
||||
n0 = np[dsize - 1];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return most_significant_q_limb;
|
||||
}
|
152
src/kernel/libroot/posix/glibc/arch/mul.c
Normal file
152
src/kernel/libroot/posix/glibc/arch/mul.c
Normal file
@ -0,0 +1,152 @@
|
||||
/* mpn_mul -- Multiply two natural numbers.
|
||||
|
||||
Copyright (C) 1991, 1993, 1994, 1996 Free Software Foundation, Inc.
|
||||
|
||||
This file is part of the GNU MP Library.
|
||||
|
||||
The GNU MP Library is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU Lesser General Public License as published by
|
||||
the Free Software Foundation; either version 2.1 of the License, or (at your
|
||||
option) any later version.
|
||||
|
||||
The GNU MP Library is distributed in the hope that it will be useful, but
|
||||
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
||||
License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public License
|
||||
along with the GNU MP Library; see the file COPYING.LIB. If not, write to
|
||||
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
|
||||
MA 02111-1307, USA. */
|
||||
|
||||
#include "gmp.h"
|
||||
#include "gmp-impl.h"
|
||||
|
||||
/* Multiply the natural numbers u (pointed to by UP, with USIZE limbs)
|
||||
and v (pointed to by VP, with VSIZE limbs), and store the result at
|
||||
PRODP. USIZE + VSIZE limbs are always stored, but if the input
|
||||
operands are normalized. Return the most significant limb of the
|
||||
result.
|
||||
|
||||
NOTE: The space pointed to by PRODP is overwritten before finished
|
||||
with U and V, so overlap is an error.
|
||||
|
||||
Argument constraints:
|
||||
1. USIZE >= VSIZE.
|
||||
2. PRODP != UP and PRODP != VP, i.e. the destination
|
||||
must be distinct from the multiplier and the multiplicand. */
|
||||
|
||||
/* If KARATSUBA_THRESHOLD is not already defined, define it to a
|
||||
value which is good on most machines. */
|
||||
#ifndef KARATSUBA_THRESHOLD
|
||||
#define KARATSUBA_THRESHOLD 32
|
||||
#endif
|
||||
|
||||
mp_limb_t
|
||||
#if __STDC__
|
||||
mpn_mul (mp_ptr prodp,
|
||||
mp_srcptr up, mp_size_t usize,
|
||||
mp_srcptr vp, mp_size_t vsize)
|
||||
#else
|
||||
mpn_mul (prodp, up, usize, vp, vsize)
|
||||
mp_ptr prodp;
|
||||
mp_srcptr up;
|
||||
mp_size_t usize;
|
||||
mp_srcptr vp;
|
||||
mp_size_t vsize;
|
||||
#endif
|
||||
{
|
||||
mp_ptr prod_endp = prodp + usize + vsize - 1;
|
||||
mp_limb_t cy;
|
||||
mp_ptr tspace;
|
||||
TMP_DECL (marker);
|
||||
|
||||
if (vsize < KARATSUBA_THRESHOLD)
|
||||
{
|
||||
/* Handle simple cases with traditional multiplication.
|
||||
|
||||
This is the most critical code of the entire function. All
|
||||
multiplies rely on this, both small and huge. Small ones arrive
|
||||
here immediately. Huge ones arrive here as this is the base case
|
||||
for Karatsuba's recursive algorithm below. */
|
||||
mp_size_t i;
|
||||
mp_limb_t cy_limb;
|
||||
mp_limb_t v_limb;
|
||||
|
||||
if (vsize == 0)
|
||||
return 0;
|
||||
|
||||
/* Multiply by the first limb in V separately, as the result can be
|
||||
stored (not added) to PROD. We also avoid a loop for zeroing. */
|
||||
v_limb = vp[0];
|
||||
if (v_limb <= 1)
|
||||
{
|
||||
if (v_limb == 1)
|
||||
MPN_COPY (prodp, up, usize);
|
||||
else
|
||||
MPN_ZERO (prodp, usize);
|
||||
cy_limb = 0;
|
||||
}
|
||||
else
|
||||
cy_limb = mpn_mul_1 (prodp, up, usize, v_limb);
|
||||
|
||||
prodp[usize] = cy_limb;
|
||||
prodp++;
|
||||
|
||||
/* For each iteration in the outer loop, multiply one limb from
|
||||
U with one limb from V, and add it to PROD. */
|
||||
for (i = 1; i < vsize; i++)
|
||||
{
|
||||
v_limb = vp[i];
|
||||
if (v_limb <= 1)
|
||||
{
|
||||
cy_limb = 0;
|
||||
if (v_limb == 1)
|
||||
cy_limb = mpn_add_n (prodp, prodp, up, usize);
|
||||
}
|
||||
else
|
||||
cy_limb = mpn_addmul_1 (prodp, up, usize, v_limb);
|
||||
|
||||
prodp[usize] = cy_limb;
|
||||
prodp++;
|
||||
}
|
||||
return cy_limb;
|
||||
}
|
||||
|
||||
TMP_MARK (marker);
|
||||
|
||||
tspace = (mp_ptr) TMP_ALLOC (2 * vsize * BYTES_PER_MP_LIMB);
|
||||
MPN_MUL_N_RECURSE (prodp, up, vp, vsize, tspace);
|
||||
|
||||
prodp += vsize;
|
||||
up += vsize;
|
||||
usize -= vsize;
|
||||
if (usize >= vsize)
|
||||
{
|
||||
mp_ptr tp = (mp_ptr) TMP_ALLOC (2 * vsize * BYTES_PER_MP_LIMB);
|
||||
do
|
||||
{
|
||||
MPN_MUL_N_RECURSE (tp, up, vp, vsize, tspace);
|
||||
cy = mpn_add_n (prodp, prodp, tp, vsize);
|
||||
mpn_add_1 (prodp + vsize, tp + vsize, vsize, cy);
|
||||
prodp += vsize;
|
||||
up += vsize;
|
||||
usize -= vsize;
|
||||
}
|
||||
while (usize >= vsize);
|
||||
}
|
||||
|
||||
/* True: usize < vsize. */
|
||||
|
||||
/* Make life simple: Recurse. */
|
||||
|
||||
if (usize != 0)
|
||||
{
|
||||
mpn_mul (tspace, vp, vsize, up, usize);
|
||||
cy = mpn_add_n (prodp, prodp, tspace, vsize);
|
||||
mpn_add_1 (prodp + vsize, tspace + vsize, usize, cy);
|
||||
}
|
||||
|
||||
TMP_FREE (marker);
|
||||
return *prod_endp;
|
||||
}
|
401
src/kernel/libroot/posix/glibc/arch/mul_n.c
Normal file
401
src/kernel/libroot/posix/glibc/arch/mul_n.c
Normal file
@ -0,0 +1,401 @@
|
||||
/* mpn_mul_n -- Multiply two natural numbers of length n.
|
||||
|
||||
Copyright (C) 1991, 1992, 1993, 1994, 1996 Free Software Foundation, Inc.
|
||||
|
||||
This file is part of the GNU MP Library.
|
||||
|
||||
The GNU MP Library is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU Lesser General Public License as published by
|
||||
the Free Software Foundation; either version 2.1 of the License, or (at your
|
||||
option) any later version.
|
||||
|
||||
The GNU MP Library is distributed in the hope that it will be useful, but
|
||||
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
||||
License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public License
|
||||
along with the GNU MP Library; see the file COPYING.LIB. If not, write to
|
||||
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
|
||||
MA 02111-1307, USA. */
|
||||
|
||||
#include "gmp.h"
|
||||
#include "gmp-impl.h"
|
||||
|
||||
/* Multiply the natural numbers u (pointed to by UP) and v (pointed to by VP),
|
||||
both with SIZE limbs, and store the result at PRODP. 2 * SIZE limbs are
|
||||
always stored. Return the most significant limb.
|
||||
|
||||
Argument constraints:
|
||||
1. PRODP != UP and PRODP != VP, i.e. the destination
|
||||
must be distinct from the multiplier and the multiplicand. */
|
||||
|
||||
/* If KARATSUBA_THRESHOLD is not already defined, define it to a
|
||||
value which is good on most machines. */
|
||||
#ifndef KARATSUBA_THRESHOLD
|
||||
#define KARATSUBA_THRESHOLD 32
|
||||
#endif
|
||||
|
||||
/* The code can't handle KARATSUBA_THRESHOLD smaller than 2. */
|
||||
#if KARATSUBA_THRESHOLD < 2
|
||||
#undef KARATSUBA_THRESHOLD
|
||||
#define KARATSUBA_THRESHOLD 2
|
||||
#endif
|
||||
|
||||
/* Handle simple cases with traditional multiplication.
|
||||
|
||||
This is the most critical code of multiplication. All multiplies rely
|
||||
on this, both small and huge. Small ones arrive here immediately. Huge
|
||||
ones arrive here as this is the base case for Karatsuba's recursive
|
||||
algorithm below. */
|
||||
|
||||
void
|
||||
#if __STDC__
|
||||
impn_mul_n_basecase (mp_ptr prodp, mp_srcptr up, mp_srcptr vp, mp_size_t size)
|
||||
#else
|
||||
impn_mul_n_basecase (prodp, up, vp, size)
|
||||
mp_ptr prodp;
|
||||
mp_srcptr up;
|
||||
mp_srcptr vp;
|
||||
mp_size_t size;
|
||||
#endif
|
||||
{
|
||||
mp_size_t i;
|
||||
mp_limb_t cy_limb;
|
||||
mp_limb_t v_limb;
|
||||
|
||||
/* Multiply by the first limb in V separately, as the result can be
|
||||
stored (not added) to PROD. We also avoid a loop for zeroing. */
|
||||
v_limb = vp[0];
|
||||
if (v_limb <= 1)
|
||||
{
|
||||
if (v_limb == 1)
|
||||
MPN_COPY (prodp, up, size);
|
||||
else
|
||||
MPN_ZERO (prodp, size);
|
||||
cy_limb = 0;
|
||||
}
|
||||
else
|
||||
cy_limb = mpn_mul_1 (prodp, up, size, v_limb);
|
||||
|
||||
prodp[size] = cy_limb;
|
||||
prodp++;
|
||||
|
||||
/* For each iteration in the outer loop, multiply one limb from
|
||||
U with one limb from V, and add it to PROD. */
|
||||
for (i = 1; i < size; i++)
|
||||
{
|
||||
v_limb = vp[i];
|
||||
if (v_limb <= 1)
|
||||
{
|
||||
cy_limb = 0;
|
||||
if (v_limb == 1)
|
||||
cy_limb = mpn_add_n (prodp, prodp, up, size);
|
||||
}
|
||||
else
|
||||
cy_limb = mpn_addmul_1 (prodp, up, size, v_limb);
|
||||
|
||||
prodp[size] = cy_limb;
|
||||
prodp++;
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
#if __STDC__
|
||||
impn_mul_n (mp_ptr prodp,
|
||||
mp_srcptr up, mp_srcptr vp, mp_size_t size, mp_ptr tspace)
|
||||
#else
|
||||
impn_mul_n (prodp, up, vp, size, tspace)
|
||||
mp_ptr prodp;
|
||||
mp_srcptr up;
|
||||
mp_srcptr vp;
|
||||
mp_size_t size;
|
||||
mp_ptr tspace;
|
||||
#endif
|
||||
{
|
||||
if ((size & 1) != 0)
|
||||
{
|
||||
/* The size is odd, the code code below doesn't handle that.
|
||||
Multiply the least significant (size - 1) limbs with a recursive
|
||||
call, and handle the most significant limb of S1 and S2
|
||||
separately. */
|
||||
/* A slightly faster way to do this would be to make the Karatsuba
|
||||
code below behave as if the size were even, and let it check for
|
||||
odd size in the end. I.e., in essence move this code to the end.
|
||||
Doing so would save us a recursive call, and potentially make the
|
||||
stack grow a lot less. */
|
||||
|
||||
mp_size_t esize = size - 1; /* even size */
|
||||
mp_limb_t cy_limb;
|
||||
|
||||
MPN_MUL_N_RECURSE (prodp, up, vp, esize, tspace);
|
||||
cy_limb = mpn_addmul_1 (prodp + esize, up, esize, vp[esize]);
|
||||
prodp[esize + esize] = cy_limb;
|
||||
cy_limb = mpn_addmul_1 (prodp + esize, vp, size, up[esize]);
|
||||
|
||||
prodp[esize + size] = cy_limb;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Anatolij Alekseevich Karatsuba's divide-and-conquer algorithm.
|
||||
|
||||
Split U in two pieces, U1 and U0, such that
|
||||
U = U0 + U1*(B**n),
|
||||
and V in V1 and V0, such that
|
||||
V = V0 + V1*(B**n).
|
||||
|
||||
UV is then computed recursively using the identity
|
||||
|
||||
2n n n n
|
||||
UV = (B + B )U V + B (U -U )(V -V ) + (B + 1)U V
|
||||
1 1 1 0 0 1 0 0
|
||||
|
||||
Where B = 2**BITS_PER_MP_LIMB. */
|
||||
|
||||
mp_size_t hsize = size >> 1;
|
||||
mp_limb_t cy;
|
||||
int negflg;
|
||||
|
||||
/*** Product H. ________________ ________________
|
||||
|_____U1 x V1____||____U0 x V0_____| */
|
||||
/* Put result in upper part of PROD and pass low part of TSPACE
|
||||
as new TSPACE. */
|
||||
MPN_MUL_N_RECURSE (prodp + size, up + hsize, vp + hsize, hsize, tspace);
|
||||
|
||||
/*** Product M. ________________
|
||||
|_(U1-U0)(V0-V1)_| */
|
||||
if (mpn_cmp (up + hsize, up, hsize) >= 0)
|
||||
{
|
||||
mpn_sub_n (prodp, up + hsize, up, hsize);
|
||||
negflg = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
mpn_sub_n (prodp, up, up + hsize, hsize);
|
||||
negflg = 1;
|
||||
}
|
||||
if (mpn_cmp (vp + hsize, vp, hsize) >= 0)
|
||||
{
|
||||
mpn_sub_n (prodp + hsize, vp + hsize, vp, hsize);
|
||||
negflg ^= 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
mpn_sub_n (prodp + hsize, vp, vp + hsize, hsize);
|
||||
/* No change of NEGFLG. */
|
||||
}
|
||||
/* Read temporary operands from low part of PROD.
|
||||
Put result in low part of TSPACE using upper part of TSPACE
|
||||
as new TSPACE. */
|
||||
MPN_MUL_N_RECURSE (tspace, prodp, prodp + hsize, hsize, tspace + size);
|
||||
|
||||
/*** Add/copy product H. */
|
||||
MPN_COPY (prodp + hsize, prodp + size, hsize);
|
||||
cy = mpn_add_n (prodp + size, prodp + size, prodp + size + hsize, hsize);
|
||||
|
||||
/*** Add product M (if NEGFLG M is a negative number). */
|
||||
if (negflg)
|
||||
cy -= mpn_sub_n (prodp + hsize, prodp + hsize, tspace, size);
|
||||
else
|
||||
cy += mpn_add_n (prodp + hsize, prodp + hsize, tspace, size);
|
||||
|
||||
/*** Product L. ________________ ________________
|
||||
|________________||____U0 x V0_____| */
|
||||
/* Read temporary operands from low part of PROD.
|
||||
Put result in low part of TSPACE using upper part of TSPACE
|
||||
as new TSPACE. */
|
||||
MPN_MUL_N_RECURSE (tspace, up, vp, hsize, tspace + size);
|
||||
|
||||
/*** Add/copy Product L (twice). */
|
||||
|
||||
cy += mpn_add_n (prodp + hsize, prodp + hsize, tspace, size);
|
||||
if (cy)
|
||||
mpn_add_1 (prodp + hsize + size, prodp + hsize + size, hsize, cy);
|
||||
|
||||
MPN_COPY (prodp, tspace, hsize);
|
||||
cy = mpn_add_n (prodp + hsize, prodp + hsize, tspace + hsize, hsize);
|
||||
if (cy)
|
||||
mpn_add_1 (prodp + size, prodp + size, size, 1);
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
#if __STDC__
|
||||
impn_sqr_n_basecase (mp_ptr prodp, mp_srcptr up, mp_size_t size)
|
||||
#else
|
||||
impn_sqr_n_basecase (prodp, up, size)
|
||||
mp_ptr prodp;
|
||||
mp_srcptr up;
|
||||
mp_size_t size;
|
||||
#endif
|
||||
{
|
||||
mp_size_t i;
|
||||
mp_limb_t cy_limb;
|
||||
mp_limb_t v_limb;
|
||||
|
||||
/* Multiply by the first limb in V separately, as the result can be
|
||||
stored (not added) to PROD. We also avoid a loop for zeroing. */
|
||||
v_limb = up[0];
|
||||
if (v_limb <= 1)
|
||||
{
|
||||
if (v_limb == 1)
|
||||
MPN_COPY (prodp, up, size);
|
||||
else
|
||||
MPN_ZERO (prodp, size);
|
||||
cy_limb = 0;
|
||||
}
|
||||
else
|
||||
cy_limb = mpn_mul_1 (prodp, up, size, v_limb);
|
||||
|
||||
prodp[size] = cy_limb;
|
||||
prodp++;
|
||||
|
||||
/* For each iteration in the outer loop, multiply one limb from
|
||||
U with one limb from V, and add it to PROD. */
|
||||
for (i = 1; i < size; i++)
|
||||
{
|
||||
v_limb = up[i];
|
||||
if (v_limb <= 1)
|
||||
{
|
||||
cy_limb = 0;
|
||||
if (v_limb == 1)
|
||||
cy_limb = mpn_add_n (prodp, prodp, up, size);
|
||||
}
|
||||
else
|
||||
cy_limb = mpn_addmul_1 (prodp, up, size, v_limb);
|
||||
|
||||
prodp[size] = cy_limb;
|
||||
prodp++;
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
#if __STDC__
|
||||
impn_sqr_n (mp_ptr prodp,
|
||||
mp_srcptr up, mp_size_t size, mp_ptr tspace)
|
||||
#else
|
||||
impn_sqr_n (prodp, up, size, tspace)
|
||||
mp_ptr prodp;
|
||||
mp_srcptr up;
|
||||
mp_size_t size;
|
||||
mp_ptr tspace;
|
||||
#endif
|
||||
{
|
||||
if ((size & 1) != 0)
|
||||
{
|
||||
/* The size is odd, the code code below doesn't handle that.
|
||||
Multiply the least significant (size - 1) limbs with a recursive
|
||||
call, and handle the most significant limb of S1 and S2
|
||||
separately. */
|
||||
/* A slightly faster way to do this would be to make the Karatsuba
|
||||
code below behave as if the size were even, and let it check for
|
||||
odd size in the end. I.e., in essence move this code to the end.
|
||||
Doing so would save us a recursive call, and potentially make the
|
||||
stack grow a lot less. */
|
||||
|
||||
mp_size_t esize = size - 1; /* even size */
|
||||
mp_limb_t cy_limb;
|
||||
|
||||
MPN_SQR_N_RECURSE (prodp, up, esize, tspace);
|
||||
cy_limb = mpn_addmul_1 (prodp + esize, up, esize, up[esize]);
|
||||
prodp[esize + esize] = cy_limb;
|
||||
cy_limb = mpn_addmul_1 (prodp + esize, up, size, up[esize]);
|
||||
|
||||
prodp[esize + size] = cy_limb;
|
||||
}
|
||||
else
|
||||
{
|
||||
mp_size_t hsize = size >> 1;
|
||||
mp_limb_t cy;
|
||||
|
||||
/*** Product H. ________________ ________________
|
||||
|_____U1 x U1____||____U0 x U0_____| */
|
||||
/* Put result in upper part of PROD and pass low part of TSPACE
|
||||
as new TSPACE. */
|
||||
MPN_SQR_N_RECURSE (prodp + size, up + hsize, hsize, tspace);
|
||||
|
||||
/*** Product M. ________________
|
||||
|_(U1-U0)(U0-U1)_| */
|
||||
if (mpn_cmp (up + hsize, up, hsize) >= 0)
|
||||
{
|
||||
mpn_sub_n (prodp, up + hsize, up, hsize);
|
||||
}
|
||||
else
|
||||
{
|
||||
mpn_sub_n (prodp, up, up + hsize, hsize);
|
||||
}
|
||||
|
||||
/* Read temporary operands from low part of PROD.
|
||||
Put result in low part of TSPACE using upper part of TSPACE
|
||||
as new TSPACE. */
|
||||
MPN_SQR_N_RECURSE (tspace, prodp, hsize, tspace + size);
|
||||
|
||||
/*** Add/copy product H. */
|
||||
MPN_COPY (prodp + hsize, prodp + size, hsize);
|
||||
cy = mpn_add_n (prodp + size, prodp + size, prodp + size + hsize, hsize);
|
||||
|
||||
/*** Add product M (if NEGFLG M is a negative number). */
|
||||
cy -= mpn_sub_n (prodp + hsize, prodp + hsize, tspace, size);
|
||||
|
||||
/*** Product L. ________________ ________________
|
||||
|________________||____U0 x U0_____| */
|
||||
/* Read temporary operands from low part of PROD.
|
||||
Put result in low part of TSPACE using upper part of TSPACE
|
||||
as new TSPACE. */
|
||||
MPN_SQR_N_RECURSE (tspace, up, hsize, tspace + size);
|
||||
|
||||
/*** Add/copy Product L (twice). */
|
||||
|
||||
cy += mpn_add_n (prodp + hsize, prodp + hsize, tspace, size);
|
||||
if (cy)
|
||||
mpn_add_1 (prodp + hsize + size, prodp + hsize + size, hsize, cy);
|
||||
|
||||
MPN_COPY (prodp, tspace, hsize);
|
||||
cy = mpn_add_n (prodp + hsize, prodp + hsize, tspace + hsize, hsize);
|
||||
if (cy)
|
||||
mpn_add_1 (prodp + size, prodp + size, size, 1);
|
||||
}
|
||||
}
|
||||
|
||||
/* This should be made into an inline function in gmp.h. */
|
||||
void
|
||||
#if __STDC__
|
||||
mpn_mul_n (mp_ptr prodp, mp_srcptr up, mp_srcptr vp, mp_size_t size)
|
||||
#else
|
||||
mpn_mul_n (prodp, up, vp, size)
|
||||
mp_ptr prodp;
|
||||
mp_srcptr up;
|
||||
mp_srcptr vp;
|
||||
mp_size_t size;
|
||||
#endif
|
||||
{
|
||||
TMP_DECL (marker);
|
||||
TMP_MARK (marker);
|
||||
if (up == vp)
|
||||
{
|
||||
if (size < KARATSUBA_THRESHOLD)
|
||||
{
|
||||
impn_sqr_n_basecase (prodp, up, size);
|
||||
}
|
||||
else
|
||||
{
|
||||
mp_ptr tspace;
|
||||
tspace = (mp_ptr) TMP_ALLOC (2 * size * BYTES_PER_MP_LIMB);
|
||||
impn_sqr_n (prodp, up, size, tspace);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (size < KARATSUBA_THRESHOLD)
|
||||
{
|
||||
impn_mul_n_basecase (prodp, up, vp, size);
|
||||
}
|
||||
else
|
||||
{
|
||||
mp_ptr tspace;
|
||||
tspace = (mp_ptr) TMP_ALLOC (2 * size * BYTES_PER_MP_LIMB);
|
||||
impn_mul_n (prodp, up, vp, size, tspace);
|
||||
}
|
||||
}
|
||||
TMP_FREE (marker);
|
||||
}
|
Loading…
Reference in New Issue
Block a user