Implemented write support, reorganized source files.

* Moved some functionality into their own files so that they can easily
  be reused by other code.
* Added crc32() function from FreeBSD. Implemented CRC handling and
  validation.
* Implemented missing write functionality.
This commit is contained in:
Axel Dörfler 2013-01-26 01:30:23 +01:00
parent d013c8e96a
commit ab31389341
11 changed files with 681 additions and 372 deletions

View File

@ -0,0 +1,310 @@
/*
* Copyright 2007-2013, Axel Dörfler, axeld@pinc-software.de.
* Copyright 2009, Michael Lotz, mmlr@mlotz.ch. All rights reserved.
*
* Distributed under the terms of the MIT License.
*/
#include "Header.h"
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <KernelExport.h>
#ifdef _KERNEL_MODE
# include <util/kernel_cpp.h>
#else
# include <new>
#endif
#include "crc32.h"
#include "utility.h"
#define TRACE_EFI_GPT
#ifdef TRACE_EFI_GPT
# ifndef _KERNEL_MODE
# define dprintf printf
# endif
# define TRACE(x) dprintf x
#else
# define TRACE(x) ;
#endif
namespace EFI {
Header::Header(int fd, off_t block, uint32 blockSize)
:
fBlock(block),
fBlockSize(blockSize),
fStatus(B_NO_INIT),
fEntries(NULL)
{
// TODO: check the correctness of the protective MBR
// read and check the partition table header
ssize_t bytesRead = read_pos(fd, block * blockSize, &fHeader,
sizeof(efi_table_header));
if (bytesRead != (ssize_t)sizeof(efi_table_header)) {
if (bytesRead < B_OK)
fStatus = bytesRead;
else
fStatus = B_IO_ERROR;
return;
}
if (memcmp(fHeader.header, EFI_PARTITION_HEADER, sizeof(fHeader.header))
|| !_ValidateHeaderCRC()
|| fHeader.AbsoluteBlock() != fBlock) {
// TODO: check that partition counts are in valid bounds
fStatus = B_BAD_DATA;
return;
}
// allocate, read, and check partition entry array
fEntries = new (std::nothrow) uint8[_EntryArraySize()];
if (fEntries == NULL) {
// TODO: if there cannot be allocated enough (ie. the boot loader's
// heap is limited), try a smaller size before failing
fStatus = B_NO_MEMORY;
return;
}
bytesRead = read_pos(fd, fHeader.EntriesBlock() * blockSize,
fEntries, _EntryArraySize());
if (bytesRead != (ssize_t)_EntryArraySize()) {
if (bytesRead < B_OK)
fStatus = bytesRead;
else
fStatus = B_IO_ERROR;
return;
}
if (!_ValidateEntriesCRC()) {
// TODO: check overlapping or out of range partitions
fStatus = B_BAD_DATA;
return;
}
#ifdef TRACE_EFI_GPT
_Dump();
_DumpPartitions();
#endif
fStatus = B_OK;
}
#ifndef _BOOT_MODE
Header::Header(off_t block, off_t lastBlock, uint32 blockSize)
:
fBlock(block),
fBlockSize(blockSize),
fStatus(B_NO_INIT),
fEntries(NULL)
{
// initialize to an empty header
memcpy(fHeader.header, EFI_PARTITION_HEADER, sizeof(fHeader.header));
fHeader.SetRevision(EFI_TABLE_REVISION);
fHeader.SetHeaderSize(sizeof(fHeader));
fHeader.SetHeaderCRC(0);
fHeader.SetAbsoluteBlock(fBlock);
fHeader.SetAlternateBlock(0); // TODO
// TODO: set disk guid
fHeader.SetEntriesBlock(EFI_PARTITION_ENTRIES_BLOCK);
fHeader.SetEntryCount(EFI_PARTITION_ENTRY_COUNT);
fHeader.SetEntrySize(EFI_PARTITION_ENTRY_SIZE);
fHeader.SetEntriesCRC(0);
size_t arraySize = _EntryArraySize();
fEntries = new (std::nothrow) uint8[arraySize];
if (fEntries == NULL) {
fStatus = B_NO_MEMORY;
return;
}
memset(fEntries, 0, arraySize);
// TODO: initialize the entry guids
uint32 entryBlocks = (arraySize + fBlockSize - 1) / fBlockSize;
fHeader.SetFirstUsableBlock(EFI_PARTITION_ENTRIES_BLOCK + entryBlocks);
fHeader.SetLastUsableBlock(lastBlock - 1 - entryBlocks);
#ifdef TRACE_EFI_GPT
_Dump();
_DumpPartitions();
dprintf("GPT: HERE I AM!\n");
#else
dprintf("GPT: Nope!\n");
#endif
fStatus = B_OK;
}
#endif // !_BOOT_MODE
Header::~Header()
{
delete[] fEntries;
}
status_t
Header::InitCheck() const
{
return fStatus;
}
#ifndef _BOOT_MODE
status_t
Header::WriteEntry(int fd, uint32 entryIndex)
{
// Determine block to write
off_t block = fHeader.EntriesBlock()
+ entryIndex * fHeader.EntrySize() / fBlockSize;
uint32 entryOffset = entryIndex * fHeader.EntrySize() % fBlockSize;
status_t status = _Write(fd, block * fBlockSize, fEntries + entryOffset,
fBlockSize);
if (status != B_OK)
return status;
// TODO: write mirror at the end
// Update header, too -- the entries CRC changed
return Write(fd);
}
status_t
Header::Write(int fd)
{
_UpdateCRC();
status_t status = _Write(fd, fHeader.AbsoluteBlock() * fBlockSize,
&fHeader, sizeof(efi_table_header));
if (status != B_OK)
return status;
// TODO: write mirror at the end
return B_OK;
}
#endif // !_BOOT_MODE
status_t
Header::_Write(int fd, off_t offset, const void* data, size_t size) const
{
ssize_t bytesWritten = write_pos(fd, offset, data, size);
if (bytesWritten < 0)
return bytesWritten;
if (bytesWritten != (ssize_t)size)
return B_IO_ERROR;
return B_OK;
}
void
Header::_UpdateCRC()
{
fHeader.SetEntriesCRC(crc32(fEntries, _EntryArraySize()));
fHeader.SetHeaderCRC(0);
fHeader.SetHeaderCRC(crc32((uint8*)&fHeader, sizeof(efi_table_header)));
}
bool
Header::_ValidateHeaderCRC()
{
uint32 originalCRC = fHeader.HeaderCRC();
fHeader.SetHeaderCRC(0);
bool matches = originalCRC == crc32((const uint8*)&fHeader,
sizeof(efi_table_header));
dprintf("GPT: MATCHES %d!\n", matches);
fHeader.SetHeaderCRC(originalCRC);
return matches;
}
bool
Header::_ValidateEntriesCRC() const
{
return fHeader.EntriesCRC() == crc32(fEntries, _EntryArraySize());
}
#ifdef TRACE_EFI_GPT
const char *
Header::_PrintGUID(const guid_t &id)
{
static char guid[48];
snprintf(guid, sizeof(guid),
"%08lx-%04x-%04x-%02x%02x-%02x%02x%02x%02x%02x%02x",
B_LENDIAN_TO_HOST_INT32(id.data1), B_LENDIAN_TO_HOST_INT16(id.data2),
B_LENDIAN_TO_HOST_INT16(id.data3), id.data4[0], id.data4[1],
id.data4[2], id.data4[3], id.data4[4], id.data4[5], id.data4[6],
id.data4[7]);
return guid;
}
void
Header::_Dump()
{
dprintf("EFI header: %.8s\n", fHeader.header);
dprintf("EFI revision: %ld\n", fHeader.Revision());
dprintf("header size: %ld\n", fHeader.HeaderSize());
dprintf("header CRC: %ld\n", fHeader.HeaderCRC());
dprintf("absolute block: %Ld\n", fHeader.AbsoluteBlock());
dprintf("alternate block: %Ld\n", fHeader.AlternateBlock());
dprintf("first usable block: %Ld\n", fHeader.FirstUsableBlock());
dprintf("last usable block: %Ld\n", fHeader.LastUsableBlock());
dprintf("disk GUID: %s\n", _PrintGUID(fHeader.disk_guid));
dprintf("entries block: %Ld\n", fHeader.EntriesBlock());
dprintf("entry size: %ld\n", fHeader.EntrySize());
dprintf("entry count: %ld\n", fHeader.EntryCount());
dprintf("entries CRC: %ld\n", fHeader.EntriesCRC());
}
void
Header::_DumpPartitions()
{
for (uint32 i = 0; i < EntryCount(); i++) {
const efi_partition_entry &entry = EntryAt(i);
if (entry.partition_type == kEmptyGUID)
continue;
dprintf("[%3ld] partition type: %s\n", i,
_PrintGUID(entry.partition_type));
dprintf(" unique id: %s\n", _PrintGUID(entry.unique_guid));
dprintf(" start block: %Ld\n", entry.StartBlock());
dprintf(" end block: %Ld\n", entry.EndBlock());
dprintf(" size: %g MB\n", (entry.EndBlock() - entry.StartBlock())
* 512 / 1024.0 / 1024.0);
dprintf(" attributes: %Lx\n", entry.Attributes());
char name[64];
to_utf8(entry.name, EFI_PARTITION_NAME_LENGTH, name, sizeof(name));
dprintf(" name: %s\n", name);
}
}
#endif // TRACE_EFI_GPT
} // namespace EFI

View File

@ -0,0 +1,73 @@
/*
* Copyright 2007-2013, Axel Dörfler, axeld@pinc-software.de.
* Copyright 2009, Michael Lotz, mmlr@mlotz.ch. All rights reserved.
*
* Distributed under the terms of the MIT License.
*/
#ifndef GPT_HEADER_H
#define GPT_HEADER_H
#include "efi_gpt.h"
namespace EFI {
class Header {
public:
Header(int fd, off_t block, uint32 blockSize);
#ifndef _BOOT_MODE
// constructor for empty header
Header(off_t block, off_t lastBlock,
uint32 blockSize);
#endif
~Header();
status_t InitCheck() const;
bool IsPrimary() const
{ return fBlock == EFI_HEADER_LOCATION; }
uint64 FirstUsableBlock() const
{ return fHeader.FirstUsableBlock(); }
uint64 LastUsableBlock() const
{ return fHeader.LastUsableBlock(); }
uint32 EntryCount() const
{ return fHeader.EntryCount(); }
efi_partition_entry& EntryAt(int32 index) const
{ return *(efi_partition_entry*)(fEntries
+ fHeader.EntrySize() * index); }
#ifndef _BOOT_MODE
status_t WriteEntry(int fd, uint32 entryIndex);
status_t Write(int fd);
#endif
private:
const char* _PrintGUID(const guid_t& id);
void _Dump();
void _DumpPartitions();
status_t _Write(int fd, off_t offset, const void* data,
size_t size) const;
void _UpdateCRC();
bool _ValidateHeaderCRC();
bool _ValidateEntriesCRC() const;
size_t _EntryArraySize() const
{ return fHeader.EntrySize()
* fHeader.EntryCount(); }
private:
uint64 fBlock;
uint32 fBlockSize;
status_t fStatus;
efi_table_header fHeader;
uint8* fEntries;
};
} // namespace EFI
#endif // GPT_HEADER_H

View File

@ -5,5 +5,8 @@ UsePrivateSystemHeaders ;
KernelAddon efi_gpt :
efi_gpt.cpp
Header.cpp
crc32.cpp
utility.cpp
PartitionLocker.cpp
;

View File

@ -0,0 +1,105 @@
/*
* Copyright 2013, Axel Dörfler, axeld@pinc-software.de.
* Distributed under the terms of the MIT License.
*/
/*
* COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or
* code or tables extracted from it, as desired without restriction.
*/
/*
* First, the polynomial itself and its table of feedback terms. The
* polynomial is
* X^32+X^26+X^23+X^22+X^16+X^12+X^11+X^10+X^8+X^7+X^5+X^4+X^2+X^1+X^0
*
* Note that we take it "backwards" and put the highest-order term in
* the lowest-order bit. The X^32 term is "implied"; the LSB is the
* X^31 term, etc. The X^0 term (usually shown as "+1") results in
* the MSB being 1
*
* Note that the usual hardware shift register implementation, which
* is what we're using (we're merely optimizing it by doing eight-bit
* chunks at a time) shifts bits into the lowest-order term. In our
* implementation, that means shifting towards the right. Why do we
* do it this way? Because the calculated CRC must be transmitted in
* order from highest-order term to lowest-order term. UARTs transmit
* characters in order from LSB to MSB. By storing the CRC this way
* we hand it to the UART in the order low-byte to high-byte; the UART
* sends each low-bit to hight-bit; and the result is transmission bit
* by bit from highest- to lowest-order term without requiring any bit
* shuffling on our part. Reception works similarly
*
* The feedback terms table consists of 256, 32-bit entries. Notes
*
* The table can be generated at runtime if desired; code to do so
* is shown later. It might not be obvious, but the feedback
* terms simply represent the results of eight shift/xor opera
* tions for all combinations of data and CRC register values
*
* The values must be right-shifted by eight bits by the "updcrc
* logic; the shift must be unsigned (bring in zeroes). On some
* hardware you could probably optimize the shift in assembler by
* using byte-swap instructions
* polynomial $edb88320
*/
#include "crc32.h"
static const uint32 kTab[] = {
0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f,
0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2,
0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c,
0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423,
0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106,
0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d,
0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7,
0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa,
0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81,
0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84,
0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e,
0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55,
0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28,
0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f,
0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69,
0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc,
0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693,
0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d
};
uint32
crc32(const uint8* buffer, size_t size)
{
uint32 crc = ~0U;
while (size-- != 0)
crc = kTab[(crc ^ *buffer++) & 0xff] ^ (crc >> 8);
return crc ^ ~0U;
}

View File

@ -0,0 +1,15 @@
/*
* Copyright 2013, Axel Dörfler, axeld@pinc-software.de.
* Distributed under the terms of the MIT License.
*/
#ifndef CRC32_H
#define CRC32_H
#include <SupportDefs.h>
uint32 crc32(const uint8* buffer, size_t size);
#endif // CRC32_H

View File

@ -16,7 +16,6 @@
#else
# include <DiskDeviceTypes.h>
# include "PartitionLocker.h"
# include <utf8_functions.h>
#endif
#include <util/kernel_cpp.h>
@ -24,7 +23,8 @@
#include <stdio.h>
#include <string.h>
#include "gpt_known_guids.h"
#include "Header.h"
#include "utility.h"
#define TRACE_EFI_GPT
@ -38,156 +38,7 @@
#define EFI_PARTITION_MODULE_NAME "partitioning_systems/efi_gpt/v1"
namespace EFI {
class Header {
public:
Header(int fd, off_t block, uint32 blockSize);
#ifndef _BOOT_MODE
// constructor for empty header
Header(off_t block, uint32 blockSize);
#endif
~Header();
status_t InitCheck() const;
bool IsPrimary() const
{ return fBlock == EFI_HEADER_LOCATION; }
uint64 FirstUsableBlock() const
{ return fHeader.FirstUsableBlock(); }
uint64 LastUsableBlock() const
{ return fHeader.LastUsableBlock(); }
uint32 EntryCount() const
{ return fHeader.EntryCount(); }
efi_partition_entry &EntryAt(int32 index) const
{ return *(efi_partition_entry *)
(fEntries + fHeader.EntrySize() * index); }
#ifndef _BOOT_MODE
status_t WriteEntry(int fd, uint32 entryIndex);
status_t Write(int fd);
#endif
private:
#ifdef TRACE_EFI_GPT
const char *_PrintGUID(const guid_t &id);
void _Dump();
void _DumpPartitions();
#endif
bool _ValidateCRC(uint8 *data, size_t size) const;
size_t _EntryArraySize() const
{ return fHeader.EntrySize() * fHeader.EntryCount(); }
uint64 fBlock;
uint32 fBlockSize;
status_t fStatus;
efi_table_header fHeader;
uint8 *fEntries;
};
} // namespace EFI
const static guid_t kEmptyGUID = {0, 0, 0, {0, 0, 0, 0, 0, 0, 0, 0}};
inline bool
static_guid::operator==(const guid_t &other) const
{
return B_HOST_TO_LENDIAN_INT32(data1) == other.data1
&& B_HOST_TO_LENDIAN_INT16(data2) == other.data2
&& B_HOST_TO_LENDIAN_INT16(data3) == other.data3
&& B_HOST_TO_BENDIAN_INT64(*(uint64 *)&data4) == *(uint64 *)other.data4;
// the last 8 bytes are in big-endian order
}
static void
put_utf8_byte(char *&to, size_t &left, char c)
{
if (left <= 1)
return;
*(to++) = c;
left--;
}
static void
to_utf8(const uint16 *from, size_t maxFromLength, char *to, size_t toSize)
{
for (uint32 i = 0; i < maxFromLength; i++) {
uint16 c = B_LENDIAN_TO_HOST_INT16(from[i]);
if (!c)
break;
if (c < 0x80)
put_utf8_byte(to, toSize, c);
else if (c < 0x800) {
put_utf8_byte(to, toSize, 0xc0 | (c >> 6));
put_utf8_byte(to, toSize, 0x80 | (c & 0x3f));
} else if (c < 0x10000) {
put_utf8_byte(to, toSize, 0xe0 | (c >> 12));
put_utf8_byte(to, toSize, 0x80 | ((c >> 6) & 0x3f));
put_utf8_byte(to, toSize, 0x80 | (c & 0x3f));
} else if (c <= 0x10ffff) {
put_utf8_byte(to, toSize, 0xf0 | (c >> 18));
put_utf8_byte(to, toSize, 0x80 | ((c >> 12) & 0x3f));
put_utf8_byte(to, toSize, 0x80 | ((c >> 6) & 0x3f));
put_utf8_byte(to, toSize, 0x80 | (c & 0x3f));
}
}
if (toSize > 0)
*to = '\0';
}
#ifndef _BOOT_MODE
static void
to_ucs2(const char *from, size_t fromLength, uint16 *to, size_t maxToLength)
{
size_t index = 0;
while (from[0] && index < maxToLength) {
// TODO: handle characters that are not representable in UCS-2 better
uint32 code = UTF8ToCharCode(&from);
if (code < 0x10000)
to[index++] = code;
}
if (index < maxToLength)
to[index] = '\0';
}
#endif // !_BOOT_MODE
static const char *
get_partition_type(const guid_t &guid)
{
for (uint32 i = 0; i < sizeof(kTypeMap) / sizeof(kTypeMap[0]); i++) {
if (kTypeMap[i].guid == guid)
return kTypeMap[i].type;
}
return NULL;
}
#ifndef _BOOT_MODE
static const static_guid *
guid_for_partition_type(const char *type)
{
for (uint32 i = 0; i < sizeof(kTypeMap) / sizeof(kTypeMap[0]); i++) {
if (strcmp(kTypeMap[i].type, type) == 0)
return &kTypeMap[i].guid;
}
return NULL;
}
static off_t
block_align(partition_data *partition, off_t offset, bool upwards)
{
@ -201,223 +52,6 @@ block_align(partition_data *partition, off_t offset, bool upwards)
#endif // !_BOOT_MODE
// #pragma mark -
namespace EFI {
Header::Header(int fd, off_t block, uint32 blockSize)
:
fBlock(block),
fBlockSize(blockSize),
fStatus(B_NO_INIT),
fEntries(NULL)
{
// TODO: check the correctness of the protective MBR
// read and check the partition table header
ssize_t bytesRead = read_pos(fd, block * blockSize, &fHeader,
sizeof(fHeader));
if (bytesRead != (ssize_t)sizeof(fHeader)) {
if (bytesRead < B_OK)
fStatus = bytesRead;
else
fStatus = B_IO_ERROR;
return;
}
if (memcmp(fHeader.header, EFI_PARTITION_HEADER, sizeof(fHeader.header))
|| !_ValidateCRC((uint8 *)&fHeader, sizeof(fHeader))
|| fHeader.AbsoluteBlock() != fBlock) {
// TODO: check that partition counts are in valid bounds
fStatus = B_BAD_DATA;
return;
}
// allocate, read, and check partition entry array
fEntries = new (std::nothrow) uint8[_EntryArraySize()];
if (fEntries == NULL) {
// TODO: if there cannot be allocated enough (ie. the boot loader's
// heap is limited), try a smaller size before failing
fStatus = B_NO_MEMORY;
return;
}
bytesRead = read_pos(fd, fHeader.EntriesBlock() * blockSize,
fEntries, _EntryArraySize());
if (bytesRead != (ssize_t)_EntryArraySize()) {
if (bytesRead < B_OK)
fStatus = bytesRead;
else
fStatus = B_IO_ERROR;
return;
}
if (!_ValidateCRC(fEntries, _EntryArraySize())) {
// TODO: check overlapping or out of range partitions
fStatus = B_BAD_DATA;
return;
}
#ifdef TRACE_EFI_GPT
_Dump();
_DumpPartitions();
#endif
fStatus = B_OK;
}
#ifndef _BOOT_MODE
Header::Header(off_t block, uint32 blockSize)
:
fBlock(block),
fBlockSize(blockSize),
fStatus(B_NO_INIT),
fEntries(NULL)
{
// initialize to an empty header
memcpy(fHeader.header, EFI_PARTITION_HEADER, sizeof(fHeader.header));
fHeader.SetRevision(EFI_TABLE_REVISION);
fHeader.SetHeaderSize(sizeof(fHeader));
fHeader.SetHeaderCRC(0);
fHeader.SetAbsoluteBlock(fBlock);
fHeader.SetAlternateBlock(0); // TODO
// TODO: set disk guid
fHeader.SetEntriesBlock(EFI_PARTITION_ENTRIES_BLOCK);
fHeader.SetEntryCount(EFI_PARTITION_ENTRY_COUNT);
fHeader.SetEntrySize(EFI_PARTITION_ENTRY_SIZE);
fHeader.SetEntriesCRC(0);
size_t arraySize = _EntryArraySize();
fEntries = new (std::nothrow) uint8[arraySize];
if (fEntries == NULL) {
fStatus = B_NO_MEMORY;
return;
}
memset(fEntries, 0, arraySize);
// TODO: initialize the entry guids
fHeader.SetFirstUsableBlock(EFI_PARTITION_ENTRIES_BLOCK
+ (arraySize + fBlockSize - 1) / fBlockSize);
fHeader.SetLastUsableBlock(0); // TODO
#ifdef TRACE_EFI_GPT
_Dump();
_DumpPartitions();
#endif
fStatus = B_OK;
}
#endif // !_BOOT_MODE
Header::~Header()
{
delete[] fEntries;
}
status_t
Header::InitCheck() const
{
return fStatus;
}
#ifndef _BOOT_MODE
status_t
Header::WriteEntry(int fd, uint32 entryIndex)
{
// TODO: implement
return B_ERROR;
}
status_t
Header::Write(int fd)
{
// TODO: implement
return B_ERROR;
}
#endif // !_BOOT_MODE
bool
Header::_ValidateCRC(uint8 *data, size_t size) const
{
// TODO: implement!
return true;
}
#ifdef TRACE_EFI_GPT
const char *
Header::_PrintGUID(const guid_t &id)
{
static char guid[48];
snprintf(guid, sizeof(guid),
"%08lx-%04x-%04x-%02x%02x-%02x%02x%02x%02x%02x%02x",
B_LENDIAN_TO_HOST_INT32(id.data1), B_LENDIAN_TO_HOST_INT16(id.data2),
B_LENDIAN_TO_HOST_INT16(id.data3), id.data4[0], id.data4[1],
id.data4[2], id.data4[3], id.data4[4], id.data4[5], id.data4[6],
id.data4[7]);
return guid;
}
void
Header::_Dump()
{
dprintf("EFI header: %.8s\n", fHeader.header);
dprintf("EFI revision: %ld\n", fHeader.Revision());
dprintf("header size: %ld\n", fHeader.HeaderSize());
dprintf("header CRC: %ld\n", fHeader.HeaderCRC());
dprintf("absolute block: %Ld\n", fHeader.AbsoluteBlock());
dprintf("alternate block: %Ld\n", fHeader.AlternateBlock());
dprintf("first usable block: %Ld\n", fHeader.FirstUsableBlock());
dprintf("last usable block: %Ld\n", fHeader.LastUsableBlock());
dprintf("disk GUID: %s\n", _PrintGUID(fHeader.disk_guid));
dprintf("entries block: %Ld\n", fHeader.EntriesBlock());
dprintf("entry size: %ld\n", fHeader.EntrySize());
dprintf("entry count: %ld\n", fHeader.EntryCount());
dprintf("entries CRC: %ld\n", fHeader.EntriesCRC());
}
void
Header::_DumpPartitions()
{
for (uint32 i = 0; i < EntryCount(); i++) {
const efi_partition_entry &entry = EntryAt(i);
if (entry.partition_type == kEmptyGUID)
continue;
dprintf("[%3ld] partition type: %s\n", i,
_PrintGUID(entry.partition_type));
dprintf(" unique id: %s\n", _PrintGUID(entry.unique_guid));
dprintf(" start block: %Ld\n", entry.StartBlock());
dprintf(" end block: %Ld\n", entry.EndBlock());
dprintf(" size: %g MB\n", (entry.EndBlock() - entry.StartBlock())
* 512 / 1024.0 / 1024.0);
dprintf(" attributes: %Lx\n", entry.Attributes());
char name[64];
to_utf8(entry.name, EFI_PARTITION_NAME_LENGTH, name, sizeof(name));
dprintf(" name: %s\n", name);
}
}
#endif // TRACE_EFI_GPT
} // namespace EFI
// #pragma mark - public module interface
@ -1063,7 +697,8 @@ efi_gpt_initialize(int fd, partition_id partitionID, const char *name,
update_disk_device_job_progress(job, 0.0);
EFI::Header header(EFI_HEADER_LOCATION, partition->block_size);
EFI::Header header(EFI_HEADER_LOCATION,
partitionSize / partition->block_size, partition->block_size);
status_t result = header.InitCheck();
if (result != B_OK)
return result;

View File

@ -1,6 +1,6 @@
/*
* Copyright 2009, Michael Lotz, mmlr@mlotz.ch. All rights reserved.
* Copyright 2007-2009, Axel Dörfler, axeld@pinc-software.de.
* Copyright 2007-2013, Axel Dörfler, axeld@pinc-software.de.
*
* Distributed under the terms of the MIT License.
*/
@ -8,6 +8,8 @@
#define GPT_KNOWN_GUIDS_H
#include <ByteOrder.h>
#include <disk_device_types.h>
@ -24,6 +26,17 @@ struct static_guid {
} _PACKED;
inline bool
static_guid::operator==(const guid_t &other) const
{
return B_HOST_TO_LENDIAN_INT32(data1) == other.data1
&& B_HOST_TO_LENDIAN_INT16(data2) == other.data2
&& B_HOST_TO_LENDIAN_INT16(data3) == other.data3
&& B_HOST_TO_BENDIAN_INT64(*(uint64 *)&data4) == *(uint64 *)other.data4;
// the last 8 bytes are in big-endian order
}
const static struct type_map {
static_guid guid;
const char *type;

View File

@ -0,0 +1,108 @@
/*
* Copyright 2007-2013, Axel Dörfler, axeld@pinc-software.de.
* Copyright 2009, Michael Lotz, mmlr@mlotz.ch. All rights reserved.
*
* Distributed under the terms of the MIT License.
*/
#include "utility.h"
#include <string.h>
#ifndef _BOOT_MODE
# include <utf8_functions.h>
#endif
#include "gpt_known_guids.h"
const guid_t kEmptyGUID = {0, 0, 0, {0, 0, 0, 0, 0, 0, 0, 0}};
static void
put_utf8_byte(char *&to, size_t &left, char c)
{
if (left <= 1)
return;
*(to++) = c;
left--;
}
// #pragma mark -
void
to_utf8(const uint16 *from, size_t maxFromLength, char *to, size_t toSize)
{
for (uint32 i = 0; i < maxFromLength; i++) {
uint16 c = B_LENDIAN_TO_HOST_INT16(from[i]);
if (!c)
break;
if (c < 0x80)
put_utf8_byte(to, toSize, c);
else if (c < 0x800) {
put_utf8_byte(to, toSize, 0xc0 | (c >> 6));
put_utf8_byte(to, toSize, 0x80 | (c & 0x3f));
} else if (c < 0x10000) {
put_utf8_byte(to, toSize, 0xe0 | (c >> 12));
put_utf8_byte(to, toSize, 0x80 | ((c >> 6) & 0x3f));
put_utf8_byte(to, toSize, 0x80 | (c & 0x3f));
} else if (c <= 0x10ffff) {
put_utf8_byte(to, toSize, 0xf0 | (c >> 18));
put_utf8_byte(to, toSize, 0x80 | ((c >> 12) & 0x3f));
put_utf8_byte(to, toSize, 0x80 | ((c >> 6) & 0x3f));
put_utf8_byte(to, toSize, 0x80 | (c & 0x3f));
}
}
if (toSize > 0)
*to = '\0';
}
#ifndef _BOOT_MODE
void
to_ucs2(const char *from, size_t fromLength, uint16 *to, size_t maxToLength)
{
size_t index = 0;
while (from[0] && index < maxToLength) {
// TODO: handle characters that are not representable in UCS-2 better
uint32 code = UTF8ToCharCode(&from);
if (code < 0x10000)
to[index++] = code;
}
if (index < maxToLength)
to[index] = '\0';
}
#endif // !_BOOT_MODE
const char *
get_partition_type(const guid_t &guid)
{
for (uint32 i = 0; i < sizeof(kTypeMap) / sizeof(kTypeMap[0]); i++) {
if (kTypeMap[i].guid == guid)
return kTypeMap[i].type;
}
return NULL;
}
#ifndef _BOOT_MODE
const static_guid *
guid_for_partition_type(const char *type)
{
for (uint32 i = 0; i < sizeof(kTypeMap) / sizeof(kTypeMap[0]); i++) {
if (strcmp(kTypeMap[i].type, type) == 0)
return &kTypeMap[i].guid;
}
return NULL;
}
#endif // !_BOOT_MODE

View File

@ -0,0 +1,31 @@
/*
* Copyright 2007-2013, Axel Dörfler, axeld@pinc-software.de.
* Copyright 2009, Michael Lotz, mmlr@mlotz.ch. All rights reserved.
*
* Distributed under the terms of the MIT License.
*/
#ifndef UTILITY_H
#define UTILITY_H
#include <SupportDefs.h>
#include "guid.h"
struct static_guid;
extern const guid_t kEmptyGUID;
void to_utf8(const uint16* from, size_t maxFromLength, char* to, size_t toSize);
const char* get_partition_type(const guid_t& guid);
#ifndef _BOOT_MODE
void to_ucs2(const char* from, size_t fromLength, uint16* to,
size_t maxToLength);
const static_guid* guid_for_partition_type(const char* type);
#endif // !_BOOT_MODE
#endif // UTILITY_H

View File

@ -88,7 +88,12 @@ BootStaticLibrary boot_partitions :
FileMapDisk.cpp
amiga_rdb.cpp
apple.cpp
efi_gpt.cpp
Header.cpp
crc32.cpp
utility.cpp
intel.cpp
PartitionMap.cpp
PartitionMapParser.cpp
@ -114,7 +119,7 @@ SEARCH on [ FGristFiles amiga_rdb.cpp ]
SEARCH on [ FGristFiles apple.cpp ]
= [ FDirName $(HAIKU_TOP) src add-ons kernel partitioning_systems apple ] ;
SEARCH on [ FGristFiles efi_gpt.cpp ]
SEARCH on [ FGristFiles efi_gpt.cpp Header.cpp crc32.cpp utility.cpp ]
= [ FDirName $(HAIKU_TOP) src add-ons kernel partitioning_systems gpt ] ;
SEARCH on [ FGristFiles intel.cpp PartitionMap.cpp PartitionMapParser.cpp ]

View File

@ -43,7 +43,12 @@ ObjectDefines
# partitions
amiga_rdb.cpp
apple.cpp
efi_gpt.cpp
Header.cpp
crc32.cpp
utility.cpp
intel.cpp
PartitionMap.cpp
PartitionMapParser.cpp
@ -71,6 +76,7 @@ ObjectDefines
defines = [ FDefines $(defines) ] ;
if $(OS) = "LINUX" {
SubDirC++Flags $(defines) ;
} else {
#SubDirC++Flags $(defines) -DHAVE_READ_POS=1 -fcheck-memory-usage -D_NO_INLINE_ASM ;
SubDirC++Flags $(defines) -DHAVE_READ_POS=1 -D_NO_INLINE_ASM ;
@ -104,7 +110,12 @@ SimpleTest BootLoaderTest :
# partitioning systems
amiga_rdb.cpp
apple.cpp
efi_gpt.cpp
Header.cpp
crc32.cpp
utility.cpp
intel.cpp
PartitionMap.cpp
PartitionMapParser.cpp
@ -149,7 +160,7 @@ SEARCH on [ FGristFiles amiga_rdb.cpp ]
SEARCH on [ FGristFiles apple.cpp ]
= [ FDirName $(HAIKU_TOP) src add-ons kernel partitioning_systems apple ] ;
SEARCH on [ FGristFiles efi_gpt.cpp ]
SEARCH on [ FGristFiles efi_gpt.cpp Header.cpp crc32.cpp utility.cpp ]
= [ FDirName $(HAIKU_TOP) src add-ons kernel partitioning_systems gpt ] ;
SEARCH on [ FGristFiles intel.cpp PartitionMap.cpp PartitionMapParser.cpp ]