added via accelerant, a copy of skeleton driver yet.

git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@13599 a95241bf-73f2-0310-859d-f6bbb57e9c96
This commit is contained in:
Rudolf Cornelissen 2005-07-10 17:57:04 +00:00
parent 5998579f4b
commit 8ac4b65fe4
1 changed files with 561 additions and 0 deletions

View File

@ -0,0 +1,561 @@
/* program the DAC */
/* Author:
Rudolf Cornelissen 12/2003-10/2004
*/
#define MODULE_BIT 0x00010000
#include "std.h"
static status_t nv4_nv10_nv20_dac_pix_pll_find(
display_mode target,float * calc_pclk,uint8 * m_result,uint8 * n_result,uint8 * p_result, uint8 test);
/* see if an analog VGA monitor is connected to connector #1 */
bool eng_dac_crt_connected(void)
{
uint32 output, dac;
bool present;
/* save output connector setting */
output = DACR(OUTPUT);
/* save DAC state */
dac = DACR(TSTCTRL);
/* turn on DAC */
DACW(TSTCTRL, (DACR(TSTCTRL) & 0xfffeffff));
/* select primary head and turn off CRT (and DVI?) outputs */
DACW(OUTPUT, (output & 0x0000feee));
/* wait for signal lines to stabilize */
snooze(1000);
/* re-enable CRT output */
DACW(OUTPUT, (DACR(OUTPUT) | 0x00000001));
/* setup RGB test signal levels to approx 30% of DAC range and enable them */
DACW(TSTDATA, ((0x2 << 30) | (0x140 << 20) | (0x140 << 10) | (0x140 << 0)));
/* route test signals to output */
DACW(TSTCTRL, (DACR(TSTCTRL) | 0x00001000));
/* wait for signal lines to stabilize */
snooze(1000);
/* do actual detection: all signals paths high == CRT connected */
if (DACR(TSTCTRL) & 0x10000000)
{
present = true;
LOG(4,("DAC: CRT detected on connector #1\n"));
}
else
{
present = false;
LOG(4,("DAC: no CRT detected on connector #1\n"));
}
/* kill test signal routing */
DACW(TSTCTRL, (DACR(TSTCTRL) & 0xffffefff));
/* restore output connector setting */
DACW(OUTPUT, output);
/* restore DAC state */
DACW(TSTCTRL, dac);
return present;
}
/*set the mode, brightness is a value from 0->2 (where 1 is equivalent to direct)*/
status_t eng_dac_mode(int mode,float brightness)
{
uint8 *r,*g,*b;
int i, ri;
/*set colour arrays to point to space reserved in shared info*/
r = si->color_data;
g = r + 256;
b = g + 256;
LOG(4,("DAC: Setting screen mode %d brightness %f\n", mode, brightness));
/* init the palette for brightness specified */
/* (Nvidia cards always use MSbits from screenbuffer as index for PAL) */
for (i = 0; i < 256; i++)
{
ri = i * brightness;
if (ri > 255) ri = 255;
b[i] = g[i] = r[i] = ri;
}
if (eng_dac_palette(r,g,b) != B_OK) return B_ERROR;
/* disable palette RAM adressing mask */
ENG_REG8(RG8_PALMASK) = 0xff;
LOG(2,("DAC: PAL pixrdmsk readback $%02x\n", ENG_REG8(RG8_PALMASK)));
return B_OK;
}
/*program the DAC palette using the given r,g,b values*/
status_t eng_dac_palette(uint8 r[256],uint8 g[256],uint8 b[256])
{
int i;
LOG(4,("DAC: setting palette\n"));
/* select first PAL adress before starting programming */
ENG_REG8(RG8_PALINDW) = 0x00;
/* loop through all 256 to program DAC */
for (i = 0; i < 256; i++)
{
/* the 6 implemented bits are on b0-b5 of the bus */
ENG_REG8(RG8_PALDATA) = r[i];
ENG_REG8(RG8_PALDATA) = g[i];
ENG_REG8(RG8_PALDATA) = b[i];
}
if (ENG_REG8(RG8_PALINDW) != 0x00)
{
LOG(8,("DAC: PAL write index incorrect after programming\n"));
return B_ERROR;
}
if (1)
{//reread LUT
uint8 R, G, B;
/* select first PAL adress to read (modulo 3 counter) */
ENG_REG8(RG8_PALINDR) = 0x00;
for (i = 0; i < 256; i++)
{
R = ENG_REG8(RG8_PALDATA);
G = ENG_REG8(RG8_PALDATA);
B = ENG_REG8(RG8_PALDATA);
if ((r[i] != R) || (g[i] != G) || (b[i] != B))
LOG(1,("DAC palette %d: w %x %x %x, r %x %x %x\n", i, r[i], g[i], b[i], R, G, B)); // apsed
}
}
return B_OK;
}
/*program the pixpll - frequency in kHz*/
status_t eng_dac_set_pix_pll(display_mode target)
{
uint8 m=0,n=0,p=0;
// uint time = 0;
float pix_setting, req_pclk;
status_t result;
/* we offer this option because some panels have very tight restrictions,
* and there's no overlapping settings range that makes them all work.
* note:
* this assumes the cards BIOS correctly programmed the panel (is likely) */
//fixme: when VESA DDC EDID stuff is implemented, this option can be deleted...
if (si->ps.tmds1_active && !si->settings.pgm_panel)
{
LOG(4,("DAC: Not programming DFP refresh (specified in skel.settings)\n"));
return B_OK;
}
/* fix a DVI or laptop flatpanel to 60Hz refresh! */
/* Note:
* The pixelclock drives the flatpanel modeline, not the CRTC modeline. */
if (si->ps.tmds1_active)
{
LOG(4,("DAC: Fixing DFP refresh to 60Hz!\n"));
/* use the panel's modeline to determine the needed pixelclock */
target.timing.pixel_clock = si->ps.p1_timing.pixel_clock;
}
req_pclk = (target.timing.pixel_clock)/1000.0;
LOG(4,("DAC: Setting PIX PLL for pixelclock %f\n", req_pclk));
/* signal that we actually want to set the mode */
result = eng_dac_pix_pll_find(target,&pix_setting,&m,&n,&p, 1);
if (result != B_OK)
{
return result;
}
/*reprogram (disable,select,wait for stability,enable)*/
// DXIW(PIXCLKCTRL,(DXIR(PIXCLKCTRL)&0x0F)|0x04); /*disable the PIXPLL*/
// DXIW(PIXCLKCTRL,(DXIR(PIXCLKCTRL)&0x0C)|0x01); /*select the PIXPLL*/
/* program new frequency */
DACW(PIXPLLC, ((p << 16) | (n << 8) | m));
/* program 2nd set N and M scalers if they exist (b31=1 enables them) */
if (si->ps.ext_pll) DACW(PIXPLLC2, 0x80000401);
/* Wait for the PIXPLL frequency to lock until timeout occurs */
//fixme: do NV cards have a LOCK indication bit??
/* while((!(DXIR(PIXPLLSTAT)&0x40)) & (time <= 2000))
{
time++;
snooze(1);
}
if (time > 2000)
LOG(2,("DAC: PIX PLL frequency not locked!\n"));
else
LOG(2,("DAC: PIX PLL frequency locked\n"));
DXIW(PIXCLKCTRL,DXIR(PIXCLKCTRL)&0x0B); //enable the PIXPLL
*/
//for now:
/* Give the PIXPLL frequency some time to lock... */
snooze(1000);
LOG(2,("DAC: PIX PLL frequency should be locked now...\n"));
return B_OK;
}
/* find nearest valid pix pll */
status_t eng_dac_pix_pll_find
(display_mode target,float * calc_pclk,uint8 * m_result,uint8 * n_result,uint8 * p_result, uint8 test)
{
switch (si->ps.card_type) {
default: return nv4_nv10_nv20_dac_pix_pll_find(target, calc_pclk, m_result, n_result, p_result, test);
}
return B_ERROR;
}
/* find nearest valid pixel PLL setting */
static status_t nv4_nv10_nv20_dac_pix_pll_find(
display_mode target,float * calc_pclk,uint8 * m_result,uint8 * n_result,uint8 * p_result, uint8 test)
{
int m = 0, n = 0, p = 0/*, m_max*/;
float error, error_best = 999999999;
int best[3];
float f_vco, max_pclk;
float req_pclk = target.timing.pixel_clock/1000.0;
/* determine the max. reference-frequency postscaler setting for the
* current card (see G100, G200 and G400 specs). */
/* switch(si->ps.card_type)
{
case G100:
LOG(4,("DAC: G100 restrictions apply\n"));
m_max = 7;
break;
case G200:
LOG(4,("DAC: G200 restrictions apply\n"));
m_max = 7;
break;
default:
LOG(4,("DAC: G400/G400MAX restrictions apply\n"));
m_max = 32;
break;
}
*/
LOG(4,("DAC: NV4/NV10/NV20 restrictions apply\n"));
/* determine the max. pixelclock for the current videomode */
switch (target.space)
{
case B_CMAP8:
max_pclk = si->ps.max_dac1_clock_8;
break;
case B_RGB15_LITTLE:
case B_RGB16_LITTLE:
max_pclk = si->ps.max_dac1_clock_16;
break;
case B_RGB24_LITTLE:
max_pclk = si->ps.max_dac1_clock_24;
break;
case B_RGB32_LITTLE:
max_pclk = si->ps.max_dac1_clock_32;
break;
default:
/* use fail-safe value */
max_pclk = si->ps.max_dac1_clock_32;
break;
}
/* if some dualhead mode is active, an extra restriction might apply */
if ((target.flags & DUALHEAD_BITS) && (target.space == B_RGB32_LITTLE))
max_pclk = si->ps.max_dac1_clock_32dh;
/* Make sure the requested pixelclock is within the PLL's operational limits */
/* lower limit is min_pixel_vco divided by highest postscaler-factor */
if (req_pclk < (si->ps.min_pixel_vco / 16.0))
{
LOG(4,("DAC: clamping pixclock: requested %fMHz, set to %fMHz\n",
req_pclk, (float)(si->ps.min_pixel_vco / 16.0)));
req_pclk = (si->ps.min_pixel_vco / 16.0);
}
/* upper limit is given by pins in combination with current active mode */
if (req_pclk > max_pclk)
{
LOG(4,("DAC: clamping pixclock: requested %fMHz, set to %fMHz\n",
req_pclk, (float)max_pclk));
req_pclk = max_pclk;
}
/* iterate through all valid PLL postscaler settings */
for (p=0x01; p < 0x20; p = p<<1)
{
/* calculate the needed VCO frequency for this postscaler setting */
f_vco = req_pclk * p;
/* check if this is within range of the VCO specs */
if ((f_vco >= si->ps.min_pixel_vco) && (f_vco <= si->ps.max_pixel_vco))
{
/* FX5600 and FX5700 tweak for 2nd set N and M scalers */
if (si->ps.ext_pll) f_vco /= 4;
/* iterate trough all valid reference-frequency postscaler settings */
for (m = 7; m <= 14; m++)
{
/* check if phase-discriminator will be within operational limits */
//fixme: PLL calcs will be resetup/splitup/updated...
if (si->ps.card_type == NV36)
{
if (((si->ps.f_ref / m) < 3.2) || ((si->ps.f_ref / m) > 6.4)) continue;
}
else
{
if (((si->ps.f_ref / m) < 1.0) || ((si->ps.f_ref / m) > 2.0)) continue;
}
/* calculate VCO postscaler setting for current setup.. */
n = (int)(((f_vco * m) / si->ps.f_ref) + 0.5);
/* ..and check for validity */
if ((n < 1) || (n > 255)) continue;
/* find error in frequency this setting gives */
if (si->ps.ext_pll)
{
/* FX5600 and FX5700 tweak for 2nd set N and M scalers */
error = fabs((req_pclk / 4) - (((si->ps.f_ref / m) * n) / p));
}
else
error = fabs(req_pclk - (((si->ps.f_ref / m) * n) / p));
/* note the setting if best yet */
if (error < error_best)
{
error_best = error;
best[0]=m;
best[1]=n;
best[2]=p;
}
}
}
}
/* setup the scalers programming values for found optimum setting */
m = best[0];
n = best[1];
p = best[2];
/* log the VCO frequency found */
f_vco = ((si->ps.f_ref / m) * n);
/* FX5600 and FX5700 tweak for 2nd set N and M scalers */
if (si->ps.ext_pll) f_vco *= 4;
LOG(2,("DAC: pix VCO frequency found %fMhz\n", f_vco));
/* return the results */
*calc_pclk = (f_vco / p);
*m_result = m;
*n_result = n;
switch(p)
{
case 1:
p = 0x00;
break;
case 2:
p = 0x01;
break;
case 4:
p = 0x02;
break;
case 8:
p = 0x03;
break;
case 16:
p = 0x04;
break;
}
*p_result = p;
/* display the found pixelclock values */
LOG(2,("DAC: pix PLL check: requested %fMHz got %fMHz, mnp 0x%02x 0x%02x 0x%02x\n",
req_pclk, *calc_pclk, *m_result, *n_result, *p_result));
return B_OK;
}
/* find nearest valid system PLL setting */
status_t eng_dac_sys_pll_find(
float req_sclk, float* calc_sclk, uint8* m_result, uint8* n_result, uint8* p_result, uint8 test)
{
int m = 0, n = 0, p = 0, m_max, p_max;
float error, error_best = 999999999;
int best[3];
float f_vco, discr_low, discr_high;
/* determine the max. reference-frequency postscaler setting for the
* current requested clock */
switch (si->ps.card_arch)
{
case NV04A:
LOG(4,("DAC: NV04 restrictions apply\n"));
/* set phase-discriminator frequency range (Mhz) (verified) */
discr_low = 1.0;
discr_high = 2.0;
/* set max. useable reference frequency postscaler divider factor */
m_max = 14;
/* set max. useable VCO output postscaler divider factor */
p_max = 16;
break;
default:
switch (si->ps.card_type)
{
case NV28:
//fixme: how about some other cards???
LOG(4,("DAC: NV28 restrictions apply\n"));
/* set max. useable reference frequency postscaler divider factor;
* apparantly we would get distortions on high PLL output frequencies if
* we use the phase-discriminator at low frequencies */
if (req_sclk > 340.0) m_max = 2; /* Fpll > 340Mhz */
else if (req_sclk > 200.0) m_max = 4; /* 200Mhz < Fpll <= 340Mhz */
else if (req_sclk > 150.0) m_max = 6; /* 150Mhz < Fpll <= 200Mhz */
else m_max = 14; /* Fpll < 150Mhz */
/* set max. useable VCO output postscaler divider factor */
p_max = 32;
/* set phase-discriminator frequency range (Mhz) (verified) */
discr_low = 1.0;
discr_high = 27.0;
break;
default:
LOG(4,("DAC: NV10/NV20/NV30 restrictions apply\n"));
/* set max. useable reference frequency postscaler divider factor;
* apparantly we would get distortions on high PLL output frequencies if
* we use the phase-discriminator at low frequencies */
if (req_sclk > 340.0) m_max = 2; /* Fpll > 340Mhz */
else if (req_sclk > 250.0) m_max = 6; /* 250Mhz < Fpll <= 340Mhz */
else m_max = 14; /* Fpll < 250Mhz */
/* set max. useable VCO output postscaler divider factor */
p_max = 16;
/* set phase-discriminator frequency range (Mhz) (verified) */
if (si->ps.card_type == NV36) discr_low = 3.2;
else discr_low = 1.0;
/* (high discriminator spec is failsafe) */
discr_high = 14.0;
break;
}
break;
}
LOG(4,("DAC: PLL reference frequency postscaler divider range is 1 - %d\n", m_max));
LOG(4,("DAC: PLL VCO output postscaler divider range is 1 - %d\n", p_max));
LOG(4,("DAC: PLL discriminator input frequency range is %2.2fMhz - %2.2fMhz\n",
discr_low, discr_high));
/* Make sure the requested clock is within the PLL's operational limits */
/* lower limit is min_system_vco divided by highest postscaler-factor */
if (req_sclk < (si->ps.min_system_vco / ((float)p_max)))
{
LOG(4,("DAC: clamping sysclock: requested %fMHz, set to %fMHz\n",
req_sclk, (si->ps.min_system_vco / ((float)p_max))));
req_sclk = (si->ps.min_system_vco / ((float)p_max));
}
/* upper limit is given by pins */
if (req_sclk > si->ps.max_system_vco)
{
LOG(4,("DAC: clamping sysclock: requested %fMHz, set to %fMHz\n",
req_sclk, (float)si->ps.max_system_vco));
req_sclk = si->ps.max_system_vco;
}
/* iterate through all valid PLL postscaler settings */
for (p=0x01; p <= p_max; p = p<<1)
{
/* calculate the needed VCO frequency for this postscaler setting */
f_vco = req_sclk * p;
/* check if this is within range of the VCO specs */
if ((f_vco >= si->ps.min_system_vco) && (f_vco <= si->ps.max_system_vco))
{
/* FX5600 and FX5700 tweak for 2nd set N and M scalers */
if (si->ps.ext_pll) f_vco /= 4;
/* iterate trough all valid reference-frequency postscaler settings */
for (m = 1; m <= m_max; m++)
{
/* check if phase-discriminator will be within operational limits */
if (((si->ps.f_ref / m) < discr_low) || ((si->ps.f_ref / m) > discr_high))
continue;
/* calculate VCO postscaler setting for current setup.. */
n = (int)(((f_vco * m) / si->ps.f_ref) + 0.5);
/* ..and check for validity */
if ((n < 1) || (n > 255)) continue;
/* find error in frequency this setting gives */
if (si->ps.ext_pll)
{
/* FX5600 and FX5700 tweak for 2nd set N and M scalers */
error = fabs((req_sclk / 4) - (((si->ps.f_ref / m) * n) / p));
}
else
error = fabs(req_sclk - (((si->ps.f_ref / m) * n) / p));
/* note the setting if best yet */
if (error < error_best)
{
error_best = error;
best[0]=m;
best[1]=n;
best[2]=p;
}
}
}
}
/* setup the scalers programming values for found optimum setting */
m = best[0];
n = best[1];
p = best[2];
/* log the VCO frequency found */
f_vco = ((si->ps.f_ref / m) * n);
/* FX5600 and FX5700 tweak for 2nd set N and M scalers */
if (si->ps.ext_pll) f_vco *= 4;
LOG(2,("DAC: sys VCO frequency found %fMhz\n", f_vco));
/* return the results */
*calc_sclk = (f_vco / p);
*m_result = m;
*n_result = n;
switch(p)
{
case 1:
p = 0x00;
break;
case 2:
p = 0x01;
break;
case 4:
p = 0x02;
break;
case 8:
p = 0x03;
break;
case 16:
p = 0x04;
break;
case 32:
p = 0x05;
break;
}
*p_result = p;
/* display the found pixelclock values */
LOG(2,("DAC: sys PLL check: requested %fMHz got %fMHz, mnp 0x%02x 0x%02x 0x%02x\n",
req_sclk, *calc_sclk, *m_result, *n_result, *p_result));
return B_OK;
}