rPi: MMU Work
* Use U-Boot mmu code as base * This will be factored out someday into common arch mmu code when we can read Flattened Device Trees * Move mmu_init after serial_init. Temporary change as we will want serial_init to use memory mapped addresses... for debugging.
This commit is contained in:
parent
6d4270e3ce
commit
77591e9657
@ -40,7 +40,6 @@
|
||||
#define BCM2708_SDRAM_BASE 0x00000000
|
||||
#define BCM2708_PERI_BASE 0x20000000
|
||||
|
||||
#define SDRAM_BASE BCM2708_SDRAM_BASE
|
||||
#define ST_BASE (BCM2708_PERI_BASE + 0x3000)
|
||||
// System Timer, sec 12.0, page 172
|
||||
#define DMA_BASE (BCM2708_PERI_BASE + 0x7000)
|
||||
@ -80,8 +79,12 @@
|
||||
#define VECT_BASE 0xffff0000
|
||||
#define VECT_SIZE SIZE_4K
|
||||
|
||||
#define DEVICE_BASE ARM_CTRL_BASE
|
||||
#define DEVICE_SIZE SIZE_4K
|
||||
#define PERIPHERAL_BASE BCM2708_PERI_BASE
|
||||
#define PERIPHERAL_SIZE 0x1000000
|
||||
|
||||
#define SDRAM_BASE BCM2708_SDRAM_BASE
|
||||
#define SDRAM_SIZE 0x4000000
|
||||
// 64Mb
|
||||
|
||||
|
||||
/* UART */
|
||||
|
@ -1,6 +1,8 @@
|
||||
/*
|
||||
* Copyright 2009 Jonas Sundström, jonas@kirilla.com
|
||||
* All rights reserved. Distributed under the terms of the MIT License.
|
||||
* Copyright 2004-2008, Axel Dörfler, axeld@pinc-software.de.
|
||||
* Based on code written by Travis Geiselbrecht for NewOS.
|
||||
*
|
||||
* Distributed under the terms of the MIT License.
|
||||
*/
|
||||
|
||||
|
||||
@ -12,50 +14,626 @@
|
||||
#include <boot/stage2.h>
|
||||
#include <arch/cpu.h>
|
||||
#include <arch_kernel.h>
|
||||
#ifdef __ARM__
|
||||
#include <arm_mmu.h>
|
||||
#endif
|
||||
#include <kernel.h>
|
||||
|
||||
#include <board_config.h>
|
||||
|
||||
#include <OS.h>
|
||||
|
||||
#include <string.h>
|
||||
|
||||
|
||||
#define TRACE_MMU
|
||||
#ifdef TRACE_MMU
|
||||
# define TRACE(x) dprintf x
|
||||
#else
|
||||
# define TRACE(x) ;
|
||||
#endif
|
||||
|
||||
#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
|
||||
#define TRACE_MEMORY_MAP
|
||||
// Define this to print the memory map to serial debug,
|
||||
// You also need to define ENABLE_SERIAL in serial.cpp
|
||||
// for output to work.
|
||||
|
||||
extern uint8 __stack_start;
|
||||
extern uint8 __stack_end;
|
||||
|
||||
|
||||
#ifdef __ARM__
|
||||
|
||||
|
||||
/*
|
||||
TODO:
|
||||
-recycle bit!
|
||||
*/
|
||||
|
||||
/*! The (physical) memory layout of the boot loader is currently as follows:
|
||||
0x00000000 u-boot (run from NOR flash)
|
||||
0xa0000000 u-boot stuff like kernel arguments afaik
|
||||
0xa0100000 - 0xa0ffffff boot.tgz (up to 15MB probably never needed so big...)
|
||||
0xa1000000 - 0xa1ffffff pagetables
|
||||
0xa2000000 - ? code (up to 1MB)
|
||||
0xa2100000 boot loader heap / free physical memory
|
||||
|
||||
The kernel is mapped at KERNEL_BASE, all other stuff mapped by the
|
||||
loader (kernel args, modules, driver settings, ...) comes after
|
||||
0x80020000 which means that there is currently only 2 MB reserved for
|
||||
the kernel itself (see kMaxKernelSize).
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
*defines a block in memory
|
||||
*/
|
||||
struct memblock {
|
||||
const char name[16];
|
||||
// the name will be used for debugging etc later perhaps...
|
||||
addr_t start;
|
||||
// start of the block
|
||||
addr_t end;
|
||||
// end of the block
|
||||
uint32 flags;
|
||||
// which flags should be applied (device/normal etc..)
|
||||
};
|
||||
|
||||
|
||||
static struct memblock LOADER_MEMORYMAP[] = {
|
||||
{
|
||||
"devices",
|
||||
PERIPHERAL_BASE,
|
||||
PERIPHERAL_BASE + PERIPHERAL_SIZE - 1,
|
||||
MMU_L2_FLAG_B,
|
||||
},
|
||||
{
|
||||
"RAM_loader", // 1MB loader
|
||||
SDRAM_BASE + 0,
|
||||
SDRAM_BASE + 0x0fffff,
|
||||
MMU_L2_FLAG_C,
|
||||
},
|
||||
{
|
||||
"RAM_pt", // Page Table 1MB
|
||||
SDRAM_BASE + 0x100000,
|
||||
SDRAM_BASE + 0x1FFFFF,
|
||||
MMU_L2_FLAG_C,
|
||||
},
|
||||
{
|
||||
"RAM_free", // 16MB free RAM (more but we don't map it automaticaly)
|
||||
SDRAM_BASE + 0x0200000,
|
||||
SDRAM_BASE + 0x11FFFFF,
|
||||
MMU_L2_FLAG_C,
|
||||
},
|
||||
#if 0
|
||||
{
|
||||
"RAM_stack", // stack
|
||||
SDRAM_BASE + 0x1200000,
|
||||
SDRAM_BASE + 0x2000000,
|
||||
MMU_L2_FLAG_C,
|
||||
},
|
||||
{
|
||||
"RAM_initrd", // stack
|
||||
SDRAM_BASE + 0x2000000,
|
||||
SDRAM_BASE + 0x2500000,
|
||||
MMU_L2_FLAG_C,
|
||||
},
|
||||
|
||||
#ifdef FB_BASE
|
||||
{
|
||||
"framebuffer", // 2MB framebuffer ram
|
||||
FB_BASE,
|
||||
FB_BASE + FB_SIZE - 1,
|
||||
MMU_L2_FLAG_AP_RW|MMU_L2_FLAG_C,
|
||||
},
|
||||
#endif
|
||||
#endif
|
||||
};
|
||||
|
||||
|
||||
//static const uint32 kDefaultPageTableFlags = MMU_FLAG_READWRITE;
|
||||
// not cached not buffered, R/W
|
||||
static const size_t kMaxKernelSize = 0x200000; // 2 MB for the kernel
|
||||
|
||||
static addr_t sNextPhysicalAddress = 0; //will be set by mmu_init
|
||||
static addr_t sNextVirtualAddress = KERNEL_BASE + kMaxKernelSize;
|
||||
static addr_t sMaxVirtualAddress = KERNEL_BASE + kMaxKernelSize;
|
||||
|
||||
static addr_t sNextPageTableAddress = 0;
|
||||
//the page directory is in front of the pagetable
|
||||
static uint32 kPageTableRegionEnd = 0;
|
||||
|
||||
// working page directory and page table
|
||||
static uint32 *sPageDirectory = 0 ;
|
||||
//page directory has to be on a multiple of 16MB for
|
||||
//some arm processors
|
||||
|
||||
|
||||
static addr_t
|
||||
get_next_virtual_address(size_t size)
|
||||
{
|
||||
addr_t address = sNextVirtualAddress;
|
||||
sNextVirtualAddress += size;
|
||||
|
||||
return address;
|
||||
}
|
||||
|
||||
|
||||
static addr_t
|
||||
get_next_virtual_address_alligned (size_t size, uint32 mask)
|
||||
{
|
||||
addr_t address = (sNextVirtualAddress) & mask;
|
||||
sNextVirtualAddress = address + size;
|
||||
|
||||
return address;
|
||||
}
|
||||
|
||||
|
||||
static addr_t
|
||||
get_next_physical_address(size_t size)
|
||||
{
|
||||
addr_t address = sNextPhysicalAddress;
|
||||
sNextPhysicalAddress += size;
|
||||
|
||||
return address;
|
||||
}
|
||||
|
||||
|
||||
static addr_t
|
||||
get_next_physical_address_alligned(size_t size, uint32 mask)
|
||||
{
|
||||
addr_t address = sNextPhysicalAddress & mask;
|
||||
sNextPhysicalAddress = address + size;
|
||||
|
||||
return address;
|
||||
}
|
||||
|
||||
|
||||
static addr_t
|
||||
get_next_virtual_page(size_t pagesize)
|
||||
{
|
||||
return get_next_virtual_address_alligned(pagesize, 0xffffffc0);
|
||||
}
|
||||
|
||||
|
||||
static addr_t
|
||||
get_next_physical_page(size_t pagesize)
|
||||
{
|
||||
return get_next_physical_address_alligned(pagesize, 0xffffffc0);
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
mmu_set_TTBR(uint32 ttb)
|
||||
{
|
||||
ttb &= 0xffffc000;
|
||||
asm volatile("MCR p15, 0, %[adr], c2, c0, 0"::[adr] "r" (ttb));
|
||||
// set translation table base
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
mmu_flush_TLB()
|
||||
{
|
||||
uint32 bla = 0;
|
||||
asm volatile("MCR p15, 0, %[c8format], c8, c7, 0"::[c8format] "r" (bla));
|
||||
// flush TLB
|
||||
}
|
||||
|
||||
|
||||
uint32
|
||||
mmu_read_C1()
|
||||
{
|
||||
uint32 bla = 0;
|
||||
asm volatile("MRC p15, 0, %[c1out], c1, c0, 0":[c1out] "=r" (bla));
|
||||
return bla;
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
mmu_write_C1(uint32 value)
|
||||
{
|
||||
asm volatile("MCR p15, 0, %[c1in], c1, c0, 0"::[c1in] "r" (value));
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
mmu_write_DACR(uint32 value)
|
||||
{
|
||||
asm volatile("MCR p15, 0, %[c1in], c3, c0, 0"::[c1in] "r" (value));
|
||||
}
|
||||
|
||||
|
||||
static uint32 *
|
||||
get_next_page_table(uint32 type)
|
||||
{
|
||||
TRACE(("get_next_page_table, sNextPageTableAddress %p, kPageTableRegionEnd "
|
||||
"%p, type 0x%lx\n", sNextPageTableAddress, kPageTableRegionEnd, type));
|
||||
size_t size = 0;
|
||||
switch(type) {
|
||||
case MMU_L1_TYPE_COARSEPAGETABLE:
|
||||
size = 1024;
|
||||
break;
|
||||
case MMU_L1_TYPE_FINEEPAGETABLE:
|
||||
size = 4096;
|
||||
break;
|
||||
}
|
||||
|
||||
addr_t address = sNextPageTableAddress;
|
||||
if (address >= kPageTableRegionEnd) {
|
||||
TRACE(("outside of pagetableregion!\n"));
|
||||
return (uint32 *)get_next_physical_address_alligned(size, 0xffffffc0);
|
||||
}
|
||||
|
||||
sNextPageTableAddress += size;
|
||||
return (uint32 *)address;
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
init_page_directory()
|
||||
{
|
||||
TRACE(("init_page_directory\n"));
|
||||
uint32 smalltype;
|
||||
|
||||
// see if subpages disabled
|
||||
if (mmu_read_C1() & (1<<23))
|
||||
smalltype = MMU_L2_TYPE_SMALLNEW;
|
||||
else
|
||||
smalltype = MMU_L2_TYPE_SMALLEXT;
|
||||
|
||||
gKernelArgs.arch_args.phys_pgdir = (uint32)sPageDirectory;
|
||||
|
||||
// clear out the pgdir
|
||||
for (uint32 i = 0; i < 4096; i++)
|
||||
sPageDirectory[i] = 0;
|
||||
|
||||
uint32 *pageTable = NULL;
|
||||
for (uint32 i = 0; i < ARRAY_SIZE(LOADER_MEMORYMAP);i++) {
|
||||
|
||||
pageTable = get_next_page_table(MMU_L1_TYPE_COARSEPAGETABLE);
|
||||
TRACE(("BLOCK: %s START: %lx END %lx\n", LOADER_MEMORYMAP[i].name,
|
||||
LOADER_MEMORYMAP[i].start, LOADER_MEMORYMAP[i].end));
|
||||
addr_t pos = LOADER_MEMORYMAP[i].start;
|
||||
|
||||
int c = 0;
|
||||
while (pos < LOADER_MEMORYMAP[i].end) {
|
||||
pageTable[c] = pos | LOADER_MEMORYMAP[i].flags | smalltype;
|
||||
|
||||
c++;
|
||||
if (c > 255) { // we filled a pagetable => we need a new one
|
||||
// there is 1MB per pagetable so:
|
||||
sPageDirectory[VADDR_TO_PDENT(pos)]
|
||||
= (uint32)pageTable | MMU_L1_TYPE_COARSEPAGETABLE;
|
||||
pageTable = get_next_page_table(MMU_L1_TYPE_COARSEPAGETABLE);
|
||||
c = 0;
|
||||
}
|
||||
|
||||
pos += B_PAGE_SIZE;
|
||||
}
|
||||
|
||||
if (c > 0) {
|
||||
sPageDirectory[VADDR_TO_PDENT(pos)]
|
||||
= (uint32)pageTable | MMU_L1_TYPE_COARSEPAGETABLE;
|
||||
}
|
||||
}
|
||||
|
||||
mmu_flush_TLB();
|
||||
|
||||
/* set up the translation table base */
|
||||
mmu_set_TTBR((uint32)sPageDirectory);
|
||||
|
||||
mmu_flush_TLB();
|
||||
|
||||
/* set up the domain access register */
|
||||
mmu_write_DACR(0xFFFFFFFF);
|
||||
|
||||
/* turn on the mmu */
|
||||
mmu_write_C1(mmu_read_C1() | 0x1);
|
||||
}
|
||||
|
||||
|
||||
/*! Adds a new page table for the specified base address */
|
||||
static void
|
||||
add_page_table(addr_t base)
|
||||
{
|
||||
TRACE(("add_page_table(base = %p)\n", (void *)base));
|
||||
|
||||
// Get new page table and clear it out
|
||||
uint32 *pageTable = get_next_page_table(MMU_L1_TYPE_COARSEPAGETABLE);
|
||||
/*
|
||||
if (pageTable > (uint32 *)(8 * 1024 * 1024)) {
|
||||
panic("tried to add page table beyond the indentity mapped 8 MB "
|
||||
"region\n");
|
||||
}
|
||||
*/
|
||||
for (int32 i = 0; i < 256; i++)
|
||||
pageTable[i] = 0;
|
||||
|
||||
// put the new page table into the page directory
|
||||
sPageDirectory[VADDR_TO_PDENT(base)]
|
||||
= (uint32)pageTable | MMU_L1_TYPE_COARSEPAGETABLE;
|
||||
}
|
||||
|
||||
|
||||
/*! Creates an entry to map the specified virtualAddress to the given
|
||||
physicalAddress.
|
||||
If the mapping goes beyond the current page table, it will allocate
|
||||
a new one. If it cannot map the requested page, it panics.
|
||||
*/
|
||||
static void
|
||||
map_page(addr_t virtualAddress, addr_t physicalAddress, uint32 flags)
|
||||
{
|
||||
TRACE(("map_page: vaddr 0x%lx, paddr 0x%lx\n", virtualAddress,
|
||||
physicalAddress));
|
||||
|
||||
if (virtualAddress < KERNEL_BASE) {
|
||||
panic("map_page: asked to map invalid page %p!\n",
|
||||
(void *)virtualAddress);
|
||||
}
|
||||
|
||||
if (virtualAddress >= sMaxVirtualAddress) {
|
||||
// we need to add a new page table
|
||||
add_page_table(sMaxVirtualAddress);
|
||||
sMaxVirtualAddress += B_PAGE_SIZE * 256;
|
||||
|
||||
if (virtualAddress >= sMaxVirtualAddress) {
|
||||
panic("map_page: asked to map a page to %p\n",
|
||||
(void *)virtualAddress);
|
||||
}
|
||||
}
|
||||
|
||||
physicalAddress &= ~(B_PAGE_SIZE - 1);
|
||||
|
||||
// map the page to the correct page table
|
||||
uint32 *pageTable
|
||||
= (uint32 *)(sPageDirectory[VADDR_TO_PDENT(virtualAddress)]
|
||||
& ARM_PDE_ADDRESS_MASK);
|
||||
|
||||
TRACE(("map_page: pageTable 0x%lx\n",
|
||||
sPageDirectory[VADDR_TO_PDENT(virtualAddress)] & ARM_PDE_ADDRESS_MASK));
|
||||
|
||||
if (pageTable == NULL) {
|
||||
add_page_table(virtualAddress);
|
||||
pageTable = (uint32 *)(sPageDirectory[VADDR_TO_PDENT(virtualAddress)]
|
||||
& ARM_PDE_ADDRESS_MASK);
|
||||
}
|
||||
|
||||
uint32 tableEntry = VADDR_TO_PTENT(virtualAddress);
|
||||
|
||||
TRACE(("map_page: inserting pageTable %p, tableEntry %ld, physicalAddress "
|
||||
"%p\n", pageTable, tableEntry, physicalAddress));
|
||||
|
||||
pageTable[tableEntry] = physicalAddress | flags;
|
||||
|
||||
mmu_flush_TLB();
|
||||
|
||||
TRACE(("map_page: done\n"));
|
||||
}
|
||||
|
||||
|
||||
// #pragma mark -
|
||||
|
||||
|
||||
extern "C" addr_t
|
||||
mmu_map_physical_memory(addr_t physicalAddress, size_t size, uint32 flags)
|
||||
{
|
||||
#warning IMPLEMENT mmu_map_physical_memory
|
||||
return 0;
|
||||
addr_t address = sNextVirtualAddress;
|
||||
addr_t pageOffset = physicalAddress & (B_PAGE_SIZE - 1);
|
||||
|
||||
physicalAddress -= pageOffset;
|
||||
|
||||
for (addr_t offset = 0; offset < size; offset += B_PAGE_SIZE) {
|
||||
map_page(get_next_virtual_page(B_PAGE_SIZE), physicalAddress + offset,
|
||||
flags);
|
||||
}
|
||||
|
||||
return address + pageOffset;
|
||||
}
|
||||
|
||||
|
||||
extern "C" void*
|
||||
mmu_allocate(void* virtualAddress, size_t size)
|
||||
static void
|
||||
unmap_page(addr_t virtualAddress)
|
||||
{
|
||||
#warning IMPLEMENT mmu_allocate
|
||||
return 0;
|
||||
TRACE(("unmap_page(virtualAddress = %p)\n", (void *)virtualAddress));
|
||||
|
||||
if (virtualAddress < KERNEL_BASE) {
|
||||
panic("unmap_page: asked to unmap invalid page %p!\n",
|
||||
(void *)virtualAddress);
|
||||
}
|
||||
|
||||
// unmap the page from the correct page table
|
||||
uint32 *pageTable
|
||||
= (uint32 *)(sPageDirectory[VADDR_TO_PDENT(virtualAddress)]
|
||||
& ARM_PDE_ADDRESS_MASK);
|
||||
|
||||
pageTable[VADDR_TO_PTENT(virtualAddress)] = 0;
|
||||
|
||||
mmu_flush_TLB();
|
||||
}
|
||||
|
||||
|
||||
extern "C" void *
|
||||
mmu_allocate(void *virtualAddress, size_t size)
|
||||
{
|
||||
TRACE(("mmu_allocate: requested vaddr: %p, next free vaddr: 0x%lx, size: "
|
||||
"%ld\n", virtualAddress, sNextVirtualAddress, size));
|
||||
|
||||
size = (size + B_PAGE_SIZE - 1) / B_PAGE_SIZE;
|
||||
// get number of pages to map
|
||||
|
||||
if (virtualAddress != NULL) {
|
||||
// This special path is almost only useful for loading the
|
||||
// kernel into memory; it will only allow you to map the
|
||||
// 'kMaxKernelSize' bytes following the kernel base address.
|
||||
// Also, it won't check for already mapped addresses, so
|
||||
// you better know why you are here :)
|
||||
addr_t address = (addr_t)virtualAddress;
|
||||
|
||||
// is the address within the valid range?
|
||||
if (address < KERNEL_BASE
|
||||
|| address + size >= KERNEL_BASE + kMaxKernelSize) {
|
||||
TRACE(("mmu_allocate in illegal range\n address: %lx"
|
||||
" KERNELBASE: %lx KERNEL_BASE + kMaxKernelSize: %lx"
|
||||
" address + size : %lx \n", (uint32)address, KERNEL_BASE,
|
||||
KERNEL_BASE + kMaxKernelSize, (uint32)(address + size)));
|
||||
return NULL;
|
||||
}
|
||||
for (uint32 i = 0; i < size; i++) {
|
||||
map_page(address, get_next_physical_page(B_PAGE_SIZE),
|
||||
kDefaultPageFlags);
|
||||
address += B_PAGE_SIZE;
|
||||
}
|
||||
|
||||
return virtualAddress;
|
||||
}
|
||||
|
||||
void *address = (void *)sNextVirtualAddress;
|
||||
|
||||
for (uint32 i = 0; i < size; i++) {
|
||||
map_page(get_next_virtual_page(B_PAGE_SIZE),
|
||||
get_next_physical_page(B_PAGE_SIZE), kDefaultPageFlags);
|
||||
}
|
||||
|
||||
return address;
|
||||
}
|
||||
|
||||
|
||||
/*! This will unmap the allocated chunk of memory from the virtual
|
||||
address space. It might not actually free memory (as its implementation
|
||||
is very simple), but it might.
|
||||
*/
|
||||
extern "C" void
|
||||
mmu_free(void* virtualAddress, size_t size)
|
||||
mmu_free(void *virtualAddress, size_t size)
|
||||
{
|
||||
#warning IMPLEMENT mmu_free
|
||||
TRACE(("mmu_free(virtualAddress = %p, size: %ld)\n", virtualAddress, size));
|
||||
|
||||
addr_t address = (addr_t)virtualAddress;
|
||||
size = (size + B_PAGE_SIZE - 1) / B_PAGE_SIZE;
|
||||
// get number of pages to map
|
||||
|
||||
// is the address within the valid range?
|
||||
if (address < KERNEL_BASE
|
||||
|| address + size >= KERNEL_BASE + kMaxKernelSize) {
|
||||
panic("mmu_free: asked to unmap out of range region (%p, size %lx)\n",
|
||||
(void *)address, size);
|
||||
}
|
||||
|
||||
// unmap all pages within the range
|
||||
for (uint32 i = 0; i < size; i++) {
|
||||
unmap_page(address);
|
||||
address += B_PAGE_SIZE;
|
||||
}
|
||||
|
||||
if (address == sNextVirtualAddress) {
|
||||
// we can actually reuse the virtual address space
|
||||
sNextVirtualAddress -= size;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
/*! Sets up the final and kernel accessible GDT and IDT tables.
|
||||
BIOS calls won't work any longer after this function has
|
||||
been called.
|
||||
*/
|
||||
extern "C" void
|
||||
mmu_init_for_kernel(void)
|
||||
{
|
||||
#warning IMPLEMENT mmu_init_for_kernel
|
||||
TRACE(("mmu_init_for_kernel\n"));
|
||||
|
||||
// save the memory we've physically allocated
|
||||
gKernelArgs.physical_allocated_range[0].size
|
||||
= sNextPhysicalAddress - gKernelArgs.physical_allocated_range[0].start;
|
||||
|
||||
// Save the memory we've virtually allocated (for the kernel and other
|
||||
// stuff)
|
||||
gKernelArgs.virtual_allocated_range[0].start = KERNEL_BASE;
|
||||
gKernelArgs.virtual_allocated_range[0].size
|
||||
= sNextVirtualAddress - KERNEL_BASE;
|
||||
gKernelArgs.num_virtual_allocated_ranges = 1;
|
||||
|
||||
#ifdef TRACE_MEMORY_MAP
|
||||
{
|
||||
uint32 i;
|
||||
|
||||
dprintf("phys memory ranges:\n");
|
||||
for (i = 0; i < gKernelArgs.num_physical_memory_ranges; i++) {
|
||||
dprintf(" base 0x%08lx, length 0x%08lx\n",
|
||||
gKernelArgs.physical_memory_range[i].start,
|
||||
gKernelArgs.physical_memory_range[i].size);
|
||||
}
|
||||
|
||||
dprintf("allocated phys memory ranges:\n");
|
||||
for (i = 0; i < gKernelArgs.num_physical_allocated_ranges; i++) {
|
||||
dprintf(" base 0x%08lx, length 0x%08lx\n",
|
||||
gKernelArgs.physical_allocated_range[i].start,
|
||||
gKernelArgs.physical_allocated_range[i].size);
|
||||
}
|
||||
|
||||
dprintf("allocated virt memory ranges:\n");
|
||||
for (i = 0; i < gKernelArgs.num_virtual_allocated_ranges; i++) {
|
||||
dprintf(" base 0x%08lx, length 0x%08lx\n",
|
||||
gKernelArgs.virtual_allocated_range[i].start,
|
||||
gKernelArgs.virtual_allocated_range[i].size);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
extern "C" void
|
||||
mmu_init(void)
|
||||
{
|
||||
#warning IMPLEMENT mmu_init
|
||||
TRACE(("mmu_init\n"));
|
||||
|
||||
mmu_write_C1(mmu_read_C1() & ~((1<<29)|(1<<28)|(1<<0)));
|
||||
// access flag disabled, TEX remap disabled, mmu disabled
|
||||
|
||||
uint32 highestRAMAddress = SDRAM_BASE;
|
||||
|
||||
// calculate lowest RAM adress from MEMORYMAP
|
||||
for (uint32 i = 0; i < ARRAY_SIZE(LOADER_MEMORYMAP); i++) {
|
||||
if (strcmp("RAM_free", LOADER_MEMORYMAP[i].name) == 0)
|
||||
sNextPhysicalAddress = LOADER_MEMORYMAP[i].start;
|
||||
|
||||
if (strcmp("RAM_pt", LOADER_MEMORYMAP[i].name) == 0) {
|
||||
sNextPageTableAddress = LOADER_MEMORYMAP[i].start
|
||||
+ MMU_L1_TABLE_SIZE;
|
||||
kPageTableRegionEnd = LOADER_MEMORYMAP[i].end;
|
||||
sPageDirectory = (uint32 *) LOADER_MEMORYMAP[i].start;
|
||||
}
|
||||
|
||||
if (strncmp("RAM_", LOADER_MEMORYMAP[i].name, 4) == 0) {
|
||||
if (LOADER_MEMORYMAP[i].end > highestRAMAddress)
|
||||
highestRAMAddress = LOADER_MEMORYMAP[i].end;
|
||||
}
|
||||
}
|
||||
|
||||
gKernelArgs.physical_memory_range[0].start = SDRAM_BASE;
|
||||
gKernelArgs.physical_memory_range[0].size = highestRAMAddress - SDRAM_BASE;
|
||||
gKernelArgs.num_physical_memory_ranges = 1;
|
||||
|
||||
gKernelArgs.physical_allocated_range[0].start = SDRAM_BASE;
|
||||
gKernelArgs.physical_allocated_range[0].size = 0;
|
||||
gKernelArgs.num_physical_allocated_ranges = 1;
|
||||
// remember the start of the allocated physical pages
|
||||
|
||||
init_page_directory();
|
||||
|
||||
// map the page directory on the next vpage
|
||||
gKernelArgs.arch_args.vir_pgdir = mmu_map_physical_memory(
|
||||
(addr_t)sPageDirectory, MMU_L1_TABLE_SIZE, kDefaultPageFlags);
|
||||
|
||||
// map in a kernel stack
|
||||
gKernelArgs.cpu_kstack[0].start = (addr_t)mmu_allocate(NULL,
|
||||
KERNEL_STACK_SIZE + KERNEL_STACK_GUARD_PAGES * B_PAGE_SIZE);
|
||||
gKernelArgs.cpu_kstack[0].size = KERNEL_STACK_SIZE
|
||||
+ KERNEL_STACK_GUARD_PAGES * B_PAGE_SIZE;
|
||||
|
||||
TRACE(("kernel stack at 0x%lx to 0x%lx\n", gKernelArgs.cpu_kstack[0].start,
|
||||
gKernelArgs.cpu_kstack[0].start + gKernelArgs.cpu_kstack[0].size));
|
||||
}
|
||||
|
||||
|
||||
@ -63,32 +641,43 @@ mmu_init(void)
|
||||
|
||||
|
||||
extern "C" status_t
|
||||
platform_allocate_region(void** _address, size_t size, uint8 protection,
|
||||
platform_allocate_region(void **_address, size_t size, uint8 protection,
|
||||
bool /*exactAddress*/)
|
||||
{
|
||||
#warning IMPLEMENT platform_allocate_region
|
||||
return B_ERROR;
|
||||
void *address = mmu_allocate(*_address, size);
|
||||
if (address == NULL)
|
||||
return B_NO_MEMORY;
|
||||
|
||||
*_address = address;
|
||||
return B_OK;
|
||||
}
|
||||
|
||||
|
||||
extern "C" status_t
|
||||
platform_free_region(void* address, size_t size)
|
||||
platform_free_region(void *address, size_t size)
|
||||
{
|
||||
#warning IMPLEMENT platform_free_region
|
||||
return B_ERROR;
|
||||
mmu_free(address, size);
|
||||
return B_OK;
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
platform_release_heap(struct stage2_args* args, void* base)
|
||||
platform_release_heap(struct stage2_args *args, void *base)
|
||||
{
|
||||
#warning IMPLEMENT platform_release_heap
|
||||
// It will be freed automatically, since it is in the
|
||||
// identity mapped region, and not stored in the kernel's
|
||||
// page tables.
|
||||
}
|
||||
|
||||
|
||||
status_t
|
||||
platform_init_heap(struct stage2_args* args, void** _base, void** _top)
|
||||
platform_init_heap(struct stage2_args *args, void **_base, void **_top)
|
||||
{
|
||||
#warning IMPLEMENT platform_init_heap
|
||||
return B_ERROR;
|
||||
void *heap = (void *)get_next_physical_address(args->heap_size);
|
||||
if (heap == NULL)
|
||||
return B_NO_MEMORY;
|
||||
|
||||
*_base = heap;
|
||||
*_top = (void *)((int8 *)heap + args->heap_size);
|
||||
return B_OK;
|
||||
}
|
||||
|
@ -1,29 +1,33 @@
|
||||
/*
|
||||
* Copyright 2009 Jonas Sundström, jonas@kirilla.com
|
||||
* Copyright 2004-2005, Axel Dörfler, axeld@pinc-software.de.
|
||||
* All rights reserved. Distributed under the terms of the MIT License.
|
||||
*/
|
||||
#ifndef _SYSTEM_BOOT_PLATFORM_PI_MMU_H
|
||||
#define _SYSTEM_BOOT_PLATFORM_PI_MMU_H
|
||||
#ifndef MMU_H
|
||||
#define MMU_H
|
||||
|
||||
|
||||
#include <SupportDefs.h>
|
||||
|
||||
|
||||
// For use with mmu_map_physical_memory()
|
||||
static const uint32 kDefaultPageFlags = 0x3;
|
||||
// present, R/W
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
extern void mmu_init(void);
|
||||
extern void mmu_init_for_kernel(void);
|
||||
|
||||
extern addr_t mmu_map_physical_memory(addr_t physicalAddress, size_t size,
|
||||
uint32 flags);
|
||||
|
||||
extern void* mmu_allocate(void* virtualAddress, size_t size);
|
||||
extern void mmu_free(void* virtualAddress, size_t size);
|
||||
extern addr_t mmu_map_physical_memory(addr_t physicalAddress,
|
||||
size_t size, uint32 flags);
|
||||
extern void *mmu_allocate(void *virtualAddress, size_t size);
|
||||
extern void mmu_free(void *virtualAddress, size_t size);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* _SYSTEM_BOOT_PLATFORM_PI_MMU_H */
|
||||
|
||||
#endif /* MMU_H */
|
||||
|
@ -114,10 +114,16 @@ pi_start(void)
|
||||
// Flick on "OK" led
|
||||
gpio_write(GPIO_BASE, 16, 0);
|
||||
|
||||
mmu_init();
|
||||
serial_init();
|
||||
console_init();
|
||||
|
||||
/*
|
||||
* TODO: Move befpre gpio_init
|
||||
* Once memory mapping is working, uart + gpio should
|
||||
* use mapped peripheral addresses
|
||||
*/
|
||||
mmu_init();
|
||||
|
||||
args.heap_size = HEAP_SIZE;
|
||||
args.arguments = NULL;
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user