Implemented X86PagingMethodPAE::Init() and all of its direct dependencies:

* The 32 bit paging structures inherited from the boot loader are translated
  to PAE structures and PAE is enabled.
* Implemented the initialization of the initial PhysicalPageSlotPool, so that
  the physical page mapper can be initialized.


git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@37076 a95241bf-73f2-0310-859d-f6bbb57e9c96
This commit is contained in:
Ingo Weinhold 2010-06-09 21:31:00 +00:00
parent 38bde24102
commit 5d6d1935d6
3 changed files with 581 additions and 23 deletions

View File

@ -9,13 +9,18 @@
#include <stdlib.h>
#include <string.h>
#include <vm/vm.h>
#include <vm/VMAddressSpace.h>
#include "paging/32bit/paging.h"
#include "paging/32bit/X86PagingMethod32Bit.h"
#include "paging/pae/X86PagingStructuresPAE.h"
#include "paging/pae/X86VMTranslationMapPAE.h"
#include "paging/x86_physical_page_mapper.h"
#include "paging/x86_physical_page_mapper_large_memory.h"
//#define TRACE_X86_PAGING_METHOD_PAE
#define TRACE_X86_PAGING_METHOD_PAE
#ifdef TRACE_X86_PAGING_METHOD_PAE
# define TRACE(x...) dprintf(x)
#else
@ -29,7 +34,270 @@
using X86LargePhysicalPageMapper::PhysicalPageSlot;
// #pragma mark - X86PagingMethodPAE::PhysicalPageSlotPool
// #pragma mark - ToPAESwitcher
struct X86PagingMethodPAE::ToPAESwitcher {
ToPAESwitcher(kernel_args* args)
:
fKernelArgs(args)
{
// page hole set up in the boot loader
fPageHole = (page_table_entry*)fKernelArgs->arch_args.page_hole;
// calculate where the page dir would be
fPageHolePageDir = (page_directory_entry*)
(((addr_t)fKernelArgs->arch_args.page_hole)
+ (B_PAGE_SIZE * 1024 - B_PAGE_SIZE));
fPhysicalPageDir = fKernelArgs->arch_args.phys_pgdir;
TRACE("page hole: %p\n", fPageHole);
TRACE("page dir: %p (physical: %#" B_PRIxPHYSADDR ")\n",
fPageHolePageDir, fPhysicalPageDir);
}
void Switch(void*& _pageStructures, size_t& _pageStructuresSize,
pae_page_directory_entry** pageDirs, phys_addr_t* physicalPageDirs,
addr_t& _freeVirtualSlot, pae_page_table_entry*& _freeVirtualSlotPTE)
{
// count the page tables we have to translate
uint32 pageTableCount = 0;
for (uint32 i = FIRST_KERNEL_PGDIR_ENT;
i < FIRST_KERNEL_PGDIR_ENT + NUM_KERNEL_PGDIR_ENTS; i++) {
page_directory_entry entry = fPageHolePageDir[i];
if ((entry & X86_PDE_PRESENT) != 0)
pageTableCount++;
}
TRACE("page tables to translate: %" B_PRIu32 "\n", pageTableCount);
// The pages we need to allocate to do our job:
// + 1 page dir pointer table
// + 4 page dirs
// + 2 * page tables (each has 512 instead of 1024 entries)
// + 1 page for the free virtual slot (no physical page needed)
uint32 pagesNeeded = 1 + 4 + pageTableCount * 2 + 1;
// We need additional PAE page tables for the new pages we're going to
// allocate: Two tables for every 1024 pages to map, i.e. 2 additional
// pages for every 1022 pages we want to allocate. We also need 32 bit
// page tables, but we don't need additional virtual space for them,
// since we can access then via the page hole.
pagesNeeded += ((pagesNeeded + 1021) / 1022) * 2;
TRACE("pages needed: %" B_PRIu32 "\n", pagesNeeded);
// allocate the pages we need
_AllocateNeededPages(pagesNeeded);
// prepare the page directory pointer table
phys_addr_t physicalPDPT;
pae_page_directory_pointer_table_entry* pdpt
= (pae_page_directory_pointer_table_entry*)_NextPage(true,
physicalPDPT);
for (int32 i = 0; i < 4; i++) {
fPageDirs[i] = (pae_page_directory_entry*)_NextPage(true,
fPhysicalPageDirs[i]);
pdpt[i] = X86_PAE_PDPTE_PRESENT
| (fPhysicalPageDirs[i] & X86_PAE_PDPTE_ADDRESS_MASK);
}
// Since we have to enable PAE in two steps -- setting cr3 to the PDPT
// and setting the cr4 PAE bit -- we copy the kernel page dir entries to
// the PDPT page, so after setting cr3, we continue to have working
// kernel mappings. This requires that the PDPTE registers and the
// page dir entries don't interect, obviously.
ASSERT(4 * sizeof(pae_page_directory_pointer_table_entry)
<= FIRST_KERNEL_PGDIR_ENT * sizeof(page_directory_entry));
// translate the page tables
for (uint32 i = FIRST_KERNEL_PGDIR_ENT;
i < FIRST_KERNEL_PGDIR_ENT + NUM_KERNEL_PGDIR_ENTS; i++) {
if ((fPageHolePageDir[i] & X86_PDE_PRESENT) != 0) {
// two PAE page tables per 32 bit page table
_TranslatePageTable((addr_t)i * 1024 * B_PAGE_SIZE);
_TranslatePageTable(((addr_t)i * 1024 + 512) * B_PAGE_SIZE);
// copy the page directory entry to the PDPT page
((page_directory_entry*)pdpt)[i] = fPageHolePageDir[i];
}
}
TRACE("free virtual slot: %#" B_PRIxADDR ", PTE: %p\n",
fFreeVirtualSlot, fFreeVirtualSlotPTE);
// switch to PAE
write_cr3((uint32)physicalPDPT);
x86_write_cr4(x86_read_cr4() | IA32_CR4_PAE | IA32_CR4_GLOBAL_PAGES);
// set return values
_pageStructures = fAllocatedPages;
_pageStructuresSize = (size_t)fUsedPagesCount * B_PAGE_SIZE;
memcpy(pageDirs, fPageDirs, sizeof(fPageDirs));
memcpy(physicalPageDirs, fPhysicalPageDirs, sizeof(fPhysicalPageDirs));
_freeVirtualSlot = fFreeVirtualSlot;
_freeVirtualSlotPTE = fFreeVirtualSlotPTE;
}
private:
void _TranslatePageTable(addr_t virtualBase)
{
page_table_entry* entry = &fPageHole[virtualBase / B_PAGE_SIZE];
// allocate a PAE page table
phys_addr_t physicalTable;
pae_page_table_entry* paeTable = (pae_page_table_entry*)_NextPage(false,
physicalTable);
// enter it into the page dir
pae_page_directory_entry* pageDirEntry = PageDirEntryForAddress(
fPageDirs, virtualBase);
PutPageTableInPageDir(pageDirEntry, physicalTable,
B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA);
pae_page_table_entry* paeEntry = paeTable;
for (uint32 i = 0; i < kPAEPageTableEntryCount;
i++, entry++, paeEntry++) {
if ((*entry & X86_PTE_PRESENT) != 0) {
// Note, we use the fact that the PAE flags are defined to the
// same values.
*paeEntry = *entry & (X86_PTE_PRESENT
| X86_PTE_WRITABLE
| X86_PTE_USER
| X86_PTE_WRITE_THROUGH
| X86_PTE_CACHING_DISABLED
| X86_PTE_GLOBAL
| X86_PTE_ADDRESS_MASK);
} else
*paeEntry = 0;
}
if (fFreeVirtualSlot / kPAEPageTableRange
== virtualBase / kPAEPageTableRange) {
fFreeVirtualSlotPTE = paeTable
+ fFreeVirtualSlot / B_PAGE_SIZE % kPAEPageTableEntryCount;
}
}
void _AllocateNeededPages(uint32 pagesNeeded)
{
size_t virtualSize = ROUNDUP(pagesNeeded, 1024) * B_PAGE_SIZE;
addr_t virtualBase = vm_allocate_early(fKernelArgs, virtualSize, 0, 0,
kPageTableAlignment);
if (virtualBase == 0) {
panic("Failed to reserve virtual address space for the switch to "
"PAE!");
}
TRACE("virtual space: %#" B_PRIxADDR ", size: %#" B_PRIxSIZE "\n",
virtualBase, virtualSize);
// allocate pages for the 32 bit page tables and prepare the tables
uint32 oldPageTableCount = virtualSize / B_PAGE_SIZE / 1024;
for (uint32 i = 0; i < oldPageTableCount; i++) {
// allocate a page
phys_addr_t physicalTable =_AllocatePage32Bit();
TRACE("allocated page table: %#" B_PRIxPHYSADDR "\n", physicalTable);
// put the page into the page dir
page_directory_entry* entry = &fPageHolePageDir[
virtualBase / B_PAGE_SIZE / 1024 + i];
TRACE(" -> mapping in pde %p (%#lx)\n", entry, *entry);
X86PagingMethod32Bit::PutPageTableInPageDir(entry, physicalTable,
B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA);
// clear the table
memset((void*)((addr_t)fPageHole
+ (virtualBase / B_PAGE_SIZE / 1024 + i) * B_PAGE_SIZE),
0, B_PAGE_SIZE);
}
// We don't need a physical page for the free virtual slot.
pagesNeeded--;
// allocate and map the pages we need
for (uint32 i = 0; i < pagesNeeded; i++) {
// allocate a page
phys_addr_t physicalAddress =_AllocatePage32Bit();
//TRACE("allocated page: %#" B_PRIxPHYSADDR "\n", physicalAddress);
// put the page into the page table
page_table_entry* entry = fPageHole + virtualBase / B_PAGE_SIZE + i;
//TRACE(" -> mapping in pte %p (%#lx)\n", entry, *entry);
X86PagingMethod32Bit::PutPageTableEntryInTable(entry,
physicalAddress, B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA, 0,
true);
// Write the page's physical address into the page itself, so we
// don't need to look it up later.
*(phys_addr_t*)(virtualBase + i * B_PAGE_SIZE) = physicalAddress;
}
fAllocatedPages = (uint8*)virtualBase;
fAllocatedPagesCount = pagesNeeded;
fUsedPagesCount = 0;
fFreeVirtualSlot
= (addr_t)(fAllocatedPages + pagesNeeded * B_PAGE_SIZE);
}
phys_addr_t _AllocatePage()
{
phys_addr_t physicalAddress
= (phys_addr_t)vm_allocate_early_physical_page(fKernelArgs)
* B_PAGE_SIZE;
if (physicalAddress == 0)
panic("Failed to allocate page for the switch to PAE!");
return physicalAddress;
}
phys_addr_t _AllocatePage32Bit()
{
phys_addr_t physicalAddress = _AllocatePage();
if (physicalAddress > 0xffffffff) {
panic("Failed to allocate 32 bit addressable page for the switch "
"to PAE!");
return 0;
}
return physicalAddress;
}
void* _NextPage(bool clearPage, phys_addr_t& _physicalAddress)
{
if (fUsedPagesCount >= fAllocatedPagesCount) {
panic("X86PagingMethodPAE::ToPAESwitcher::_NextPage(): no more "
"allocated pages!");
return NULL;
}
void* page = fAllocatedPages + (fUsedPagesCount++) * B_PAGE_SIZE;
_physicalAddress = *((phys_addr_t*)page);
if (clearPage)
memset(page, 0, B_PAGE_SIZE);
return page;
}
private:
kernel_args* fKernelArgs;
page_table_entry* fPageHole;
page_directory_entry* fPageHolePageDir;
phys_addr_t fPhysicalPageDir;
uint8* fAllocatedPages;
uint32 fAllocatedPagesCount;
uint32 fUsedPagesCount;
addr_t fFreeVirtualSlot;
pae_page_table_entry* fFreeVirtualSlotPTE;
pae_page_directory_entry* fPageDirs[4];
phys_addr_t fPhysicalPageDirs[4];
};
// #pragma mark - PhysicalPageSlotPool
struct X86PagingMethodPAE::PhysicalPageSlotPool
@ -37,9 +305,14 @@ struct X86PagingMethodPAE::PhysicalPageSlotPool
public:
virtual ~PhysicalPageSlotPool();
status_t InitInitial(kernel_args* args);
status_t InitInitial(X86PagingMethodPAE* method,
kernel_args* args);
status_t InitInitialPostArea(kernel_args* args);
void Init(area_id dataArea,
pae_page_table_entry* pageTable,
area_id virtualArea, addr_t virtualBase);
virtual status_t AllocatePool(
X86LargePhysicalPageMapper
::PhysicalPageSlotPool*& _pool);
@ -50,6 +323,10 @@ public:
static PhysicalPageSlotPool sInitialPhysicalPagePool;
private:
area_id fDataArea;
area_id fVirtualArea;
addr_t fVirtualBase;
pae_page_table_entry* fPageTable;
};
@ -63,11 +340,39 @@ X86PagingMethodPAE::PhysicalPageSlotPool::~PhysicalPageSlotPool()
status_t
X86PagingMethodPAE::PhysicalPageSlotPool::InitInitial(kernel_args* args)
X86PagingMethodPAE::PhysicalPageSlotPool::InitInitial(
X86PagingMethodPAE* method, kernel_args* args)
{
// TODO: Implement!
panic("unsupported");
return B_UNSUPPORTED;
// allocate a virtual address range for the pages to be mapped into
addr_t virtualBase = vm_allocate_early(args, kPAEPageTableRange, 0, 0,
kPAEPageTableRange);
if (virtualBase == 0) {
panic("LargeMemoryPhysicalPageMapper::Init(): Failed to reserve "
"physical page pool space in virtual address space!");
return B_ERROR;
}
// allocate memory for the page table and data
size_t areaSize = B_PAGE_SIZE
+ sizeof(PhysicalPageSlot[kPAEPageTableEntryCount]);
pae_page_table_entry* pageTable = (pae_page_table_entry*)vm_allocate_early(
args, areaSize, ~0L, B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA, 0);
// clear the page table and put it in the page dir
memset(pageTable, 0, B_PAGE_SIZE);
phys_addr_t physicalTable = 0;
method->_EarlyQuery((addr_t)pageTable, &physicalTable);
pae_page_directory_entry* entry = PageDirEntryForAddress(
method->KernelVirtualPageDirs(), virtualBase);
PutPageTableInPageDir(entry, physicalTable,
B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA);
// init the pool structure and add the initial pool
Init(-1, pageTable, -1, (addr_t)virtualBase);
return B_OK;
}
@ -75,9 +380,58 @@ status_t
X86PagingMethodPAE::PhysicalPageSlotPool::InitInitialPostArea(
kernel_args* args)
{
// TODO: Implement!
panic("unsupported");
return B_UNSUPPORTED;
// create an area for the (already allocated) data
size_t areaSize = B_PAGE_SIZE
+ sizeof(PhysicalPageSlot[kPAEPageTableEntryCount]);
void* temp = fPageTable;
area_id area = create_area("physical page pool", &temp,
B_EXACT_ADDRESS, areaSize, B_ALREADY_WIRED,
B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA);
if (area < B_OK) {
panic("LargeMemoryPhysicalPageMapper::InitPostArea(): Failed to "
"create area for physical page pool.");
return area;
}
fDataArea = area;
// create an area for the virtual address space
temp = (void*)fVirtualBase;
area = vm_create_null_area(VMAddressSpace::KernelID(),
"physical page pool space", &temp, B_EXACT_ADDRESS,
kPAEPageTableRange, 0);
if (area < B_OK) {
panic("LargeMemoryPhysicalPageMapper::InitPostArea(): Failed to "
"create area for physical page pool space.");
return area;
}
fVirtualArea = area;
return B_OK;
}
void
X86PagingMethodPAE::PhysicalPageSlotPool::Init(area_id dataArea,
pae_page_table_entry* pageTable, area_id virtualArea, addr_t virtualBase)
{
fDataArea = dataArea;
fVirtualArea = virtualArea;
fVirtualBase = virtualBase;
fPageTable = pageTable;
// init slot list
fSlots = (PhysicalPageSlot*)(fPageTable + kPAEPageTableEntryCount);
addr_t slotAddress = virtualBase;
for (uint32 i = 0; i < kPAEPageTableEntryCount;
i++, slotAddress += B_PAGE_SIZE) {
PhysicalPageSlot* slot = &fSlots[i];
slot->next = slot + 1;
slot->pool = this;
slot->address = slotAddress;
}
fSlots[kPAEPageTableEntryCount - 1].next = NULL;
// terminate list
}
@ -86,7 +440,7 @@ X86PagingMethodPAE::PhysicalPageSlotPool::Map(phys_addr_t physicalAddress,
addr_t virtualAddress)
{
// TODO: Implement!
panic("unsupported");
panic("X86PagingMethodPAE::PhysicalPageSlotPool::Map(): not implemented");
}
@ -95,7 +449,7 @@ X86PagingMethodPAE::PhysicalPageSlotPool::AllocatePool(
X86LargePhysicalPageMapper::PhysicalPageSlotPool*& _pool)
{
// TODO: Implement!
panic("unsupported");
panic("X86PagingMethodPAE::PhysicalPageSlotPool::AllocatePool(): not implemented");
return B_UNSUPPORTED;
}
@ -120,9 +474,28 @@ status_t
X86PagingMethodPAE::Init(kernel_args* args,
VMPhysicalPageMapper** _physicalPageMapper)
{
// TODO: Implement!
panic("unsupported");
return B_UNSUPPORTED;
// switch to PAE
ToPAESwitcher(args).Switch(fEarlyPageStructures, fEarlyPageStructuresSize,
fKernelVirtualPageDirs, fKernelPhysicalPageDirs, fFreeVirtualSlot,
fFreeVirtualSlotPTE);
// create the initial pool for the physical page mapper
PhysicalPageSlotPool* pool
= new(&PhysicalPageSlotPool::sInitialPhysicalPagePool)
PhysicalPageSlotPool;
status_t error = pool->InitInitial(this, args);
if (error != B_OK) {
panic("X86PagingMethodPAE::Init(): Failed to create initial pool "
"for physical page mapper!");
return error;
}
// create physical page mapper
large_memory_physical_page_ops_init(args, pool, fPhysicalPageMapper,
fKernelPhysicalPageMapper);
*_physicalPageMapper = fPhysicalPageMapper;
return B_OK;
}
@ -130,7 +503,7 @@ status_t
X86PagingMethodPAE::InitPostArea(kernel_args* args)
{
// TODO: Implement!
panic("unsupported");
panic("X86PagingMethodPAE::InitPostArea(): not implemented");
return B_UNSUPPORTED;
}
@ -139,7 +512,7 @@ status_t
X86PagingMethodPAE::CreateTranslationMap(bool kernel, VMTranslationMap** _map)
{
// TODO: Implement!
panic("unsupported");
panic("X86PagingMethodPAE::CreateTranslationMap(): not implemented");
return B_UNSUPPORTED;
}
@ -149,9 +522,42 @@ X86PagingMethodPAE::MapEarly(kernel_args* args, addr_t virtualAddress,
phys_addr_t physicalAddress, uint8 attributes,
phys_addr_t (*get_free_page)(kernel_args*))
{
// TODO: Implement!
panic("unsupported");
return B_UNSUPPORTED;
// check to see if a page table exists for this range
pae_page_directory_entry* pageDirEntry = PageDirEntryForAddress(
fKernelVirtualPageDirs, virtualAddress);
pae_page_table_entry* pageTable;
if ((*pageDirEntry & X86_PAE_PDE_PRESENT) == 0) {
// we need to allocate a page table
phys_addr_t physicalPageTable = get_free_page(args) * B_PAGE_SIZE;
TRACE("X86PagingMethodPAE::MapEarly(): asked for free page for "
"page table: %#" B_PRIxPHYSADDR "\n", physicalPageTable);
// put it in the pgdir
PutPageTableInPageDir(pageDirEntry, physicalPageTable, attributes);
// zero it out
pageTable = _EarlyGetPageTable(physicalPageTable);
memset(pageTable, 0, B_PAGE_SIZE);
} else {
// table already exists -- map it
pageTable = _EarlyGetPageTable(
*pageDirEntry & X86_PAE_PDE_ADDRESS_MASK);
}
pae_page_table_entry* entry = pageTable
+ virtualAddress / B_PAGE_SIZE % kPAEPageTableEntryCount;
ASSERT_PRINT(
(*entry & X86_PAE_PTE_PRESENT) == 0,
"virtual address: %#" B_PRIxADDR ", pde: %#" B_PRIx64
", existing pte: %#" B_PRIx64, virtualAddress, *pageDirEntry, *entry);
// now, fill in the pentry
PutPageTableEntryInTable(entry, physicalAddress, attributes, 0,
IS_KERNEL_ADDRESS(virtualAddress));
return B_OK;
}
@ -164,4 +570,82 @@ X86PagingMethodPAE::IsKernelPageAccessible(addr_t virtualAddress,
}
/*static*/ void
X86PagingMethodPAE::PutPageTableInPageDir(pae_page_directory_entry* entry,
phys_addr_t physicalTable, uint32 attributes)
{
*entry = (physicalTable & X86_PAE_PDE_ADDRESS_MASK)
| X86_PAE_PDE_PRESENT
| X86_PAE_PDE_WRITABLE
| X86_PAE_PDE_USER;
// TODO: We ignore the attributes of the page table -- for compatibility
// with BeOS we allow having user accessible areas in the kernel address
// space. This is currently being used by some drivers, mainly for the
// frame buffer. Our current real time data implementation makes use of
// this fact, too.
// We might want to get rid of this possibility one day, especially if
// we intend to port it to a platform that does not support this.
}
/*static*/ void
X86PagingMethodPAE::PutPageTableEntryInTable(pae_page_table_entry* entry,
phys_addr_t physicalAddress, uint32 attributes, uint32 memoryType,
bool globalPage)
{
page_table_entry page = (physicalAddress & X86_PAE_PTE_ADDRESS_MASK)
| X86_PAE_PTE_PRESENT | (globalPage ? X86_PAE_PTE_GLOBAL : 0)
| MemoryTypeToPageTableEntryFlags(memoryType);
// if the page is user accessible, it's automatically
// accessible in kernel space, too (but with the same
// protection)
if ((attributes & B_USER_PROTECTION) != 0) {
page |= X86_PAE_PTE_USER;
if ((attributes & B_WRITE_AREA) != 0)
page |= X86_PAE_PTE_WRITABLE;
} else if ((attributes & B_KERNEL_WRITE_AREA) != 0)
page |= X86_PAE_PTE_WRITABLE;
// put it in the page table
*(volatile pae_page_table_entry*)entry = page;
}
bool
X86PagingMethodPAE::_EarlyQuery(addr_t virtualAddress,
phys_addr_t* _physicalAddress)
{
pae_page_directory_entry* pageDirEntry = PageDirEntryForAddress(
fKernelVirtualPageDirs, virtualAddress);
if ((*pageDirEntry & X86_PAE_PDE_PRESENT) == 0) {
// no pagetable here
return false;
}
pae_page_table_entry* entry = _EarlyGetPageTable(
*pageDirEntry & X86_PAE_PDE_ADDRESS_MASK)
+ virtualAddress / B_PAGE_SIZE % kPAEPageTableEntryCount;
if ((*entry & X86_PAE_PTE_PRESENT) == 0) {
// page mapping not valid
return false;
}
*_physicalAddress = *entry & X86_PAE_PTE_ADDRESS_MASK;
return true;
}
pae_page_table_entry*
X86PagingMethodPAE::_EarlyGetPageTable(phys_addr_t address)
{
*fFreeVirtualSlotPTE = (address & X86_PAE_PTE_ADDRESS_MASK)
| X86_PAE_PTE_PRESENT | X86_PAE_PTE_WRITABLE | X86_PAE_PTE_GLOBAL;
invalidate_TLB(fFreeVirtualSlot);
return (pae_page_table_entry*)fFreeVirtualSlot;
}
#endif // B_HAIKU_PHYSICAL_BITS == 64

View File

@ -6,6 +6,8 @@
#define KERNEL_ARCH_X86_PAGING_PAE_X86_PAGING_METHOD_PAE_H
#include <KernelExport.h>
#include "paging/pae/paging.h"
#include "paging/X86PagingMethod.h"
#include "paging/X86PagingStructures.h"
@ -44,15 +46,48 @@ public:
inline TranslationMapPhysicalPageMapper* KernelPhysicalPageMapper() const
{ return fKernelPhysicalPageMapper; }
inline pae_page_directory_entry* const* KernelVirtualPageDirs() const
{ return fKernelVirtualPageDirs; }
static X86PagingMethodPAE* Method();
static void PutPageTableInPageDir(
pae_page_directory_entry* entry,
phys_addr_t physicalTable,
uint32 attributes);
static void PutPageTableEntryInTable(
pae_page_table_entry* entry,
phys_addr_t physicalAddress,
uint32 attributes, uint32 memoryType,
bool globalPage);
static pae_page_directory_entry* PageDirEntryForAddress(
pae_page_directory_entry* const* pdpt,
addr_t address);
static uint32 MemoryTypeToPageTableEntryFlags(
uint32 memoryType);
private:
struct ToPAESwitcher;
struct PhysicalPageSlotPool;
friend struct PhysicalPageSlotPool;
private:
bool _EarlyQuery(addr_t virtualAddress,
phys_addr_t* _physicalAddress);
pae_page_table_entry* _EarlyGetPageTable(phys_addr_t address);
private:
X86PhysicalPageMapper* fPhysicalPageMapper;
TranslationMapPhysicalPageMapper* fKernelPhysicalPageMapper;
void* fEarlyPageStructures;
size_t fEarlyPageStructuresSize;
pae_page_directory_entry* fKernelVirtualPageDirs[4];
phys_addr_t fKernelPhysicalPageDirs[4];
addr_t fFreeVirtualSlot;
pae_page_table_entry* fFreeVirtualSlotPTE;
};
@ -63,6 +98,45 @@ X86PagingMethodPAE::Method()
}
/*static*/ inline pae_page_directory_entry*
X86PagingMethodPAE::PageDirEntryForAddress(
pae_page_directory_entry* const* pdpt, addr_t address)
{
return pdpt[address >> 30]
+ (address / kPAEPageTableRange) % kPAEPageDirEntryCount;
}
/*static*/ inline uint32
X86PagingMethodPAE::MemoryTypeToPageTableEntryFlags(uint32 memoryType)
{
// ATM we only handle the uncacheable and write-through type explicitly. For
// all other types we rely on the MTRRs to be set up correctly. Since we set
// the default memory type to write-back and since the uncacheable type in
// the PTE overrides any MTRR attribute (though, as per the specs, that is
// not recommended for performance reasons), this reduces the work we
// actually *have* to do with the MTRRs to setting the remaining types
// (usually only write-combining for the frame buffer).
switch (memoryType) {
case B_MTR_UC:
return X86_PAE_PTE_CACHING_DISABLED | X86_PAE_PTE_WRITE_THROUGH;
case B_MTR_WC:
// X86_PTE_WRITE_THROUGH would be closer, but the combination with
// MTRR WC is "implementation defined" for Pentium Pro/II.
return 0;
case B_MTR_WT:
return X86_PAE_PTE_WRITE_THROUGH;
case B_MTR_WP:
case B_MTR_WB:
default:
return 0;
}
}
#endif // B_HAIKU_PHYSICAL_BITS == 64

View File

@ -26,7 +26,7 @@ void
X86PagingStructuresPAE::Init()
{
// TODO: Implement!
panic("unsupported");
panic("X86PagingStructuresPAE::Init(): not implemented");
}
@ -34,7 +34,7 @@ void
X86PagingStructuresPAE::Delete()
{
// TODO: Implement!
panic("unsupported");
panic("X86PagingStructuresPAE::Delete(): not implemented");
}
@ -42,7 +42,7 @@ X86PagingStructuresPAE::Delete()
X86PagingStructuresPAE::StaticInit()
{
// TODO: Implement!
panic("unsupported");
panic("X86PagingStructuresPAE::StaticInit(): not implemented");
}