diff --git a/src/add-ons/kernel/drivers/network/ipro1000/Jamfile b/src/add-ons/kernel/drivers/network/ipro1000/Jamfile index 51d44f1f59..bc4c396ff4 100644 --- a/src/add-ons/kernel/drivers/network/ipro1000/Jamfile +++ b/src/add-ons/kernel/drivers/network/ipro1000/Jamfile @@ -1,5 +1,7 @@ SubDir HAIKU_TOP src add-ons kernel drivers network ipro1000 ; +SubInclude HAIKU_TOP src add-ons kernel drivers network ipro1000 dev ; + SetSubDirSupportedPlatformsBeOSCompatible ; # set some additional flags diff --git a/src/add-ons/kernel/drivers/network/ipro1000/dev/Jamfile b/src/add-ons/kernel/drivers/network/ipro1000/dev/Jamfile new file mode 100644 index 0000000000..392240adf7 --- /dev/null +++ b/src/add-ons/kernel/drivers/network/ipro1000/dev/Jamfile @@ -0,0 +1,3 @@ +SubDir HAIKU_TOP src add-ons kernel drivers network ipro1000 dev ; + +SubInclude HAIKU_TOP src add-ons kernel drivers network ipro1000 dev em ; diff --git a/src/add-ons/kernel/drivers/network/ipro1000/dev/em/Jamfile b/src/add-ons/kernel/drivers/network/ipro1000/dev/em/Jamfile new file mode 100644 index 0000000000..eb732e88a0 --- /dev/null +++ b/src/add-ons/kernel/drivers/network/ipro1000/dev/em/Jamfile @@ -0,0 +1,18 @@ +SubDir HAIKU_TOP src add-ons kernel drivers network ipro1000 dev em ; + +SubDirCcFlags -Wall ; + +UsePrivateHeaders kernel net ; + +UseHeaders [ FDirName $(SUBDIR) .. .. ] : true ; +UseHeaders [ FDirName $(HAIKU_TOP) src libs compat freebsd_network compat ] : true ; + +SubDirCcFlags [ FDefines _KERNEL=1 FBSD_DRIVER=1 EM_FAST_INTR=1 DBG=1 ] ; + +KernelAddon e1000 : + if_em.c + if_em_hw.c + glue.c + : libfreebsd_network.a + ; + diff --git a/src/add-ons/kernel/drivers/network/ipro1000/dev/em/LICENSE b/src/add-ons/kernel/drivers/network/ipro1000/dev/em/LICENSE new file mode 100644 index 0000000000..487199513b --- /dev/null +++ b/src/add-ons/kernel/drivers/network/ipro1000/dev/em/LICENSE @@ -0,0 +1,31 @@ +$FreeBSD: src/sys/dev/em/LICENSE,v 1.3.2.1 2006/08/08 09:20:26 glebius Exp $ +/*- +Copyright (c) 2001-2005, Intel Corporation +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. +*/ diff --git a/src/add-ons/kernel/drivers/network/ipro1000/dev/em/README b/src/add-ons/kernel/drivers/network/ipro1000/dev/em/README new file mode 100644 index 0000000000..974e8adffb --- /dev/null +++ b/src/add-ons/kernel/drivers/network/ipro1000/dev/em/README @@ -0,0 +1,373 @@ +$FreeBSD: src/sys/dev/em/README,v 1.10.2.1 2006/08/08 09:20:26 glebius Exp $ +FreeBSD* Driver for the Intel(R) PRO/1000 Family of Adapters +============================================================ + +May 2, 2006 + + +Contents +======== + +- Overview +- Identifying Your Adapter +- Building and Installation +- Speed and Duplex Configuration +- Additional Configurations +- Known Limitations +- Support +- License + + +Overview +======== + +This file describes the FreeBSD* driver for the Intel(R) PRO/1000 Family of +Adapters. This driver has been developed for use with FreeBSD, Release 6.x. + +For questions related to hardware requirements, refer to the documentation +supplied with your Intel PRO/1000 adapter. All hardware requirements listed +apply to use with FreeBSD. + + +Identifying Your Adapter +======================== + +For information on how to identify your adapter, go to the Adapter & +Driver ID Guide at: + +http://support.intel.com/support/network/sb/cs-012904.htm + + +For the latest Intel network drivers for FreeBSD, see: + +http://downloadfinder.intel.com/scripts-df-external/support_intel.aspx + + +NOTE: Mobile adapters are not fully supported. +NOTE: The Intel(R) 82562v 10/100 Network Connection only provides 10/100 +support. + +Building and Installation +========================= + +NOTE: The driver can be installed as a dynamic loadable kernel module or + compiled into the kernel. You must have kernel sources installed in + order to compile the driver module. + +In the instructions below, x.x.x is the driver version as indicated in the +name of the driver tar file. + +1. Move the base driver tar file to the directory of your choice. For + example, use /home/username/em or /usr/local/src/em. + +2. Untar/unzip the archive: + + tar xvfz em-x.x.x.tar.gz + + This will create an em-x.x.x directory. + +3. To create a loadable module, perform the following steps. + NOTE: To compile the driver into the kernel, go directly to step 4. + + a. To compile the module + + cd em-x.x.x + make + + b. To install the compiled module in system directory: + + make install + + c. If you want the driver to load automatically when the system is booted: + + 1. Edit /boot/loader.conf, and add the following line: + + if_em_load="YES" + +4. To compile the driver into the kernel: + + cd em-x.x.x/src + + cp if_em* /usr/src/sys/dev/em + + cp Makefile.kernel /usr/src/sys/modules/em/Makefile + + Edit the /usr/src/sys/conf/files file, and add the following lines only if + they don't already exist: + + dev/em/if_em.c optional em + + dev/em/if_em_hw.c optional em + + Remove the following lines from the /usr/src/sys/conf/files file, + if they exist: + + dev/em/if_em_fxhw.c optional em + dev/em/if_em_phy.c optional em + + Edit the kernel configuration file (i.e., GENERIC or MYKERNEL) in + /usr/src/sys/i386/conf, and ensure the following line is present: + + device em + + Compile and install the kernel. The system must be rebooted for the kernel + updates to take effect. For additional information on compiling the + kernel, consult the FreeBSD operating system documentation. + +5. To assign an IP address to the interface, enter the following: + + ifconfig em + +6. Verify that the interface works. Enter the following, where + is the IP address for another machine on the same subnet as the interface + that is being tested: + + ping + +7. To configure the IP address to remain after reboot, edit /etc/rc.conf, + and create the appropriate ifconfig_ementry: + + ifconfig_em="" + + Example usage: + + ifconfig_em0="inet 192.168.10.1 netmask 255.255.255.0" + + NOTE: For assistance, see the ifconfig man page. + + +Speed and Duplex Configuration +============================== + +By default, the adapter auto-negotiates the speed and duplex of the +connection. If there is a specific need, the ifconfig utility can be used to +configure the speed and duplex settings on the adapter. Example usage: + + ifconfig em media 100baseTX mediaopt + full-duplex + + NOTE: Only use mediaopt to set the driver to full-duplex. If mediaopt is + not specified and you are not running at gigabit speed, the driver + defaults to half-duplex. + + +This driver supports the following media type options: + + autoselect - Enables auto-negotiation for speed and duplex. + + 10baseT/UTP - Sets speed to 10 Mbps. Use the ifconfig mediaopt + option to select full-duplex mode. + + 100baseTX - Sets speed to 100 Mbps. Use the ifconfig mediaopt + option to select full-duplex mode. + + 1000baseTX - Sets speed to 1000 Mbps. In this case, the driver + supports only full-duplex mode. + + 1000baseSX - Sets speed to 1000 Mbps. In this case, the driver + supports only full-duplex mode. + +For more information on the ifconfig utility, see the ifconfig man page. + + +Additional Configurations +========================= + +The driver supports Transmit/Receive Checksum Offload and Jumbo Frames on +all but the 82542-based adapters. For specific adapters, refer to the +Identifying Your Adapter section. + + Jumbo Frames + ------------ + To enable Jumbo Frames, use the ifconfig utility to set the Maximum + Transport Unit (MTU) frame size above its default of 1500 bytes. + + The Jumbo Frames MTU range for Intel Adapters is 1500 to 16110. To modify + the setting, enter the following: + + ifconfig em mtu 9000 + + To confirm the MTU used between two specific devices, use: + + route get + + Notes: + + - Only enable Jumbo Frames if your network infrastructure supports them. + + - To enable Jumbo Frames, increase the MTU size on the interface beyond + 1500. + + - The Jumbo Frames setting on the switch must be set to at least 22 bytes + larger than that of the MTU. + + - The maximum MTU setting for Jumbo Frames is 16110. This value coincides + with the maximum Jumbo Frames size of 16128. + + - Some Intel gigabit adapters that support Jumbo Frames have a frame size + limit of 9238 bytes, with a corresponding MTU size limit of 9216 bytes. + The adapters with this limitation are based on the Intel(R) 82571EB, + 82572EI, 82573L and 80003ES2LAN controller. These correspond to the + following product names: + Intel(R) PRO/1000 PT Server Adapter + Intel(R) PRO/1000 PT Desktop Adapter + Intel(R) PRO/1000 PT Network Connection + Intel(R) PRO/1000 PT Dual Port Server Adapter + Intel(R) PRO/1000 PT Dual Port Network Connection + Intel(R) PRO/1000 PF Server Adapter + Intel(R) PRO/1000 PF Network Connection + Intel(R) PRO/1000 PF Dual Port Server Adapter + Intel(R) PRO/1000 PB Server Connection + Intel(R) PRO/1000 PL Network Connection + Intel(R) PRO/1000 EB Network Connection with I/O Acceleration + Intel(R) PRO/1000 EB Backplane Connection with I/O Acceleration + + - Adapters based on the Intel(R) 82542 and 82573V/E controller do not + support Jumbo Frames. These correspond to the following product names: + Intel(R) PRO/1000 Gigabit Server Adapter + Intel(R) PRO/1000 PM Network Connection + + - Using Jumbo Frames at 10 or 100 Mbps may result in poor performance or + loss of link. + + - The following adapters do not support Jumbo Frames: + Intel(R) 82562V 10/100 Network Connection + Intel(R) 82566DM Gigabit Network Connection + Intel(R) 82566DC Gigabit Network Connection + Intel(R) 82566MM Gigabit Network Connection + Intel(R) 82566MC Gigabit Network Connection + + + VLANs + ----- + To create a new VLAN interface: + + ifconfig create + + To associate the VLAN interface with a physical interface and + assign a VLAN ID, IP address, and netmask: + + ifconfig netmask vlan + vlandev + + Example: + + ifconfig vlan10 10.0.0.1 netmask 255.255.255.0 vlan10 vlandev em0 + + In this example, all packets will be marked on egress with 802.1Q VLAN + tags, specifying a VLAN ID of 10. + + To remove a VLAN interface: + + ifconfig destroy + + + Polling + ------- + To enable polling in the driver, add the following options to the kernel + configuration, and then recompile the kernel: + + options DEVICE_POLLING + options HZ=1000 + + At runtime use: + ifconfig em0 polling to turn polling on + Use: + ifconfig em0 -polling to turn polling off + + + Checksum Offload + ---------------- + Checksum offloading is not supported on 82542 Gigabit adapters. + + Checksum offloading supports both TCP and UDP packets and is + supported for both transmit and receive. + + Checksum offloading can be enabled or disabled using ifconfig. + Both transmit and receive offloading will be either enabled or + disabled together. You cannot enable/disable one without the other. + + To enable checksum offloading: + + ifconfig rxcsum + + To disable checksum offloading: + + ifconfig -rxcsum + + To confirm the current setting: + + ifconfig + + Look for the presence or absence of the following line: + + options=3 + + See the ifconfig man page for further information. + + +Known Limitations +================= + + In FreeBSD version 4.x with Symmetric MultiProcessing (SMP), there is a known + issue on some newer hardware. The problem is generic kernel and only in SMP + mode. The workaround is to either use FreeBSD version 4.x in single processor + mode, or use FreeBSD 5.4 or later. + + There are known performance issues with this driver when running UDP traffic + with Jumbo Frames. + + There is a known compatibility issue where time to link is slow or link is not + established between 82541/82547 controllers and some switches. Known switches + include: + Planex FXG-08TE + I-O Data ETG-SH8 + + The driver can be compiled with the following changes: + + Edit ./em.x.x.x/src/if_em.h to uncomment the #define EM_MASTER_SLAVE + from within the comments. For example, change from: + + /* #define EM_MASTER_SLAVE 2 */ + to: + #define EM_MASTER_SLAVE 2 + + Use one of the following options: + 1 = Master mode + 2 = Slave mode + 3 = Auto master/slave + Setting 2 is recommended. + + Recompile the module: + a. To compile the module + cd em-x.x.x + make clean + make + + b. To install the compiled module in system directory: + make install + + +Support +======= + +For general information and support, go to the Intel support website at: + + http://support.intel.com + +If an issue is identified, support is through email only at: +freebsdnic@mailbox.intel.com + + +License +======= + +This software program is released under the terms of a license agreement +between you ('Licensee') and Intel. Do not use or load this software or any +associated materials (collectively, the 'Software') until you have carefully +read the full terms and conditions of the LICENSE located in this software +package. By loading or using the Software, you agree to the terms of this +Agreement. If you do not agree with the terms of this Agreement, do not +install or use the Software. + +* Other names and brands may be claimed as the property of others. diff --git a/src/add-ons/kernel/drivers/network/ipro1000/dev/em/glue.c b/src/add-ons/kernel/drivers/network/ipro1000/dev/em/glue.c new file mode 100644 index 0000000000..376cfc4157 --- /dev/null +++ b/src/add-ons/kernel/drivers/network/ipro1000/dev/em/glue.c @@ -0,0 +1,11 @@ +#include + +HAIKU_FBSD_DRIVER_GLUE(e1000, em, pci) + +NO_HAIKU_CHECK_DISABLE_INTERRUPTS() + +#ifdef EM_FAST_INTR + HAIKU_DRIVER_REQUIREMENTS(FBSD_TASKQUEUES | FBSD_FAST_TASKQUEUE); +#else + HAIKU_DRIVER_REQUIREMENTS(0); +#endif diff --git a/src/add-ons/kernel/drivers/network/ipro1000/dev/em/if_em.c b/src/add-ons/kernel/drivers/network/ipro1000/dev/em/if_em.c new file mode 100644 index 0000000000..7790ae23bd --- /dev/null +++ b/src/add-ons/kernel/drivers/network/ipro1000/dev/em/if_em.c @@ -0,0 +1,4167 @@ +/************************************************************************** + +Copyright (c) 2001-2006, Intel Corporation +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. + +***************************************************************************/ + +/*$FreeBSD: src/sys/dev/em/if_em.c,v 1.65.2.21 2006/11/10 09:30:27 jfv Exp $*/ + +#ifdef HAVE_KERNEL_OPTION_HEADERS +#include "opt_device_polling.h" +#endif + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include +#include + +#include +#include +#include +#include +#include +#include + +#include +#include + +#include +#include +#include +#include +#include +#include + +#include + +#include +#include +#include +#include + +/********************************************************************* + * Set this to one to display debug statistics + *********************************************************************/ +int em_display_debug_stats = 0; + +/********************************************************************* + * Driver version + *********************************************************************/ +char em_driver_version[] = "Version - 6.2.9"; + + +/********************************************************************* + * PCI Device ID Table + * + * Used by probe to select devices to load on + * Last field stores an index into em_strings + * Last entry must be all 0s + * + * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index } + *********************************************************************/ + +static em_vendor_info_t em_vendor_info_array[] = +{ + /* Intel(R) PRO/1000 Network Connection */ + { 0x8086, E1000_DEV_ID_82540EM, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82540EM_LOM, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82540EP, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82540EP_LOM, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82540EP_LP, PCI_ANY_ID, PCI_ANY_ID, 0}, + + { 0x8086, E1000_DEV_ID_82541EI, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82541ER, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82541ER_LOM, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82541EI_MOBILE, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82541GI, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82541GI_LF, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82541GI_MOBILE, PCI_ANY_ID, PCI_ANY_ID, 0}, + + { 0x8086, E1000_DEV_ID_82542, PCI_ANY_ID, PCI_ANY_ID, 0}, + + { 0x8086, E1000_DEV_ID_82543GC_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82543GC_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0}, + + { 0x8086, E1000_DEV_ID_82544EI_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82544EI_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82544GC_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82544GC_LOM, PCI_ANY_ID, PCI_ANY_ID, 0}, + + { 0x8086, E1000_DEV_ID_82545EM_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82545EM_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82545GM_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82545GM_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82545GM_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0}, + + { 0x8086, E1000_DEV_ID_82546EB_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82546EB_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82546GB_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82546GB_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82546GB_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82546GB_PCIE, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3, + PCI_ANY_ID, PCI_ANY_ID, 0}, + + { 0x8086, E1000_DEV_ID_82547EI, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82547EI_MOBILE, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82547GI, PCI_ANY_ID, PCI_ANY_ID, 0}, + + { 0x8086, E1000_DEV_ID_82571EB_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82571EB_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82571EB_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER, + PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE, + PCI_ANY_ID, PCI_ANY_ID, 0}, + + { 0x8086, E1000_DEV_ID_82572EI_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82572EI_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82572EI_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82572EI, PCI_ANY_ID, PCI_ANY_ID, 0}, + + { 0x8086, E1000_DEV_ID_82573E, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82573E_IAMT, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_82573L, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT, + PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT, + PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT, + PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT, + PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_ICH8_IGP_AMT, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_ICH8_IGP_C, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_ICH8_IFE, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_ICH8_IFE_GT, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_ICH8_IFE_G, PCI_ANY_ID, PCI_ANY_ID, 0}, + { 0x8086, E1000_DEV_ID_ICH8_IGP_M, PCI_ANY_ID, PCI_ANY_ID, 0}, + + /* required last entry */ + { 0, 0, 0, 0, 0} +}; + +/********************************************************************* + * Table of branding strings for all supported NICs. + *********************************************************************/ + +static char *em_strings[] = { + "Intel(R) PRO/1000 Network Connection" +}; + +/********************************************************************* + * Function prototypes + *********************************************************************/ +static int em_probe(device_t); +static int em_attach(device_t); +static int em_detach(device_t); +static int em_shutdown(device_t); +static int em_suspend(device_t); +static int em_resume(device_t); +static void em_start(struct ifnet *); +static void em_start_locked(struct ifnet *ifp); +static int em_ioctl(struct ifnet *, u_long, caddr_t); +static void em_watchdog(struct adapter *); +static void em_init(void *); +static void em_init_locked(struct adapter *); +static void em_stop(void *); +static void em_media_status(struct ifnet *, struct ifmediareq *); +static int em_media_change(struct ifnet *); +static void em_identify_hardware(struct adapter *); +static int em_allocate_pci_resources(struct adapter *); +static int em_allocate_intr(struct adapter *); +static void em_free_intr(struct adapter *); +static void em_free_pci_resources(struct adapter *); +static void em_local_timer(void *); +static int em_hardware_init(struct adapter *); +static void em_setup_interface(device_t, struct adapter *); +static void em_setup_transmit_structures(struct adapter *); +static void em_initialize_transmit_unit(struct adapter *); +static int em_setup_receive_structures(struct adapter *); +static void em_initialize_receive_unit(struct adapter *); +static void em_enable_intr(struct adapter *); +static void em_disable_intr(struct adapter *); +static void em_free_transmit_structures(struct adapter *); +static void em_free_receive_structures(struct adapter *); +static void em_update_stats_counters(struct adapter *); +static void em_txeof(struct adapter *); +static int em_allocate_receive_structures(struct adapter *); +static int em_allocate_transmit_structures(struct adapter *); +static int em_rxeof(struct adapter *, int); +#ifndef __NO_STRICT_ALIGNMENT +static int em_fixup_rx(struct adapter *); +#endif +static void em_receive_checksum(struct adapter *, struct em_rx_desc *, + struct mbuf *); +static void em_transmit_checksum_setup(struct adapter *, struct mbuf *, + uint32_t *, uint32_t *); +#ifdef EM_TSO +static boolean_t em_tso_setup(struct adapter *, struct mbuf *, u_int32_t *, + uint32_t *); +#endif +static void em_set_promisc(struct adapter *); +static void em_disable_promisc(struct adapter *); +static void em_set_multi(struct adapter *); +static void em_print_hw_stats(struct adapter *); +static void em_update_link_status(struct adapter *); +static int em_get_buf(int i, struct adapter *, struct mbuf *); +static void em_enable_vlans(struct adapter *); +static void em_disable_vlans(struct adapter *); +static int em_encap(struct adapter *, struct mbuf **); +static void em_smartspeed(struct adapter *); +static int em_82547_fifo_workaround(struct adapter *, int); +static void em_82547_update_fifo_head(struct adapter *, int); +static int em_82547_tx_fifo_reset(struct adapter *); +static void em_82547_move_tail(void *); +static int em_dma_malloc(struct adapter *, bus_size_t, + struct em_dma_alloc *, int); +static void em_dma_free(struct adapter *, struct em_dma_alloc *); +static void em_print_debug_info(struct adapter *); +static int em_is_valid_ether_addr(uint8_t *); +static int em_sysctl_stats(SYSCTL_HANDLER_ARGS); +static int em_sysctl_debug_info(SYSCTL_HANDLER_ARGS); +static uint32_t em_fill_descriptors (bus_addr_t address, uint32_t length, + PDESC_ARRAY desc_array); +static int em_sysctl_int_delay(SYSCTL_HANDLER_ARGS); +static void em_add_int_delay_sysctl(struct adapter *, const char *, + const char *, struct em_int_delay_info *, int, int); +static void em_add_rx_process_limit(struct adapter *, const char *, + const char *, int *, int); +#ifdef EM_FAST_INTR +static void em_intr_fast(void *); +static void em_handle_rxtx(void *context, int pending); +static void em_handle_link(void *context, int pending); +#else /* Legacy Interrupt Handling */ +static void em_intr(void *); +#ifdef DEVICE_POLLING +static poll_handler_t em_poll; +#endif /* DEVICE_POLLING */ +#endif /* EM_FAST_INTR */ + +/********************************************************************* + * FreeBSD Device Interface Entry Points + *********************************************************************/ + +static device_method_t em_methods[] = { + /* Device interface */ + DEVMETHOD(device_probe, em_probe), + DEVMETHOD(device_attach, em_attach), + DEVMETHOD(device_detach, em_detach), + DEVMETHOD(device_shutdown, em_shutdown), + DEVMETHOD(device_suspend, em_suspend), + DEVMETHOD(device_resume, em_resume), + {0, 0} +}; + +static driver_t em_driver = { + "em", em_methods, sizeof(struct adapter), +}; + +static devclass_t em_devclass; +DRIVER_MODULE(em, pci, em_driver, em_devclass, 0, 0); +MODULE_DEPEND(em, pci, 1, 1, 1); +MODULE_DEPEND(em, ether, 1, 1, 1); + +/********************************************************************* + * Tunable default values. + *********************************************************************/ + +#define E1000_TICKS_TO_USECS(ticks) ((1024 * (ticks) + 500) / 1000) +#define E1000_USECS_TO_TICKS(usecs) ((1000 * (usecs) + 512) / 1024) +#define M_TSO_LEN 66 /* mbuf with just hdr and TSO pkthdr */ + +static int em_tx_int_delay_dflt = E1000_TICKS_TO_USECS(EM_TIDV); +static int em_rx_int_delay_dflt = E1000_TICKS_TO_USECS(EM_RDTR); +static int em_tx_abs_int_delay_dflt = E1000_TICKS_TO_USECS(EM_TADV); +static int em_rx_abs_int_delay_dflt = E1000_TICKS_TO_USECS(EM_RADV); +static int em_rxd = EM_DEFAULT_RXD; +static int em_txd = EM_DEFAULT_TXD; +static int em_smart_pwr_down = FALSE; + +TUNABLE_INT("hw.em.tx_int_delay", &em_tx_int_delay_dflt); +TUNABLE_INT("hw.em.rx_int_delay", &em_rx_int_delay_dflt); +TUNABLE_INT("hw.em.tx_abs_int_delay", &em_tx_abs_int_delay_dflt); +TUNABLE_INT("hw.em.rx_abs_int_delay", &em_rx_abs_int_delay_dflt); +TUNABLE_INT("hw.em.rxd", &em_rxd); +TUNABLE_INT("hw.em.txd", &em_txd); +TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down); + +/* How many packets rxeof tries to clean at a time */ +static int em_rx_process_limit = 100; +TUNABLE_INT("hw.em.rx_process_limit", &em_rx_process_limit); + +/********************************************************************* + * Device identification routine + * + * em_probe determines if the driver should be loaded on + * adapter based on PCI vendor/device id of the adapter. + * + * return BUS_PROBE_DEFAULT on success, positive on failure + *********************************************************************/ + +static int +em_probe(device_t dev) +{ + char adapter_name[60]; + uint16_t pci_vendor_id = 0; + uint16_t pci_device_id = 0; + uint16_t pci_subvendor_id = 0; + uint16_t pci_subdevice_id = 0; + em_vendor_info_t *ent; + + INIT_DEBUGOUT("em_probe: begin"); + + pci_vendor_id = pci_get_vendor(dev); + if (pci_vendor_id != EM_VENDOR_ID) + return (ENXIO); + + pci_device_id = pci_get_device(dev); + pci_subvendor_id = pci_get_subvendor(dev); + pci_subdevice_id = pci_get_subdevice(dev); + + ent = em_vendor_info_array; + while (ent->vendor_id != 0) { + if ((pci_vendor_id == ent->vendor_id) && + (pci_device_id == ent->device_id) && + + ((pci_subvendor_id == ent->subvendor_id) || + (ent->subvendor_id == PCI_ANY_ID)) && + + ((pci_subdevice_id == ent->subdevice_id) || + (ent->subdevice_id == PCI_ANY_ID))) { + sprintf(adapter_name, "%s %s", + em_strings[ent->index], + em_driver_version); + device_set_desc_copy(dev, adapter_name); + return (BUS_PROBE_DEFAULT); + } + ent++; + } + + return (ENXIO); +} + +/********************************************************************* + * Device initialization routine + * + * The attach entry point is called when the driver is being loaded. + * This routine identifies the type of hardware, allocates all resources + * and initializes the hardware. + * + * return 0 on success, positive on failure + *********************************************************************/ + +static int +em_attach(device_t dev) +{ + struct adapter *adapter; + int tsize, rsize; + int error = 0; + + INIT_DEBUGOUT("em_attach: begin"); + + adapter = device_get_softc(dev); + adapter->dev = adapter->osdep.dev = dev; + EM_LOCK_INIT(adapter, device_get_nameunit(dev)); + + /* SYSCTL stuff */ + SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), + SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), + OID_AUTO, "debug_info", CTLTYPE_INT|CTLFLAG_RW, adapter, 0, + em_sysctl_debug_info, "I", "Debug Information"); + + SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), + SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), + OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0, + em_sysctl_stats, "I", "Statistics"); + + callout_init_mtx(&adapter->timer, &adapter->mtx, 0); + callout_init_mtx(&adapter->tx_fifo_timer, &adapter->mtx, 0); + + /* Determine hardware revision */ + em_identify_hardware(adapter); + + /* Set up some sysctls for the tunable interrupt delays */ + em_add_int_delay_sysctl(adapter, "rx_int_delay", + "receive interrupt delay in usecs", &adapter->rx_int_delay, + E1000_REG_OFFSET(&adapter->hw, RDTR), em_rx_int_delay_dflt); + em_add_int_delay_sysctl(adapter, "tx_int_delay", + "transmit interrupt delay in usecs", &adapter->tx_int_delay, + E1000_REG_OFFSET(&adapter->hw, TIDV), em_tx_int_delay_dflt); + if (adapter->hw.mac_type >= em_82540) { + em_add_int_delay_sysctl(adapter, "rx_abs_int_delay", + "receive interrupt delay limit in usecs", + &adapter->rx_abs_int_delay, + E1000_REG_OFFSET(&adapter->hw, RADV), + em_rx_abs_int_delay_dflt); + em_add_int_delay_sysctl(adapter, "tx_abs_int_delay", + "transmit interrupt delay limit in usecs", + &adapter->tx_abs_int_delay, + E1000_REG_OFFSET(&adapter->hw, TADV), + em_tx_abs_int_delay_dflt); + } + + /* Sysctls for limiting the amount of work done in the taskqueue */ + em_add_rx_process_limit(adapter, "rx_processing_limit", + "max number of rx packets to process", &adapter->rx_process_limit, + em_rx_process_limit); + + /* + * Validate number of transmit and receive descriptors. It + * must not exceed hardware maximum, and must be multiple + * of EM_DBA_ALIGN. + */ + if (((em_txd * sizeof(struct em_tx_desc)) % EM_DBA_ALIGN) != 0 || + (adapter->hw.mac_type >= em_82544 && em_txd > EM_MAX_TXD) || + (adapter->hw.mac_type < em_82544 && em_txd > EM_MAX_TXD_82543) || + (em_txd < EM_MIN_TXD)) { + device_printf(dev, "Using %d TX descriptors instead of %d!\n", + EM_DEFAULT_TXD, em_txd); + adapter->num_tx_desc = EM_DEFAULT_TXD; + } else + adapter->num_tx_desc = em_txd; + if (((em_rxd * sizeof(struct em_rx_desc)) % EM_DBA_ALIGN) != 0 || + (adapter->hw.mac_type >= em_82544 && em_rxd > EM_MAX_RXD) || + (adapter->hw.mac_type < em_82544 && em_rxd > EM_MAX_RXD_82543) || + (em_rxd < EM_MIN_RXD)) { + device_printf(dev, "Using %d RX descriptors instead of %d!\n", + EM_DEFAULT_RXD, em_rxd); + adapter->num_rx_desc = EM_DEFAULT_RXD; + } else + adapter->num_rx_desc = em_rxd; + + adapter->hw.autoneg = DO_AUTO_NEG; + adapter->hw.wait_autoneg_complete = WAIT_FOR_AUTO_NEG_DEFAULT; + adapter->hw.autoneg_advertised = AUTONEG_ADV_DEFAULT; + adapter->hw.tbi_compatibility_en = TRUE; + adapter->rx_buffer_len = EM_RXBUFFER_2048; + + adapter->hw.phy_init_script = 1; + adapter->hw.phy_reset_disable = FALSE; + +#ifndef EM_MASTER_SLAVE + adapter->hw.master_slave = em_ms_hw_default; +#else + adapter->hw.master_slave = EM_MASTER_SLAVE; +#endif + /* + * Set the max frame size assuming standard ethernet + * sized frames. + */ + adapter->hw.max_frame_size = + ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN; + + adapter->hw.min_frame_size = + MINIMUM_ETHERNET_PACKET_SIZE + ETHER_CRC_LEN; + + /* + * This controls when hardware reports transmit completion + * status. + */ + adapter->hw.report_tx_early = 1; + if (em_allocate_pci_resources(adapter)) { + device_printf(dev, "Allocation of PCI resources failed\n"); + error = ENXIO; + goto err_pci; + } + + /* Initialize eeprom parameters */ + em_init_eeprom_params(&adapter->hw); + + tsize = roundup2(adapter->num_tx_desc * sizeof(struct em_tx_desc), + EM_DBA_ALIGN); + + /* Allocate Transmit Descriptor ring */ + if (em_dma_malloc(adapter, tsize, &adapter->txdma, BUS_DMA_NOWAIT)) { + device_printf(dev, "Unable to allocate tx_desc memory\n"); + error = ENOMEM; + goto err_tx_desc; + } + adapter->tx_desc_base = (struct em_tx_desc *)adapter->txdma.dma_vaddr; + + rsize = roundup2(adapter->num_rx_desc * sizeof(struct em_rx_desc), + EM_DBA_ALIGN); + + /* Allocate Receive Descriptor ring */ + if (em_dma_malloc(adapter, rsize, &adapter->rxdma, BUS_DMA_NOWAIT)) { + device_printf(dev, "Unable to allocate rx_desc memory\n"); + error = ENOMEM; + goto err_rx_desc; + } + adapter->rx_desc_base = (struct em_rx_desc *)adapter->rxdma.dma_vaddr; + + /* Initialize the hardware */ + if (em_hardware_init(adapter)) { + device_printf(dev, "Unable to initialize the hardware\n"); + error = EIO; + goto err_hw_init; + } + + /* Copy the permanent MAC address out of the EEPROM */ + if (em_read_mac_addr(&adapter->hw) < 0) { + device_printf(dev, "EEPROM read error while reading MAC" + " address\n"); + error = EIO; + goto err_hw_init; + } + + if (!em_is_valid_ether_addr(adapter->hw.mac_addr)) { + device_printf(dev, "Invalid MAC address\n"); + error = EIO; + goto err_hw_init; + } + + /* Allocate transmit descriptors and buffers */ + if (em_allocate_transmit_structures(adapter)) { + device_printf(dev, "Could not setup transmit structures\n"); + error = ENOMEM; + goto err_tx_struct; + } + + /* Allocate receive descriptors and buffers */ + if (em_allocate_receive_structures(adapter)) { + device_printf(dev, "Could not setup receive structures\n"); + error = ENOMEM; + goto err_rx_struct; + } + + /* Setup OS specific network interface */ + em_setup_interface(dev, adapter); + + em_allocate_intr(adapter); + + /* Initialize statistics */ + em_clear_hw_cntrs(&adapter->hw); + em_update_stats_counters(adapter); + adapter->hw.get_link_status = 1; + em_update_link_status(adapter); + + /* Indicate SOL/IDER usage */ + if (em_check_phy_reset_block(&adapter->hw)) + device_printf(dev, + "PHY reset is blocked due to SOL/IDER session.\n"); + + /* Identify 82544 on PCIX */ + em_get_bus_info(&adapter->hw); + if (adapter->hw.bus_type == em_bus_type_pcix && + adapter->hw.mac_type == em_82544) + adapter->pcix_82544 = TRUE; + else + adapter->pcix_82544 = FALSE; + + INIT_DEBUGOUT("em_attach: end"); + + return (0); + +err_rx_struct: + em_free_transmit_structures(adapter); +err_hw_init: +err_tx_struct: + em_dma_free(adapter, &adapter->rxdma); +err_rx_desc: + em_dma_free(adapter, &adapter->txdma); +err_tx_desc: +err_pci: + em_free_intr(adapter); + em_free_pci_resources(adapter); + EM_LOCK_DESTROY(adapter); + + return (error); +} + +/********************************************************************* + * Device removal routine + * + * The detach entry point is called when the driver is being removed. + * This routine stops the adapter and deallocates all the resources + * that were allocated for driver operation. + * + * return 0 on success, positive on failure + *********************************************************************/ + +static int +em_detach(device_t dev) +{ + struct adapter *adapter = device_get_softc(dev); + struct ifnet *ifp = adapter->ifp; + + INIT_DEBUGOUT("em_detach: begin"); + +#ifdef DEVICE_POLLING + if (ifp->if_capenable & IFCAP_POLLING) + ether_poll_deregister(ifp); +#endif + + em_free_intr(adapter); + EM_LOCK(adapter); + adapter->in_detach = 1; + em_stop(adapter); + em_phy_hw_reset(&adapter->hw); + EM_UNLOCK(adapter); + ether_ifdetach(adapter->ifp); + + callout_drain(&adapter->timer); + callout_drain(&adapter->tx_fifo_timer); + + em_free_pci_resources(adapter); + bus_generic_detach(dev); + if_free(ifp); + + em_free_transmit_structures(adapter); + em_free_receive_structures(adapter); + + /* Free Transmit Descriptor ring */ + if (adapter->tx_desc_base) { + em_dma_free(adapter, &adapter->txdma); + adapter->tx_desc_base = NULL; + } + + /* Free Receive Descriptor ring */ + if (adapter->rx_desc_base) { + em_dma_free(adapter, &adapter->rxdma); + adapter->rx_desc_base = NULL; + } + + EM_LOCK_DESTROY(adapter); + + return (0); +} + +/********************************************************************* + * + * Shutdown entry point + * + **********************************************************************/ + +static int +em_shutdown(device_t dev) +{ + struct adapter *adapter = device_get_softc(dev); + EM_LOCK(adapter); + em_stop(adapter); + EM_UNLOCK(adapter); + return (0); +} + +/* + * Suspend/resume device methods. + */ +static int +em_suspend(device_t dev) +{ + struct adapter *adapter = device_get_softc(dev); + + EM_LOCK(adapter); + em_stop(adapter); + EM_UNLOCK(adapter); + + return bus_generic_suspend(dev); +} + +static int +em_resume(device_t dev) +{ + struct adapter *adapter = device_get_softc(dev); + struct ifnet *ifp = adapter->ifp; + + EM_LOCK(adapter); + em_init_locked(adapter); + if ((ifp->if_flags & IFF_UP) && + (ifp->if_drv_flags & IFF_DRV_RUNNING)) + em_start_locked(ifp); + EM_UNLOCK(adapter); + + return bus_generic_resume(dev); +} + + +/********************************************************************* + * Transmit entry point + * + * em_start is called by the stack to initiate a transmit. + * The driver will remain in this routine as long as there are + * packets to transmit and transmit resources are available. + * In case resources are not available stack is notified and + * the packet is requeued. + **********************************************************************/ + +static void +em_start_locked(struct ifnet *ifp) +{ + struct adapter *adapter = ifp->if_softc; + struct mbuf *m_head; + + EM_LOCK_ASSERT(adapter); + + if ((ifp->if_drv_flags & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) != + IFF_DRV_RUNNING) + return; + if (!adapter->link_active) + return; + + while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { + + IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); + if (m_head == NULL) + break; + /* + * em_encap() can modify our pointer, and or make it NULL on + * failure. In that event, we can't requeue. + */ + if (em_encap(adapter, &m_head)) { + if (m_head == NULL) + break; + ifp->if_drv_flags |= IFF_DRV_OACTIVE; + IFQ_DRV_PREPEND(&ifp->if_snd, m_head); + break; + } + + /* Send a copy of the frame to the BPF listener */ + BPF_MTAP(ifp, m_head); + + /* Set timeout in case hardware has problems transmitting. */ + adapter->watchdog_timer = EM_TX_TIMEOUT; + } +} + +static void +em_start(struct ifnet *ifp) +{ + struct adapter *adapter = ifp->if_softc; + + EM_LOCK(adapter); + if (ifp->if_drv_flags & IFF_DRV_RUNNING) + em_start_locked(ifp); + EM_UNLOCK(adapter); +} + +/********************************************************************* + * Ioctl entry point + * + * em_ioctl is called when the user wants to configure the + * interface. + * + * return 0 on success, positive on failure + **********************************************************************/ + +static int +em_ioctl(struct ifnet *ifp, u_long command, caddr_t data) +{ + struct adapter *adapter = ifp->if_softc; + struct ifreq *ifr = (struct ifreq *)data; + struct ifaddr *ifa = (struct ifaddr *)data; + int error = 0; + + if (adapter->in_detach) + return (error); + + switch (command) { + case SIOCSIFADDR: + case SIOCGIFADDR: + if (ifa->ifa_addr->sa_family == AF_INET) { + /* + * XXX + * Since resetting hardware takes a very long time + * and results in link renegotiation we only + * initialize the hardware only when it is absolutely + * required. + */ + ifp->if_flags |= IFF_UP; + if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { + EM_LOCK(adapter); + em_init_locked(adapter); + EM_UNLOCK(adapter); + } + arp_ifinit(ifp, ifa); + } else + error = ether_ioctl(ifp, command, data); + break; + case SIOCSIFMTU: + { + int max_frame_size; + uint16_t eeprom_data = 0; + + IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)"); + + EM_LOCK(adapter); + switch (adapter->hw.mac_type) { + case em_82573: + /* + * 82573 only supports jumbo frames + * if ASPM is disabled. + */ + em_read_eeprom(&adapter->hw, + EEPROM_INIT_3GIO_3, 1, &eeprom_data); + if (eeprom_data & EEPROM_WORD1A_ASPM_MASK) { + max_frame_size = ETHER_MAX_LEN; + break; + } + /* Allow Jumbo frames - fall thru */ + case em_82571: + case em_82572: + case em_80003es2lan: /* Limit Jumbo Frame size */ + max_frame_size = 9234; + break; + case em_ich8lan: + /* ICH8 does not support jumbo frames */ + max_frame_size = ETHER_MAX_LEN; + break; + default: + max_frame_size = MAX_JUMBO_FRAME_SIZE; + } + if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN - + ETHER_CRC_LEN) { + EM_UNLOCK(adapter); + error = EINVAL; + break; + } + + ifp->if_mtu = ifr->ifr_mtu; + adapter->hw.max_frame_size = + ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN; + em_init_locked(adapter); + EM_UNLOCK(adapter); + break; + } + case SIOCSIFFLAGS: + IOCTL_DEBUGOUT("ioctl rcv'd:\ + SIOCSIFFLAGS (Set Interface Flags)"); + EM_LOCK(adapter); + if (ifp->if_flags & IFF_UP) { + if ((ifp->if_drv_flags & IFF_DRV_RUNNING)) { + if ((ifp->if_flags ^ adapter->if_flags) & + IFF_PROMISC) { + em_disable_promisc(adapter); + em_set_promisc(adapter); + } + } else + em_init_locked(adapter); + } else { + if (ifp->if_drv_flags & IFF_DRV_RUNNING) { + em_stop(adapter); + } + } + adapter->if_flags = ifp->if_flags; + EM_UNLOCK(adapter); + break; + case SIOCADDMULTI: + case SIOCDELMULTI: + IOCTL_DEBUGOUT("ioctl rcv'd: SIOC(ADD|DEL)MULTI"); + if (ifp->if_drv_flags & IFF_DRV_RUNNING) { + EM_LOCK(adapter); + em_disable_intr(adapter); + em_set_multi(adapter); + if (adapter->hw.mac_type == em_82542_rev2_0) { + em_initialize_receive_unit(adapter); + } +#ifdef DEVICE_POLLING + if (!(ifp->if_capenable & IFCAP_POLLING)) +#endif + em_enable_intr(adapter); + EM_UNLOCK(adapter); + } + break; + case SIOCSIFMEDIA: + /* Check SOL/IDER usage */ + if (em_check_phy_reset_block(&adapter->hw)) { + device_printf(adapter->dev, "Media change is" + "blocked due to SOL/IDER session.\n"); + break; + } + case SIOCGIFMEDIA: + IOCTL_DEBUGOUT("ioctl rcv'd: \ + SIOCxIFMEDIA (Get/Set Interface Media)"); + error = ifmedia_ioctl(ifp, ifr, &adapter->media, command); + break; + case SIOCSIFCAP: + { + int mask, reinit; + + IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFCAP (Set Capabilities)"); + reinit = 0; + mask = ifr->ifr_reqcap ^ ifp->if_capenable; +#ifdef DEVICE_POLLING + if (mask & IFCAP_POLLING) { + if (ifr->ifr_reqcap & IFCAP_POLLING) { + error = ether_poll_register(em_poll, ifp); + if (error) + return (error); + EM_LOCK(adapter); + em_disable_intr(adapter); + ifp->if_capenable |= IFCAP_POLLING; + EM_UNLOCK(adapter); + } else { + error = ether_poll_deregister(ifp); + /* Enable interrupt even in error case */ + EM_LOCK(adapter); + em_enable_intr(adapter); + ifp->if_capenable &= ~IFCAP_POLLING; + EM_UNLOCK(adapter); + } + } +#endif + if (mask & IFCAP_HWCSUM) { + ifp->if_capenable ^= IFCAP_HWCSUM; + reinit = 1; + } + if (mask & IFCAP_VLAN_HWTAGGING) { + ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; + reinit = 1; + } + if (reinit && (ifp->if_drv_flags & IFF_DRV_RUNNING)) + em_init(adapter); + break; + } + default: + error = ether_ioctl(ifp, command, data); + break; + } + + return (error); +} + +/********************************************************************* + * Watchdog timer: + * + * This routine is called from the local timer every second. + * As long as transmit descriptors are being cleaned the value + * is non-zero and we do nothing. Reaching 0 indicates a tx hang + * and we then reset the device. + * + **********************************************************************/ + +static void +em_watchdog(struct adapter *adapter) +{ + + EM_LOCK_ASSERT(adapter); + + /* + ** The timer is set to 5 every time start queues a packet. + ** Then txeof keeps resetting to 5 as long as it cleans at + ** least one descriptor. + ** Finally, anytime all descriptors are clean the timer is + ** set to 0. + */ + if (adapter->watchdog_timer == 0 || --adapter->watchdog_timer) + return; + + /* If we are in this routine because of pause frames, then + * don't reset the hardware. + */ + if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_TXOFF) { + adapter->watchdog_timer = EM_TX_TIMEOUT; + return; + } + + if (em_check_for_link(&adapter->hw) == 0) + device_printf(adapter->dev, "watchdog timeout -- resetting\n"); + + adapter->ifp->if_drv_flags &= ~IFF_DRV_RUNNING; + adapter->watchdog_events++; + + em_init_locked(adapter); +} + +/********************************************************************* + * Init entry point + * + * This routine is used in two ways. It is used by the stack as + * init entry point in network interface structure. It is also used + * by the driver as a hw/sw initialization routine to get to a + * consistent state. + * + * return 0 on success, positive on failure + **********************************************************************/ + +static void +em_init_locked(struct adapter *adapter) +{ + struct ifnet *ifp = adapter->ifp; + device_t dev = adapter->dev; + uint32_t pba; + + INIT_DEBUGOUT("em_init: begin"); + + EM_LOCK_ASSERT(adapter); + + em_stop(adapter); + + /* + * Packet Buffer Allocation (PBA) + * Writing PBA sets the receive portion of the buffer + * the remainder is used for the transmit buffer. + * + * Devices before the 82547 had a Packet Buffer of 64K. + * Default allocation: PBA=48K for Rx, leaving 16K for Tx. + * After the 82547 the buffer was reduced to 40K. + * Default allocation: PBA=30K for Rx, leaving 10K for Tx. + * Note: default does not leave enough room for Jumbo Frame >10k. + */ + switch (adapter->hw.mac_type) { + case em_82547: + case em_82547_rev_2: /* 82547: Total Packet Buffer is 40K */ + if (adapter->hw.max_frame_size > EM_RXBUFFER_8192) + pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */ + else + pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */ + adapter->tx_fifo_head = 0; + adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT; + adapter->tx_fifo_size = + (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT; + break; + /* Total Packet Buffer on these is 48K */ + case em_82571: + case em_82572: + case em_80003es2lan: + pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */ + break; + case em_82573: /* 82573: Total Packet Buffer is 32K */ + pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */ + break; + case em_ich8lan: + pba = E1000_PBA_8K; + break; + default: + /* Devices before 82547 had a Packet Buffer of 64K. */ + if(adapter->hw.max_frame_size > EM_RXBUFFER_8192) + pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */ + else + pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */ + } + + INIT_DEBUGOUT1("em_init: pba=%dK",pba); + E1000_WRITE_REG(&adapter->hw, PBA, pba); + + /* Get the latest mac address, User can use a LAA */ + bcopy(IF_LLADDR(adapter->ifp), adapter->hw.mac_addr, + ETHER_ADDR_LEN); + + /* Initialize the hardware */ + if (em_hardware_init(adapter)) { + device_printf(dev, "Unable to initialize the hardware\n"); + return; + } + em_update_link_status(adapter); + + if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) + em_enable_vlans(adapter); + + /* Set hardware offload abilities */ + ifp->if_hwassist = 0; + if (adapter->hw.mac_type >= em_82543) { + if (ifp->if_capenable & IFCAP_TXCSUM) + ifp->if_hwassist |= EM_CHECKSUM_FEATURES; +#ifdef EM_TSO + if (ifp->if_capenable & IFCAP_TSO) + ifp->if_hwassist |= EM_TCPSEG_FEATURES; +#endif + } + + /* Prepare transmit descriptors and buffers */ + em_setup_transmit_structures(adapter); + em_initialize_transmit_unit(adapter); + + /* Setup Multicast table */ + em_set_multi(adapter); + + /* Prepare receive descriptors and buffers */ + if (em_setup_receive_structures(adapter)) { + device_printf(dev, "Could not setup receive structures\n"); + em_stop(adapter); + return; + } + em_initialize_receive_unit(adapter); + + /* Don't lose promiscuous settings */ + em_set_promisc(adapter); + + ifp->if_drv_flags |= IFF_DRV_RUNNING; + ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; + + callout_reset(&adapter->timer, hz, em_local_timer, adapter); + em_clear_hw_cntrs(&adapter->hw); + +#ifdef DEVICE_POLLING + /* + * Only enable interrupts if we are not polling, make sure + * they are off otherwise. + */ + if (ifp->if_capenable & IFCAP_POLLING) + em_disable_intr(adapter); + else +#endif /* DEVICE_POLLING */ + em_enable_intr(adapter); + + /* Don't reset the phy next time init gets called */ + adapter->hw.phy_reset_disable = TRUE; +} + +static void +em_init(void *arg) +{ + struct adapter *adapter = arg; + + EM_LOCK(adapter); + em_init_locked(adapter); + EM_UNLOCK(adapter); +} + + +#ifdef DEVICE_POLLING +/********************************************************************* + * + * Legacy polling routine + * + *********************************************************************/ +static void +em_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) +{ + struct adapter *adapter = ifp->if_softc; + uint32_t reg_icr; + + EM_LOCK(adapter); + if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { + EM_UNLOCK(adapter); + return; + } + + if (cmd == POLL_AND_CHECK_STATUS) { + reg_icr = E1000_READ_REG(&adapter->hw, ICR); + if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { + callout_stop(&adapter->timer); + adapter->hw.get_link_status = 1; + em_check_for_link(&adapter->hw); + em_update_link_status(adapter); + callout_reset(&adapter->timer, hz, + em_local_timer, adapter); + } + } + em_rxeof(adapter, count); + em_txeof(adapter); + + if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) + em_start_locked(ifp); + EM_UNLOCK(adapter); +} +#endif /* DEVICE_POLLING */ + +#ifndef EM_FAST_INTR +/********************************************************************* + * + * Legacy Interrupt Service routine + * + *********************************************************************/ +#define EM_MAX_INTR 10 + +static void +em_intr(void *arg) +{ + struct adapter *adapter = arg; + struct ifnet *ifp; + uint32_t reg_icr; + + EM_LOCK(adapter); + ifp = adapter->ifp; + +#ifdef DEVICE_POLLING + if (ifp->if_capenable & IFCAP_POLLING) { + EM_UNLOCK(adapter); + return; + } +#endif /* DEVICE_POLLING */ + + reg_icr = E1000_READ_REG(&adapter->hw, ICR); + + if ((reg_icr == 0) || (adapter->hw.mac_type >= em_82571 && + (reg_icr & E1000_ICR_INT_ASSERTED) == 0) || + /* + * XXX: some laptops trigger several spurious interrupts + * on em(4) when in the resume cycle. The ICR register + * reports all-ones value in this case. Processing such + * interrupts would lead to a freeze. I don't know why. + */ + (reg_icr == 0xffffffff)) + goto leaving; + + for (int i = 0;i < EM_MAX_INTR; ++i) { + if (ifp->if_drv_flags & IFF_DRV_RUNNING) { + em_rxeof(adapter, adapter->rx_process_limit); + em_txeof(adapter); + } + /* Link status change */ + if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { + callout_stop(&adapter->timer); + adapter->hw.get_link_status = 1; + em_check_for_link(&adapter->hw); + em_update_link_status(adapter); + callout_reset(&adapter->timer, hz, + em_local_timer, adapter); + } + + if (reg_icr & E1000_ICR_RXO) + adapter->rx_overruns++; + } + +leaving: + if (ifp->if_drv_flags & IFF_DRV_RUNNING && + !IFQ_DRV_IS_EMPTY(&ifp->if_snd)) + em_start_locked(ifp); + EM_UNLOCK(adapter); +} + +#else /* EM_FAST_INTR */ + +static void +em_handle_link(void *context, int pending) +{ + struct adapter *adapter = context; + struct ifnet *ifp; + + ifp = adapter->ifp; + + EM_LOCK(adapter); + + callout_stop(&adapter->timer); + adapter->hw.get_link_status = 1; + em_check_for_link(&adapter->hw); + em_update_link_status(adapter); + callout_reset(&adapter->timer, hz, em_local_timer, adapter); + EM_UNLOCK(adapter); +} + +static void +em_handle_rxtx(void *context, int pending) +{ + struct adapter *adapter = context; + struct ifnet *ifp; + + NET_LOCK_GIANT(); + ifp = adapter->ifp; + + /* + * TODO: + * It should be possible to run the tx clean loop without the lock. + */ + if (ifp->if_drv_flags & IFF_DRV_RUNNING) { + if (em_rxeof(adapter, adapter->rx_process_limit) != 0) + taskqueue_enqueue(adapter->tq, &adapter->rxtx_task); + EM_LOCK(adapter); + em_txeof(adapter); + + if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) + em_start_locked(ifp); + EM_UNLOCK(adapter); + } + + em_enable_intr(adapter); + NET_UNLOCK_GIANT(); +} + +/********************************************************************* + * + * Fast Interrupt Service routine + * + *********************************************************************/ +static void +em_intr_fast(void *arg) +{ + struct adapter *adapter = arg; + struct ifnet *ifp; + uint32_t reg_icr; + + ifp = adapter->ifp; + + reg_icr = E1000_READ_REG(&adapter->hw, ICR); + + /* Hot eject? */ + if (reg_icr == 0xffffffff) + return; + + /* Definitely not our interrupt. */ + if (reg_icr == 0x0) + return; + + /* + * Starting with the 82571 chip, bit 31 should be used to + * determine whether the interrupt belongs to us. + */ + if (adapter->hw.mac_type >= em_82571 && + (reg_icr & E1000_ICR_INT_ASSERTED) == 0) + return; + + /* + * Mask interrupts until the taskqueue is finished running. This is + * cheap, just assume that it is needed. This also works around the + * MSI message reordering errata on certain systems. + */ + em_disable_intr(adapter); + taskqueue_enqueue(adapter->tq, &adapter->rxtx_task); + + /* Link status change */ + if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) + taskqueue_enqueue(taskqueue_fast, &adapter->link_task); + + if (reg_icr & E1000_ICR_RXO) + adapter->rx_overruns++; +} +#endif /* EM_FAST_INTR */ + +/********************************************************************* + * + * Media Ioctl callback + * + * This routine is called whenever the user queries the status of + * the interface using ifconfig. + * + **********************************************************************/ +static void +em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr) +{ + struct adapter *adapter = ifp->if_softc; + u_char fiber_type = IFM_1000_SX; + + INIT_DEBUGOUT("em_media_status: begin"); + + EM_LOCK(adapter); + em_check_for_link(&adapter->hw); + em_update_link_status(adapter); + + ifmr->ifm_status = IFM_AVALID; + ifmr->ifm_active = IFM_ETHER; + + if (!adapter->link_active) { + EM_UNLOCK(adapter); + return; + } + + ifmr->ifm_status |= IFM_ACTIVE; + + if ((adapter->hw.media_type == em_media_type_fiber) || + (adapter->hw.media_type == em_media_type_internal_serdes)) { + if (adapter->hw.mac_type == em_82545) + fiber_type = IFM_1000_LX; + ifmr->ifm_active |= fiber_type | IFM_FDX; + } else { + switch (adapter->link_speed) { + case 10: + ifmr->ifm_active |= IFM_10_T; + break; + case 100: + ifmr->ifm_active |= IFM_100_TX; + break; + case 1000: + ifmr->ifm_active |= IFM_1000_T; + break; + } + if (adapter->link_duplex == FULL_DUPLEX) + ifmr->ifm_active |= IFM_FDX; + else + ifmr->ifm_active |= IFM_HDX; + } + EM_UNLOCK(adapter); +} + +/********************************************************************* + * + * Media Ioctl callback + * + * This routine is called when the user changes speed/duplex using + * media/mediopt option with ifconfig. + * + **********************************************************************/ +static int +em_media_change(struct ifnet *ifp) +{ + struct adapter *adapter = ifp->if_softc; + struct ifmedia *ifm = &adapter->media; + + INIT_DEBUGOUT("em_media_change: begin"); + + if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) + return (EINVAL); + + EM_LOCK(adapter); + switch (IFM_SUBTYPE(ifm->ifm_media)) { + case IFM_AUTO: + adapter->hw.autoneg = DO_AUTO_NEG; + adapter->hw.autoneg_advertised = AUTONEG_ADV_DEFAULT; + break; + case IFM_1000_LX: + case IFM_1000_SX: + case IFM_1000_T: + adapter->hw.autoneg = DO_AUTO_NEG; + adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL; + break; + case IFM_100_TX: + adapter->hw.autoneg = FALSE; + adapter->hw.autoneg_advertised = 0; + if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) + adapter->hw.forced_speed_duplex = em_100_full; + else + adapter->hw.forced_speed_duplex = em_100_half; + break; + case IFM_10_T: + adapter->hw.autoneg = FALSE; + adapter->hw.autoneg_advertised = 0; + if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) + adapter->hw.forced_speed_duplex = em_10_full; + else + adapter->hw.forced_speed_duplex = em_10_half; + break; + default: + device_printf(adapter->dev, "Unsupported media type\n"); + } + + /* As the speed/duplex settings my have changed we need to + * reset the PHY. + */ + adapter->hw.phy_reset_disable = FALSE; + + em_init_locked(adapter); + EM_UNLOCK(adapter); + + return (0); +} + +/********************************************************************* + * + * This routine maps the mbufs to tx descriptors. + * + * return 0 on success, positive on failure + **********************************************************************/ +static int +em_encap(struct adapter *adapter, struct mbuf **m_headp) +{ + struct ifnet *ifp = adapter->ifp; + bus_dma_segment_t segs[EM_MAX_SCATTER]; + bus_dmamap_t map; + struct em_buffer *tx_buffer, *tx_buffer_mapped; + struct em_tx_desc *current_tx_desc; + struct mbuf *m_head; + struct m_tag *mtag; + uint32_t txd_upper, txd_lower, txd_used, txd_saved; + int nsegs, i, j, first, last = 0; + int error, do_tso, tso_desc = 0; + + m_head = *m_headp; + current_tx_desc = NULL; + txd_upper = txd_lower = txd_used = txd_saved = 0; + +#ifdef EM_TSO + do_tso = ((m_head->m_pkthdr.csum_flags & CSUM_TSO) != 0); +#else + do_tso = 0; +#endif + + /* + * Force a cleanup if number of TX descriptors + * available hits the threshold + */ + if (adapter->num_tx_desc_avail <= EM_TX_CLEANUP_THRESHOLD) { + em_txeof(adapter); + /* Now do we at least have a minimal? */ + if (adapter->num_tx_desc_avail <= EM_TX_OP_THRESHOLD) { + adapter->no_tx_desc_avail1++; + return (ENOBUFS); + } + } + + /* Find out if we are in vlan mode. */ + mtag = VLAN_OUTPUT_TAG(ifp, m_head); + + /* + * When operating in promiscuous mode, hardware encapsulation for + * packets is disabled. This means we have to add the vlan + * encapsulation in the driver, since it will have come down from the + * VLAN layer with a tag instead of a VLAN header. + */ + if (mtag != NULL && adapter->em_insert_vlan_header) { + struct ether_vlan_header *evl; + struct ether_header eh; + + m_head = m_pullup(m_head, sizeof(eh)); + if (m_head == NULL) { + *m_headp = NULL; + return (ENOBUFS); + } + eh = *mtod(m_head, struct ether_header *); + M_PREPEND(m_head, sizeof(*evl), M_DONTWAIT); + if (m_head == NULL) { + *m_headp = NULL; + return (ENOBUFS); + } + m_head = m_pullup(m_head, sizeof(*evl)); + if (m_head == NULL) { + *m_headp = NULL; + return (ENOBUFS); + } + evl = mtod(m_head, struct ether_vlan_header *); + bcopy(&eh, evl, sizeof(*evl)); + evl->evl_proto = evl->evl_encap_proto; + evl->evl_encap_proto = htons(ETHERTYPE_VLAN); + evl->evl_tag = htons(VLAN_TAG_VALUE(mtag)); + m_tag_delete(m_head, mtag); + mtag = NULL; + *m_headp = m_head; + } + + /* + * TSO workaround: + * If an mbuf is only header we need + * to pull 4 bytes of data into it. + */ + if (do_tso && (m_head->m_len <= M_TSO_LEN)) { + m_head = m_pullup(m_head, M_TSO_LEN + 4); + *m_headp = m_head; + if (m_head == NULL) + return (ENOBUFS); + } + + /* + * Capture the first descriptor index, + * this descriptor will have the index + * of the EOP which is the only one that + * now gets a DONE bit writeback. + */ + first = adapter->next_avail_tx_desc; + + /* + * Map the packet for DMA. + */ + tx_buffer = &adapter->tx_buffer_area[first]; + tx_buffer_mapped = tx_buffer; + map = tx_buffer->map; + error = bus_dmamap_load_mbuf_sg(adapter->txtag, tx_buffer->map, + *m_headp, segs, &nsegs, BUS_DMA_NOWAIT); + if (error == EFBIG) { + struct mbuf *m; + + m = m_defrag(*m_headp, M_DONTWAIT); + if (m == NULL) { + adapter->mbuf_alloc_failed++; + m_freem(*m_headp); + *m_headp = NULL; + return (ENOBUFS); + } + *m_headp = m; + m_head = *m_headp; + + /* Try it again */ + error = bus_dmamap_load_mbuf_sg(adapter->txtag, tx_buffer->map, + *m_headp, segs, &nsegs, BUS_DMA_NOWAIT); + + if (error == ENOMEM) { + adapter->no_tx_dma_setup++; + return (error); + } else if (error != 0) { + adapter->no_tx_dma_setup++; + m_freem(*m_headp); + *m_headp = NULL; + return (error); + } + } else if (error == ENOMEM) { + adapter->no_tx_dma_setup++; + return (error); + } else if (error != 0) { + adapter->no_tx_dma_setup++; + m_freem(*m_headp); + *m_headp = NULL; + return (error); + } + + /* + * TSO Hardware workaround, if this packet is not + * TSO, and is only a single descriptor long, and + * it follows a TSO burst, then we need to add a + * sentinel descriptor to prevent premature writeback. + */ + if ((do_tso == 0) && (adapter->tx_tso == TRUE)) { + if (nsegs == 1) + tso_desc = TRUE; + adapter->tx_tso = FALSE; + } + + if (nsegs > (adapter->num_tx_desc_avail - 2)) { + adapter->no_tx_desc_avail2++; + error = ENOBUFS; + goto encap_fail; + } + + /* Do hardware assists */ + if (ifp->if_hwassist > 0) { +#ifdef EM_TSO + if (em_tso_setup(adapter, m_head, &txd_upper, &txd_lower)) { + /* we need to make a final sentinel transmit desc */ + tso_desc = TRUE; + } else +#endif + em_transmit_checksum_setup(adapter, m_head, + &txd_upper, &txd_lower); + } + + i = adapter->next_avail_tx_desc; + if (adapter->pcix_82544) + txd_saved = i; + + /* Set up our transmit descriptors */ + for (j = 0; j < nsegs; j++) { + bus_size_t seg_len; + bus_addr_t seg_addr; + /* If adapter is 82544 and on PCIX bus */ + if(adapter->pcix_82544) { + DESC_ARRAY desc_array; + uint32_t array_elements, counter; + /* + * Check the Address and Length combination and + * split the data accordingly + */ + array_elements = em_fill_descriptors(segs[j].ds_addr, + segs[j].ds_len, &desc_array); + for (counter = 0; counter < array_elements; counter++) { + if (txd_used == adapter->num_tx_desc_avail) { + adapter->next_avail_tx_desc = txd_saved; + adapter->no_tx_desc_avail2++; + error = ENOBUFS; + goto encap_fail; + } + tx_buffer = &adapter->tx_buffer_area[i]; + current_tx_desc = &adapter->tx_desc_base[i]; + current_tx_desc->buffer_addr = htole64( + desc_array.descriptor[counter].address); + current_tx_desc->lower.data = htole32( + (adapter->txd_cmd | txd_lower | (uint16_t) + desc_array.descriptor[counter].length)); + current_tx_desc->upper.data = + htole32((txd_upper)); + last = i; + if (++i == adapter->num_tx_desc) + i = 0; + tx_buffer->m_head = NULL; + tx_buffer->next_eop = -1; + txd_used++; + } + } else { + tx_buffer = &adapter->tx_buffer_area[i]; + current_tx_desc = &adapter->tx_desc_base[i]; + seg_addr = htole64(segs[j].ds_addr); + seg_len = segs[j].ds_len; + /* + ** TSO Workaround: + ** If this is the last descriptor, we want to + ** split it so we have a small final sentinel + */ + if (tso_desc && (j == (nsegs -1)) && (seg_len > 8)) { + seg_len -= 4; + current_tx_desc->buffer_addr = seg_addr; + current_tx_desc->lower.data = htole32( + adapter->txd_cmd | txd_lower | seg_len); + current_tx_desc->upper.data = + htole32(txd_upper); + if (++i == adapter->num_tx_desc) + i = 0; + /* Now make the sentinel */ + ++txd_used; /* using an extra txd */ + current_tx_desc = &adapter->tx_desc_base[i]; + tx_buffer = &adapter->tx_buffer_area[i]; + current_tx_desc->buffer_addr = + seg_addr + seg_len; + current_tx_desc->lower.data = htole32( + adapter->txd_cmd | txd_lower | 4); + current_tx_desc->upper.data = + htole32(txd_upper); + last = i; + if (++i == adapter->num_tx_desc) + i = 0; + } else { + current_tx_desc->buffer_addr = seg_addr; + current_tx_desc->lower.data = htole32( + adapter->txd_cmd | txd_lower | seg_len); + current_tx_desc->upper.data = + htole32(txd_upper); + last = i; + if (++i == adapter->num_tx_desc) + i = 0; + } + tx_buffer->m_head = NULL; + tx_buffer->next_eop = -1; + } + } + + adapter->next_avail_tx_desc = i; + if (adapter->pcix_82544) + adapter->num_tx_desc_avail -= txd_used; + else { + adapter->num_tx_desc_avail -= nsegs; + if (tso_desc) /* TSO used an extra for sentinel */ + adapter->num_tx_desc_avail -= txd_used; + } + + if (mtag != NULL) { + /* Set the vlan id. */ + current_tx_desc->upper.fields.special = + htole16(VLAN_TAG_VALUE(mtag)); + /* Tell hardware to add tag */ + current_tx_desc->lower.data |= + htole32(E1000_TXD_CMD_VLE); + } + + tx_buffer->m_head = m_head; + tx_buffer_mapped->map = tx_buffer->map; + tx_buffer->map = map; + bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE); + + /* + * Last Descriptor of Packet + * needs End Of Packet (EOP) + * and Report Status (RS) + */ + current_tx_desc->lower.data |= + htole32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS); + /* + * Keep track in the first buffer which + * descriptor will be written back + */ + tx_buffer = &adapter->tx_buffer_area[first]; + tx_buffer->next_eop = last; + + /* + * Advance the Transmit Descriptor Tail (Tdt), this tells the E1000 + * that this frame is available to transmit. + */ + bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map, + BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); + if (adapter->hw.mac_type == em_82547 && + adapter->link_duplex == HALF_DUPLEX) + em_82547_move_tail(adapter); + else { + E1000_WRITE_REG(&adapter->hw, TDT, i); + if (adapter->hw.mac_type == em_82547) + em_82547_update_fifo_head(adapter, + m_head->m_pkthdr.len); + } + + return (0); + +encap_fail: + bus_dmamap_unload(adapter->txtag, tx_buffer->map); + return (error); +} + +/********************************************************************* + * + * 82547 workaround to avoid controller hang in half-duplex environment. + * The workaround is to avoid queuing a large packet that would span + * the internal Tx FIFO ring boundary. We need to reset the FIFO pointers + * in this case. We do that only when FIFO is quiescent. + * + **********************************************************************/ +static void +em_82547_move_tail(void *arg) +{ + struct adapter *adapter = arg; + uint16_t hw_tdt; + uint16_t sw_tdt; + struct em_tx_desc *tx_desc; + uint16_t length = 0; + boolean_t eop = 0; + + EM_LOCK_ASSERT(adapter); + + hw_tdt = E1000_READ_REG(&adapter->hw, TDT); + sw_tdt = adapter->next_avail_tx_desc; + + while (hw_tdt != sw_tdt) { + tx_desc = &adapter->tx_desc_base[hw_tdt]; + length += tx_desc->lower.flags.length; + eop = tx_desc->lower.data & E1000_TXD_CMD_EOP; + if (++hw_tdt == adapter->num_tx_desc) + hw_tdt = 0; + + if (eop) { + if (em_82547_fifo_workaround(adapter, length)) { + adapter->tx_fifo_wrk_cnt++; + callout_reset(&adapter->tx_fifo_timer, 1, + em_82547_move_tail, adapter); + break; + } + E1000_WRITE_REG(&adapter->hw, TDT, hw_tdt); + em_82547_update_fifo_head(adapter, length); + length = 0; + } + } +} + +static int +em_82547_fifo_workaround(struct adapter *adapter, int len) +{ + int fifo_space, fifo_pkt_len; + + fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR); + + if (adapter->link_duplex == HALF_DUPLEX) { + fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head; + + if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) { + if (em_82547_tx_fifo_reset(adapter)) + return (0); + else + return (1); + } + } + + return (0); +} + +static void +em_82547_update_fifo_head(struct adapter *adapter, int len) +{ + int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR); + + /* tx_fifo_head is always 16 byte aligned */ + adapter->tx_fifo_head += fifo_pkt_len; + if (adapter->tx_fifo_head >= adapter->tx_fifo_size) { + adapter->tx_fifo_head -= adapter->tx_fifo_size; + } +} + + +static int +em_82547_tx_fifo_reset(struct adapter *adapter) +{ + uint32_t tctl; + + if ((E1000_READ_REG(&adapter->hw, TDT) == + E1000_READ_REG(&adapter->hw, TDH)) && + (E1000_READ_REG(&adapter->hw, TDFT) == + E1000_READ_REG(&adapter->hw, TDFH)) && + (E1000_READ_REG(&adapter->hw, TDFTS) == + E1000_READ_REG(&adapter->hw, TDFHS)) && + (E1000_READ_REG(&adapter->hw, TDFPC) == 0)) { + /* Disable TX unit */ + tctl = E1000_READ_REG(&adapter->hw, TCTL); + E1000_WRITE_REG(&adapter->hw, TCTL, tctl & ~E1000_TCTL_EN); + + /* Reset FIFO pointers */ + E1000_WRITE_REG(&adapter->hw, TDFT, adapter->tx_head_addr); + E1000_WRITE_REG(&adapter->hw, TDFH, adapter->tx_head_addr); + E1000_WRITE_REG(&adapter->hw, TDFTS, adapter->tx_head_addr); + E1000_WRITE_REG(&adapter->hw, TDFHS, adapter->tx_head_addr); + + /* Re-enable TX unit */ + E1000_WRITE_REG(&adapter->hw, TCTL, tctl); + E1000_WRITE_FLUSH(&adapter->hw); + + adapter->tx_fifo_head = 0; + adapter->tx_fifo_reset_cnt++; + + return (TRUE); + } + else { + return (FALSE); + } +} + +static void +em_set_promisc(struct adapter *adapter) +{ + struct ifnet *ifp = adapter->ifp; + uint32_t reg_rctl; + + reg_rctl = E1000_READ_REG(&adapter->hw, RCTL); + + if (ifp->if_flags & IFF_PROMISC) { + reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); + E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl); + /* Disable VLAN stripping in promiscous mode + * This enables bridging of vlan tagged frames to occur + * and also allows vlan tags to be seen in tcpdump + */ + if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) + em_disable_vlans(adapter); + adapter->em_insert_vlan_header = 1; + } else if (ifp->if_flags & IFF_ALLMULTI) { + reg_rctl |= E1000_RCTL_MPE; + reg_rctl &= ~E1000_RCTL_UPE; + E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl); + adapter->em_insert_vlan_header = 0; + } else + adapter->em_insert_vlan_header = 0; +} + +static void +em_disable_promisc(struct adapter *adapter) +{ + struct ifnet *ifp = adapter->ifp; + uint32_t reg_rctl; + + reg_rctl = E1000_READ_REG(&adapter->hw, RCTL); + + reg_rctl &= (~E1000_RCTL_UPE); + reg_rctl &= (~E1000_RCTL_MPE); + E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl); + + if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) + em_enable_vlans(adapter); + adapter->em_insert_vlan_header = 0; +} + + +/********************************************************************* + * Multicast Update + * + * This routine is called whenever multicast address list is updated. + * + **********************************************************************/ + +static void +em_set_multi(struct adapter *adapter) +{ + struct ifnet *ifp = adapter->ifp; + struct ifmultiaddr *ifma; + uint32_t reg_rctl = 0; + uint8_t mta[MAX_NUM_MULTICAST_ADDRESSES * ETH_LENGTH_OF_ADDRESS]; + int mcnt = 0; + + IOCTL_DEBUGOUT("em_set_multi: begin"); + + if (adapter->hw.mac_type == em_82542_rev2_0) { + reg_rctl = E1000_READ_REG(&adapter->hw, RCTL); + if (adapter->hw.pci_cmd_word & CMD_MEM_WRT_INVALIDATE) + em_pci_clear_mwi(&adapter->hw); + reg_rctl |= E1000_RCTL_RST; + E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl); + msec_delay(5); + } + + IF_ADDR_LOCK(ifp); + TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { + if (ifma->ifma_addr->sa_family != AF_LINK) + continue; + + if (mcnt == MAX_NUM_MULTICAST_ADDRESSES) + break; + + bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), + &mta[mcnt*ETH_LENGTH_OF_ADDRESS], ETH_LENGTH_OF_ADDRESS); + mcnt++; + } + IF_ADDR_UNLOCK(ifp); + + if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) { + reg_rctl = E1000_READ_REG(&adapter->hw, RCTL); + reg_rctl |= E1000_RCTL_MPE; + E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl); + } else + em_mc_addr_list_update(&adapter->hw, mta, mcnt, 0, 1); + + if (adapter->hw.mac_type == em_82542_rev2_0) { + reg_rctl = E1000_READ_REG(&adapter->hw, RCTL); + reg_rctl &= ~E1000_RCTL_RST; + E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl); + msec_delay(5); + if (adapter->hw.pci_cmd_word & CMD_MEM_WRT_INVALIDATE) + em_pci_set_mwi(&adapter->hw); + } +} + + +/********************************************************************* + * Timer routine + * + * This routine checks for link status and updates statistics. + * + **********************************************************************/ + +static void +em_local_timer(void *arg) +{ + struct adapter *adapter = arg; + struct ifnet *ifp = adapter->ifp; + + EM_LOCK_ASSERT(adapter); + + em_check_for_link(&adapter->hw); + em_update_link_status(adapter); + em_update_stats_counters(adapter); + if (em_display_debug_stats && ifp->if_drv_flags & IFF_DRV_RUNNING) + em_print_hw_stats(adapter); + em_smartspeed(adapter); + /* + * Each second we check the watchdog to + * protect against hardware hangs. + */ + em_watchdog(adapter); + + callout_reset(&adapter->timer, hz, em_local_timer, adapter); + +} + +static void +em_update_link_status(struct adapter *adapter) +{ + struct ifnet *ifp = adapter->ifp; + device_t dev = adapter->dev; + + if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU) { + if (adapter->link_active == 0) { + em_get_speed_and_duplex(&adapter->hw, + &adapter->link_speed, &adapter->link_duplex); + /* Check if we may set SPEED_MODE bit on PCI-E */ + if ((adapter->link_speed == SPEED_1000) && + ((adapter->hw.mac_type == em_82571) || + (adapter->hw.mac_type == em_82572))) { + int tarc0; + + tarc0 = E1000_READ_REG(&adapter->hw, TARC0); + tarc0 |= SPEED_MODE_BIT; + E1000_WRITE_REG(&adapter->hw, TARC0, tarc0); + } + if (bootverbose) + device_printf(dev, "Link is up %d Mbps %s\n", + adapter->link_speed, + ((adapter->link_duplex == FULL_DUPLEX) ? + "Full Duplex" : "Half Duplex")); + adapter->link_active = 1; + adapter->smartspeed = 0; + ifp->if_baudrate = adapter->link_speed * 1000000; + if_link_state_change(ifp, LINK_STATE_UP); + } + } else { + if (adapter->link_active == 1) { + ifp->if_baudrate = adapter->link_speed = 0; + adapter->link_duplex = 0; + if (bootverbose) + device_printf(dev, "Link is Down\n"); + adapter->link_active = 0; + if_link_state_change(ifp, LINK_STATE_DOWN); + } + } +} + +/********************************************************************* + * + * This routine disables all traffic on the adapter by issuing a + * global reset on the MAC and deallocates TX/RX buffers. + * + **********************************************************************/ + +static void +em_stop(void *arg) +{ + struct adapter *adapter = arg; + struct ifnet *ifp = adapter->ifp; + + EM_LOCK_ASSERT(adapter); + + INIT_DEBUGOUT("em_stop: begin"); + + em_disable_intr(adapter); + callout_stop(&adapter->timer); + callout_stop(&adapter->tx_fifo_timer); + + /* Tell the stack that the interface is no longer active */ + ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); + em_reset_hw(&adapter->hw); +} + + +/********************************************************************* + * + * Determine hardware revision. + * + **********************************************************************/ +static void +em_identify_hardware(struct adapter *adapter) +{ + device_t dev = adapter->dev; + + /* Make sure our PCI config space has the necessary stuff set */ + adapter->hw.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2); + if ((adapter->hw.pci_cmd_word & PCIM_CMD_BUSMASTEREN) == 0 && + (adapter->hw.pci_cmd_word & PCIM_CMD_MEMEN)) { + device_printf(dev, "Memory Access and/or Bus Master bits " + "were not set!\n"); + adapter->hw.pci_cmd_word |= + (PCIM_CMD_BUSMASTEREN | PCIM_CMD_MEMEN); + pci_write_config(dev, PCIR_COMMAND, + adapter->hw.pci_cmd_word, 2); + } + + /* Save off the information about this board */ + adapter->hw.vendor_id = pci_get_vendor(dev); + adapter->hw.device_id = pci_get_device(dev); + adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1); + adapter->hw.subsystem_vendor_id = + pci_read_config(dev, PCIR_SUBVEND_0, 2); + adapter->hw.subsystem_id = pci_read_config(dev, PCIR_SUBDEV_0, 2); + + /* Identify the MAC */ + if (em_set_mac_type(&adapter->hw)) + device_printf(dev, "Unknown MAC Type\n"); + + if (adapter->hw.mac_type == em_82541 || + adapter->hw.mac_type == em_82541_rev_2 || + adapter->hw.mac_type == em_82547 || + adapter->hw.mac_type == em_82547_rev_2) + adapter->hw.phy_init_script = TRUE; +} + +static int +em_allocate_pci_resources(struct adapter *adapter) +{ + device_t dev = adapter->dev; + int val, rid; + + rid = PCIR_BAR(0); + adapter->res_memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY, + &rid, RF_ACTIVE); + if (adapter->res_memory == NULL) { + device_printf(dev, "Unable to allocate bus resource: memory\n"); + return (ENXIO); + } + adapter->osdep.mem_bus_space_tag = + rman_get_bustag(adapter->res_memory); + adapter->osdep.mem_bus_space_handle = + rman_get_bushandle(adapter->res_memory); + adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle; + + if (adapter->hw.mac_type > em_82543) { + /* Figure our where our IO BAR is ? */ + for (rid = PCIR_BAR(0); rid < PCIR_CIS;) { + val = pci_read_config(dev, rid, 4); + if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) { + adapter->io_rid = rid; + break; + } + rid += 4; + /* check for 64bit BAR */ + if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT) + rid += 4; + } + if (rid >= PCIR_CIS) { + device_printf(dev, "Unable to locate IO BAR\n"); + return (ENXIO); + } + adapter->res_ioport = bus_alloc_resource_any(dev, + SYS_RES_IOPORT, &adapter->io_rid, RF_ACTIVE); + if (adapter->res_ioport == NULL) { + device_printf(dev, "Unable to allocate bus resource: " + "ioport\n"); + return (ENXIO); + } + adapter->hw.io_base = 0; + adapter->osdep.io_bus_space_tag = + rman_get_bustag(adapter->res_ioport); + adapter->osdep.io_bus_space_handle = + rman_get_bushandle(adapter->res_ioport); + } + + /* For ICH8 we need to find the flash memory. */ + if (adapter->hw.mac_type == em_ich8lan) { + rid = EM_FLASH; + adapter->flash_mem = bus_alloc_resource_any(dev, + SYS_RES_MEMORY, &rid, RF_ACTIVE); + adapter->osdep.flash_bus_space_tag = + rman_get_bustag(adapter->flash_mem); + adapter->osdep.flash_bus_space_handle = + rman_get_bushandle(adapter->flash_mem); + } + + rid = 0x0; + adapter->res_interrupt = bus_alloc_resource_any(dev, + SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE); + if (adapter->res_interrupt == NULL) { + device_printf(dev, "Unable to allocate bus resource: " + "interrupt\n"); + return (ENXIO); + } + + adapter->hw.back = &adapter->osdep; + + return (0); +} + +/********************************************************************* + * + * Setup the appropriate Interrupt handlers. + * + **********************************************************************/ +int +em_allocate_intr(struct adapter *adapter) +{ + device_t dev = adapter->dev; + int error; + + /* Manually turn off all interrupts */ + E1000_WRITE_REG(&adapter->hw, IMC, 0xffffffff); + +#ifndef EM_FAST_INTR + /* We do Legacy setup */ + if (adapter->int_handler_tag == NULL && + (error = bus_setup_intr(dev, adapter->res_interrupt, + INTR_TYPE_NET | INTR_MPSAFE, em_intr, adapter, + &adapter->int_handler_tag)) != 0) { + device_printf(dev, "Failed to register interrupt handler"); + return (error); + } + +#else /* EM_FAST_INTR */ + /* + * Try allocating a fast interrupt and the associated deferred + * processing contexts. + */ + TASK_INIT(&adapter->rxtx_task, 0, em_handle_rxtx, adapter); + TASK_INIT(&adapter->link_task, 0, em_handle_link, adapter); + adapter->tq = taskqueue_create_fast("em_taskq", M_NOWAIT, + taskqueue_thread_enqueue, &adapter->tq); + taskqueue_start_threads(&adapter->tq, 1, PI_NET, "%s taskq", + device_get_nameunit(adapter->dev)); + if ((error = bus_setup_intr(dev, adapter->res_interrupt, + INTR_TYPE_NET | INTR_FAST, em_intr_fast, adapter, + &adapter->int_handler_tag)) != 0) { + device_printf(dev, "Failed to register fast interrupt " + "handler: %d\n", error); + taskqueue_free(adapter->tq); + adapter->tq = NULL; + return (error); + } +#endif /* EM_FAST_INTR */ + + em_enable_intr(adapter); + return (0); +} + +static void +em_free_intr(struct adapter *adapter) +{ + device_t dev = adapter->dev; + + if (adapter->res_interrupt != NULL) { + bus_teardown_intr(dev, adapter->res_interrupt, + adapter->int_handler_tag); + adapter->int_handler_tag = NULL; + } +#ifdef EM_FAST_INTR + if (adapter->tq != NULL) { + taskqueue_drain(adapter->tq, &adapter->rxtx_task); + taskqueue_drain(taskqueue_fast, &adapter->link_task); + taskqueue_free(adapter->tq); + adapter->tq = NULL; + } +#endif +} + +static void +em_free_pci_resources(struct adapter *adapter) +{ + device_t dev = adapter->dev; + + if (adapter->res_interrupt != NULL) + bus_release_resource(dev, SYS_RES_IRQ, + 0, adapter->res_interrupt); + + if (adapter->res_memory != NULL) + bus_release_resource(dev, SYS_RES_MEMORY, + PCIR_BAR(0), adapter->res_memory); + + if (adapter->flash_mem != NULL) + bus_release_resource(dev, SYS_RES_MEMORY, + EM_FLASH, adapter->flash_mem); + + if (adapter->res_ioport != NULL) + bus_release_resource(dev, SYS_RES_IOPORT, + adapter->io_rid, adapter->res_ioport); +} + +/********************************************************************* + * + * Initialize the hardware to a configuration as specified by the + * adapter structure. The controller is reset, the EEPROM is + * verified, the MAC address is set, then the shared initialization + * routines are called. + * + **********************************************************************/ +static int +em_hardware_init(struct adapter *adapter) +{ + device_t dev = adapter->dev; + uint16_t rx_buffer_size; + + INIT_DEBUGOUT("em_hardware_init: begin"); + /* Issue a global reset */ + em_reset_hw(&adapter->hw); + + /* When hardware is reset, fifo_head is also reset */ + adapter->tx_fifo_head = 0; + + /* Make sure we have a good EEPROM before we read from it */ + if (em_validate_eeprom_checksum(&adapter->hw) < 0) { + device_printf(dev, "The EEPROM Checksum Is Not Valid\n"); + return (EIO); + } + + if (em_read_part_num(&adapter->hw, &(adapter->part_num)) < 0) { + device_printf(dev, "EEPROM read error " + "reading part number\n"); + return (EIO); + } + + /* Set up smart power down as default off on newer adapters. */ + if (!em_smart_pwr_down && (adapter->hw.mac_type == em_82571 || + adapter->hw.mac_type == em_82572)) { + uint16_t phy_tmp = 0; + + /* Speed up time to link by disabling smart power down. */ + em_read_phy_reg(&adapter->hw, + IGP02E1000_PHY_POWER_MGMT, &phy_tmp); + phy_tmp &= ~IGP02E1000_PM_SPD; + em_write_phy_reg(&adapter->hw, + IGP02E1000_PHY_POWER_MGMT, phy_tmp); + } + + /* + * These parameters control the automatic generation (Tx) and + * response (Rx) to Ethernet PAUSE frames. + * - High water mark should allow for at least two frames to be + * received after sending an XOFF. + * - Low water mark works best when it is very near the high water mark. + * This allows the receiver to restart by sending XON when it has + * drained a bit. Here we use an arbitary value of 1500 which will + * restart after one full frame is pulled from the buffer. There + * could be several smaller frames in the buffer and if so they will + * not trigger the XON until their total number reduces the buffer + * by 1500. + * - The pause time is fairly large at 1000 x 512ns = 512 usec. + */ + rx_buffer_size = ((E1000_READ_REG(&adapter->hw, PBA) & 0xffff) << 10 ); + + adapter->hw.fc_high_water = rx_buffer_size - + roundup2(adapter->hw.max_frame_size, 1024); + adapter->hw.fc_low_water = adapter->hw.fc_high_water - 1500; + if (adapter->hw.mac_type == em_80003es2lan) + adapter->hw.fc_pause_time = 0xFFFF; + else + adapter->hw.fc_pause_time = 0x1000; + adapter->hw.fc_send_xon = TRUE; + adapter->hw.fc = E1000_FC_FULL; + + if (em_init_hw(&adapter->hw) < 0) { + device_printf(dev, "Hardware Initialization Failed"); + return (EIO); + } + + em_check_for_link(&adapter->hw); + + return (0); +} + +/********************************************************************* + * + * Setup networking device structure and register an interface. + * + **********************************************************************/ +static void +em_setup_interface(device_t dev, struct adapter *adapter) +{ + struct ifnet *ifp; + u_char fiber_type = IFM_1000_SX; /* default type */ + + INIT_DEBUGOUT("em_setup_interface: begin"); + + ifp = adapter->ifp = if_alloc(IFT_ETHER); + if (ifp == NULL) + panic("%s: can not if_alloc()", device_get_nameunit(dev)); + if_initname(ifp, device_get_name(dev), device_get_unit(dev)); + ifp->if_mtu = ETHERMTU; + ifp->if_init = em_init; + ifp->if_softc = adapter; + ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; + ifp->if_ioctl = em_ioctl; + ifp->if_start = em_start; + ifp->if_timer = 0; /* Disable net layer watchdog */ + ifp->if_watchdog = NULL; + IFQ_SET_MAXLEN(&ifp->if_snd, adapter->num_tx_desc - 1); + ifp->if_snd.ifq_drv_maxlen = adapter->num_tx_desc - 1; + IFQ_SET_READY(&ifp->if_snd); + + ether_ifattach(ifp, adapter->hw.mac_addr); + + ifp->if_capabilities = ifp->if_capenable = 0; + + if (adapter->hw.mac_type >= em_82543) { + ifp->if_capabilities |= IFCAP_HWCSUM; + ifp->if_capenable |= IFCAP_HWCSUM; + } + +#ifdef EM_TSO + /* Enable TSO if available */ + if ((adapter->hw.mac_type > em_82544) && + (adapter->hw.mac_type != em_82547)) { + ifp->if_capabilities |= IFCAP_TSO; + ifp->if_capenable |= IFCAP_TSO; + } +#endif + + /* + * Tell the upper layer(s) we support long frames. + */ + ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); + ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU; + ifp->if_capenable |= IFCAP_VLAN_MTU; + +#ifdef DEVICE_POLLING + ifp->if_capabilities |= IFCAP_POLLING; +#endif + + /* + * Specify the media types supported by this adapter and register + * callbacks to update media and link information + */ + ifmedia_init(&adapter->media, IFM_IMASK, + em_media_change, em_media_status); + if ((adapter->hw.media_type == em_media_type_fiber) || + (adapter->hw.media_type == em_media_type_internal_serdes)) { + if (adapter->hw.mac_type == em_82545) + fiber_type = IFM_1000_LX; + ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX, + 0, NULL); + ifmedia_add(&adapter->media, IFM_ETHER | fiber_type, 0, NULL); + } else { + ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL); + ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX, + 0, NULL); + ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX, + 0, NULL); + ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX, + 0, NULL); + if (adapter->hw.phy_type != em_phy_ife) { + ifmedia_add(&adapter->media, + IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL); + ifmedia_add(&adapter->media, + IFM_ETHER | IFM_1000_T, 0, NULL); + } + } + ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL); + ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO); +} + + +/********************************************************************* + * + * Workaround for SmartSpeed on 82541 and 82547 controllers + * + **********************************************************************/ +static void +em_smartspeed(struct adapter *adapter) +{ + uint16_t phy_tmp; + + if (adapter->link_active || (adapter->hw.phy_type != em_phy_igp) || + adapter->hw.autoneg == 0 || + (adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL) == 0) + return; + + if (adapter->smartspeed == 0) { + /* If Master/Slave config fault is asserted twice, + * we assume back-to-back */ + em_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp); + if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT)) + return; + em_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp); + if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) { + em_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp); + if(phy_tmp & CR_1000T_MS_ENABLE) { + phy_tmp &= ~CR_1000T_MS_ENABLE; + em_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, + phy_tmp); + adapter->smartspeed++; + if(adapter->hw.autoneg && + !em_phy_setup_autoneg(&adapter->hw) && + !em_read_phy_reg(&adapter->hw, PHY_CTRL, + &phy_tmp)) { + phy_tmp |= (MII_CR_AUTO_NEG_EN | + MII_CR_RESTART_AUTO_NEG); + em_write_phy_reg(&adapter->hw, PHY_CTRL, + phy_tmp); + } + } + } + return; + } else if(adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) { + /* If still no link, perhaps using 2/3 pair cable */ + em_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp); + phy_tmp |= CR_1000T_MS_ENABLE; + em_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp); + if(adapter->hw.autoneg && + !em_phy_setup_autoneg(&adapter->hw) && + !em_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_tmp)) { + phy_tmp |= (MII_CR_AUTO_NEG_EN | + MII_CR_RESTART_AUTO_NEG); + em_write_phy_reg(&adapter->hw, PHY_CTRL, phy_tmp); + } + } + /* Restart process after EM_SMARTSPEED_MAX iterations */ + if(adapter->smartspeed++ == EM_SMARTSPEED_MAX) + adapter->smartspeed = 0; +} + + +/* + * Manage DMA'able memory. + */ +static void +em_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error) +{ + if (error) + return; + *(bus_addr_t *) arg = segs[0].ds_addr; +} + +static int +em_dma_malloc(struct adapter *adapter, bus_size_t size, + struct em_dma_alloc *dma, int mapflags) +{ + int error; + + error = bus_dma_tag_create(NULL, /* parent */ + EM_DBA_ALIGN, 0, /* alignment, bounds */ + BUS_SPACE_MAXADDR, /* lowaddr */ + BUS_SPACE_MAXADDR, /* highaddr */ + NULL, NULL, /* filter, filterarg */ + size, /* maxsize */ + 1, /* nsegments */ + size, /* maxsegsize */ + 0, /* flags */ + NULL, /* lockfunc */ + NULL, /* lockarg */ + &dma->dma_tag); + if (error) { + device_printf(adapter->dev, + "%s: bus_dma_tag_create failed: %d\n", + __func__, error); + goto fail_0; + } + + error = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr, + BUS_DMA_NOWAIT, &dma->dma_map); + if (error) { + device_printf(adapter->dev, + "%s: bus_dmamem_alloc(%ju) failed: %d\n", + __func__, (uintmax_t)size, error); + goto fail_2; + } + + dma->dma_paddr = 0; + error = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr, + size, em_dmamap_cb, &dma->dma_paddr, mapflags | BUS_DMA_NOWAIT); + if (error || dma->dma_paddr == 0) { + device_printf(adapter->dev, + "%s: bus_dmamap_load failed: %d\n", + __func__, error); + goto fail_3; + } + + return (0); + +fail_3: + bus_dmamap_unload(dma->dma_tag, dma->dma_map); +fail_2: + bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map); + bus_dma_tag_destroy(dma->dma_tag); +fail_0: + dma->dma_map = NULL; + dma->dma_tag = NULL; + + return (error); +} + +static void +em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma) +{ + if (dma->dma_tag == NULL) + return; + if (dma->dma_map != NULL) { + bus_dmamap_sync(dma->dma_tag, dma->dma_map, + BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); + bus_dmamap_unload(dma->dma_tag, dma->dma_map); + bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map); + dma->dma_map = NULL; + } + bus_dma_tag_destroy(dma->dma_tag); + dma->dma_tag = NULL; +} + + +/********************************************************************* + * + * Allocate memory for tx_buffer structures. The tx_buffer stores all + * the information needed to transmit a packet on the wire. + * + **********************************************************************/ +static int +em_allocate_transmit_structures(struct adapter *adapter) +{ + device_t dev = adapter->dev; + struct em_buffer *tx_buffer; + int error, i; + + /* + * Create DMA tags for tx descriptors + */ + if ((error = bus_dma_tag_create(NULL, /* parent */ + 1, 0, /* alignment, bounds */ + BUS_SPACE_MAXADDR, /* lowaddr */ + BUS_SPACE_MAXADDR, /* highaddr */ + NULL, NULL, /* filter, filterarg */ + EM_TSO_SIZE, /* maxsize */ + EM_MAX_SCATTER, /* nsegments */ + PAGE_SIZE, /* maxsegsize */ + 0, /* flags */ + NULL, /* lockfunc */ + NULL, /* lockarg */ + &adapter->txtag)) != 0) { + device_printf(dev, "Unable to allocate TX DMA tag\n"); + goto fail; + } + + adapter->tx_buffer_area = malloc(sizeof(struct em_buffer) * + adapter->num_tx_desc, M_DEVBUF, M_NOWAIT | M_ZERO); + if (adapter->tx_buffer_area == NULL) { + device_printf(dev, "Unable to allocate tx_buffer memory\n"); + error = ENOMEM; + goto fail; + } + + /* Create the descriptor buffer dma maps */ + tx_buffer = adapter->tx_buffer_area; + for (i = 0; i < adapter->num_tx_desc; i++) { + error = bus_dmamap_create(adapter->txtag, 0, &tx_buffer->map); + if (error != 0) { + device_printf(dev, "Unable to create TX DMA map\n"); + goto fail; + } + tx_buffer++; + } + + return (0); + +fail: + em_free_transmit_structures(adapter); + return (error); +} + +/********************************************************************* + * + * Initialize transmit structures. + * + **********************************************************************/ +static void +em_setup_transmit_structures(struct adapter *adapter) +{ + struct em_buffer *tx_buffer; + int i; + + /* Clear the old ring contents */ + bzero(adapter->tx_desc_base, + (sizeof(struct em_tx_desc)) * adapter->num_tx_desc); + + adapter->next_avail_tx_desc = 0; + adapter->next_tx_to_clean = 0; + + /* Free any existing tx buffers. */ + tx_buffer = adapter->tx_buffer_area; + for (i = 0; i < adapter->num_tx_desc; i++, tx_buffer++) { + if (tx_buffer->m_head != NULL) { + bus_dmamap_sync(adapter->txtag, tx_buffer->map, + BUS_DMASYNC_POSTWRITE); + bus_dmamap_unload(adapter->txtag, tx_buffer->map); + m_freem(tx_buffer->m_head); + tx_buffer->m_head = NULL; + } + } + + /* Set number of descriptors available */ + adapter->num_tx_desc_avail = adapter->num_tx_desc; + + /* Set checksum context */ + adapter->active_checksum_context = OFFLOAD_NONE; + bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map, + BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); +} + +/********************************************************************* + * + * Enable transmit unit. + * + **********************************************************************/ +static void +em_initialize_transmit_unit(struct adapter *adapter) +{ + uint32_t reg_tctl, reg_tipg = 0; + uint64_t bus_addr; + + INIT_DEBUGOUT("em_initialize_transmit_unit: begin"); + /* Setup the Base and Length of the Tx Descriptor Ring */ + bus_addr = adapter->txdma.dma_paddr; + E1000_WRITE_REG(&adapter->hw, TDLEN, + adapter->num_tx_desc * sizeof(struct em_tx_desc)); + E1000_WRITE_REG(&adapter->hw, TDBAH, (uint32_t)(bus_addr >> 32)); + E1000_WRITE_REG(&adapter->hw, TDBAL, (uint32_t)bus_addr); + + /* Setup the HW Tx Head and Tail descriptor pointers */ + E1000_WRITE_REG(&adapter->hw, TDT, 0); + E1000_WRITE_REG(&adapter->hw, TDH, 0); + + HW_DEBUGOUT2("Base = %x, Length = %x\n", + E1000_READ_REG(&adapter->hw, TDBAL), + E1000_READ_REG(&adapter->hw, TDLEN)); + + /* Set the default values for the Tx Inter Packet Gap timer */ + switch (adapter->hw.mac_type) { + case em_82542_rev2_0: + case em_82542_rev2_1: + reg_tipg = DEFAULT_82542_TIPG_IPGT; + reg_tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; + reg_tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; + break; + case em_80003es2lan: + reg_tipg = DEFAULT_82543_TIPG_IPGR1; + reg_tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 << + E1000_TIPG_IPGR2_SHIFT; + break; + default: + if ((adapter->hw.media_type == em_media_type_fiber) || + (adapter->hw.media_type == em_media_type_internal_serdes)) + reg_tipg = DEFAULT_82543_TIPG_IPGT_FIBER; + else + reg_tipg = DEFAULT_82543_TIPG_IPGT_COPPER; + reg_tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; + reg_tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; + } + + E1000_WRITE_REG(&adapter->hw, TIPG, reg_tipg); + E1000_WRITE_REG(&adapter->hw, TIDV, adapter->tx_int_delay.value); + if(adapter->hw.mac_type >= em_82540) + E1000_WRITE_REG(&adapter->hw, TADV, + adapter->tx_abs_int_delay.value); + + /* Program the Transmit Control Register */ + reg_tctl = E1000_TCTL_PSP | E1000_TCTL_EN | + (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); + if (adapter->hw.mac_type >= em_82571) + reg_tctl |= E1000_TCTL_MULR; + if (adapter->link_duplex == FULL_DUPLEX) { + reg_tctl |= E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT; + } else { + reg_tctl |= E1000_HDX_COLLISION_DISTANCE << E1000_COLD_SHIFT; + } + /* This write will effectively turn on the transmit unit. */ + E1000_WRITE_REG(&adapter->hw, TCTL, reg_tctl); + + /* Setup Transmit Descriptor Base Settings */ + adapter->txd_cmd = E1000_TXD_CMD_IFCS; + + if (adapter->tx_int_delay.value > 0) + adapter->txd_cmd |= E1000_TXD_CMD_IDE; +} + +/********************************************************************* + * + * Free all transmit related data structures. + * + **********************************************************************/ +static void +em_free_transmit_structures(struct adapter *adapter) +{ + struct em_buffer *tx_buffer; + int i; + + INIT_DEBUGOUT("free_transmit_structures: begin"); + + if (adapter->tx_buffer_area != NULL) { + tx_buffer = adapter->tx_buffer_area; + for (i = 0; i < adapter->num_tx_desc; i++, tx_buffer++) { + if (tx_buffer->m_head != NULL) { + bus_dmamap_sync(adapter->txtag, tx_buffer->map, + BUS_DMASYNC_POSTWRITE); + bus_dmamap_unload(adapter->txtag, + tx_buffer->map); + m_freem(tx_buffer->m_head); + tx_buffer->m_head = NULL; + } else if (tx_buffer->map != NULL) + bus_dmamap_unload(adapter->txtag, + tx_buffer->map); + if (tx_buffer->map != NULL) { + bus_dmamap_destroy(adapter->txtag, + tx_buffer->map); + tx_buffer->map = NULL; + } + } + } + if (adapter->tx_buffer_area != NULL) { + free(adapter->tx_buffer_area, M_DEVBUF); + adapter->tx_buffer_area = NULL; + } + if (adapter->txtag != NULL) { + bus_dma_tag_destroy(adapter->txtag); + adapter->txtag = NULL; + } +} + +/********************************************************************* + * + * The offload context needs to be set when we transfer the first + * packet of a particular protocol (TCP/UDP). We change the + * context only if the protocol type changes. + * + **********************************************************************/ +static void +em_transmit_checksum_setup(struct adapter *adapter, struct mbuf *mp, + uint32_t *txd_upper, uint32_t *txd_lower) +{ + struct em_context_desc *TXD; + struct em_buffer *tx_buffer; + int curr_txd; + + if (mp->m_pkthdr.csum_flags) { + + if (mp->m_pkthdr.csum_flags & CSUM_TCP) { + *txd_upper = E1000_TXD_POPTS_TXSM << 8; + *txd_lower = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; + if (adapter->active_checksum_context == OFFLOAD_TCP_IP) + return; + else + adapter->active_checksum_context = + OFFLOAD_TCP_IP; + } else if (mp->m_pkthdr.csum_flags & CSUM_UDP) { + *txd_upper = E1000_TXD_POPTS_TXSM << 8; + *txd_lower = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; + if (adapter->active_checksum_context == OFFLOAD_UDP_IP) + return; + else + adapter->active_checksum_context = + OFFLOAD_UDP_IP; + } else { + *txd_upper = 0; + *txd_lower = 0; + return; + } + } else { + *txd_upper = 0; + *txd_lower = 0; + return; + } + + /* If we reach this point, the checksum offload context + * needs to be reset. + */ + curr_txd = adapter->next_avail_tx_desc; + tx_buffer = &adapter->tx_buffer_area[curr_txd]; + TXD = (struct em_context_desc *) &adapter->tx_desc_base[curr_txd]; + + TXD->lower_setup.ip_fields.ipcss = ETHER_HDR_LEN; + TXD->lower_setup.ip_fields.ipcso = + ETHER_HDR_LEN + offsetof(struct ip, ip_sum); + TXD->lower_setup.ip_fields.ipcse = + htole16(ETHER_HDR_LEN + sizeof(struct ip) - 1); + + TXD->upper_setup.tcp_fields.tucss = + ETHER_HDR_LEN + sizeof(struct ip); + TXD->upper_setup.tcp_fields.tucse = htole16(0); + + if (adapter->active_checksum_context == OFFLOAD_TCP_IP) { + TXD->upper_setup.tcp_fields.tucso = + ETHER_HDR_LEN + sizeof(struct ip) + + offsetof(struct tcphdr, th_sum); + } else if (adapter->active_checksum_context == OFFLOAD_UDP_IP) { + TXD->upper_setup.tcp_fields.tucso = + ETHER_HDR_LEN + sizeof(struct ip) + + offsetof(struct udphdr, uh_sum); + } + + TXD->tcp_seg_setup.data = htole32(0); + TXD->cmd_and_length = htole32(adapter->txd_cmd | E1000_TXD_CMD_DEXT); + + tx_buffer->m_head = NULL; + tx_buffer->next_eop = -1; + + if (++curr_txd == adapter->num_tx_desc) + curr_txd = 0; + + adapter->num_tx_desc_avail--; + adapter->next_avail_tx_desc = curr_txd; +} + +#ifdef EM_TSO +/********************************************************************** + * + * Setup work for hardware segmentation offload (TSO) + * + **********************************************************************/ +static boolean_t +em_tso_setup(struct adapter *adapter, + struct mbuf *mp, + u_int32_t *txd_upper, + u_int32_t *txd_lower) +{ + struct em_context_desc *TXD; + struct em_buffer *tx_buffer; + struct ip *ip; + struct tcphdr *th; + int curr_txd, hdr_len, ip_hlen, tcp_hlen; + + if (((mp->m_pkthdr.csum_flags & CSUM_TSO) == 0) || + (mp->m_pkthdr.len <= E1000_TX_BUFFER_SIZE)) { + return FALSE; + } + + *txd_lower = (E1000_TXD_CMD_DEXT | + E1000_TXD_DTYP_D | + E1000_TXD_CMD_TSE); + + *txd_upper = (E1000_TXD_POPTS_IXSM | + E1000_TXD_POPTS_TXSM) << 8; + + curr_txd = adapter->next_avail_tx_desc; + tx_buffer = &adapter->tx_buffer_area[curr_txd]; + TXD = (struct em_context_desc *) &adapter->tx_desc_base[curr_txd]; + + mp->m_data += sizeof(struct ether_header); + ip = mtod(mp, struct ip *); + ip->ip_len = 0; + ip->ip_sum = 0; + ip_hlen = ip->ip_hl << 2 ; + th = (struct tcphdr *)((caddr_t)ip + ip_hlen); + tcp_hlen = th->th_off << 2; + + hdr_len = ETHER_HDR_LEN + ip_hlen + tcp_hlen; + th->th_sum = in_pseudo(ip->ip_src.s_addr, + ip->ip_dst.s_addr, + htons(IPPROTO_TCP)); + + mp->m_data -= sizeof(struct ether_header); + TXD->lower_setup.ip_fields.ipcss = ETHER_HDR_LEN; + TXD->lower_setup.ip_fields.ipcso = + ETHER_HDR_LEN + offsetof(struct ip, ip_sum); + TXD->lower_setup.ip_fields.ipcse = + htole16(ETHER_HDR_LEN + ip_hlen - 1); + + TXD->upper_setup.tcp_fields.tucss = + ETHER_HDR_LEN + ip_hlen; + TXD->upper_setup.tcp_fields.tucse = 0; + TXD->upper_setup.tcp_fields.tucso = + ETHER_HDR_LEN + ip_hlen + + offsetof(struct tcphdr, th_sum); + TXD->tcp_seg_setup.fields.mss = htole16(mp->m_pkthdr.tso_segsz); + TXD->tcp_seg_setup.fields.hdr_len = hdr_len; + TXD->cmd_and_length = htole32(adapter->txd_cmd | + E1000_TXD_CMD_DEXT | + E1000_TXD_CMD_TSE | + E1000_TXD_CMD_IP | E1000_TXD_CMD_TCP | + (mp->m_pkthdr.len - (hdr_len))); + + tx_buffer->m_head = NULL; + tx_buffer->next_eop = -1; + + if (++curr_txd == adapter->num_tx_desc) + curr_txd = 0; + + adapter->num_tx_desc_avail--; + adapter->next_avail_tx_desc = curr_txd; + adapter->tx_tso = TRUE; + + return TRUE; +} +#endif /* EM_TSO */ + +/********************************************************************** + * + * Examine each tx_buffer in the used queue. If the hardware is done + * processing the packet then free associated resources. The + * tx_buffer is put back on the free queue. + * + **********************************************************************/ +static void +em_txeof(struct adapter *adapter) +{ + int first, last, done, num_avail; + struct em_buffer *tx_buffer; + struct em_tx_desc *tx_desc, *eop_desc; + struct ifnet *ifp = adapter->ifp; + + EM_LOCK_ASSERT(adapter); + + if (adapter->num_tx_desc_avail == adapter->num_tx_desc) + return; + + num_avail = adapter->num_tx_desc_avail; + first = adapter->next_tx_to_clean; + tx_desc = &adapter->tx_desc_base[first]; + tx_buffer = &adapter->tx_buffer_area[first]; + last = tx_buffer->next_eop; + eop_desc = &adapter->tx_desc_base[last]; + + /* + * What this does is get the index of the + * first descriptor AFTER the EOP of the + * first packet, that way we can do the + * simple comparison on the inner while loop. + */ + if (++last == adapter->num_tx_desc) last = 0; + done = last; + + bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map, + BUS_DMASYNC_POSTREAD); + + while (eop_desc->upper.fields.status & E1000_TXD_STAT_DD) { + /* We clean the range of the packet */ + while (first != done) { + tx_desc->upper.data = 0; + tx_desc->lower.data = 0; + num_avail++; + + if (tx_buffer->m_head) { + ifp->if_opackets++; + bus_dmamap_sync(adapter->txtag, + tx_buffer->map, + BUS_DMASYNC_POSTWRITE); + bus_dmamap_unload(adapter->txtag, + tx_buffer->map); + + m_freem(tx_buffer->m_head); + tx_buffer->m_head = NULL; + } + tx_buffer->next_eop = -1; + + if (++first == adapter->num_tx_desc) + first = 0; + + tx_buffer = &adapter->tx_buffer_area[first]; + tx_desc = &adapter->tx_desc_base[first]; + } + /* See if we can continue to the next packet */ + last = tx_buffer->next_eop; + if (last != -1) { + eop_desc = &adapter->tx_desc_base[last]; + /* Get new done point */ + if (++last == adapter->num_tx_desc) last = 0; + done = last; + } else + break; + } + bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map, + BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); + + adapter->next_tx_to_clean = first; + + /* + * If we have enough room, clear IFF_DRV_OACTIVE to tell the stack + * that it is OK to send packets. + * If there are no pending descriptors, clear the timeout. Otherwise, + * if some descriptors have been freed, restart the timeout. + */ + if (num_avail > EM_TX_CLEANUP_THRESHOLD) { + ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; + /* All clean, turn off the timer */ + if (num_avail == adapter->num_tx_desc) + adapter->watchdog_timer = 0; + /* Some cleaned, reset the timer */ + else if (num_avail != adapter->num_tx_desc_avail) + adapter->watchdog_timer = EM_TX_TIMEOUT; + } + adapter->num_tx_desc_avail = num_avail; + return; +} + +/********************************************************************* + * + * Get a buffer from system mbuf buffer pool. + * + **********************************************************************/ +static int +em_get_buf(int i, struct adapter *adapter, struct mbuf *mp) +{ + struct ifnet *ifp = adapter->ifp; + bus_dma_segment_t segs[1]; + struct em_buffer *rx_buffer; + int error, nsegs; + + if (mp == NULL) { + mp = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); + if (mp == NULL) { + adapter->mbuf_cluster_failed++; + return (ENOBUFS); + } + mp->m_len = mp->m_pkthdr.len = MCLBYTES; + } else { + mp->m_len = mp->m_pkthdr.len = MCLBYTES; + mp->m_data = mp->m_ext.ext_buf; + mp->m_next = NULL; + } + + if (ifp->if_mtu <= ETHERMTU) + m_adj(mp, ETHER_ALIGN); + + rx_buffer = &adapter->rx_buffer_area[i]; + + /* + * Using memory from the mbuf cluster pool, invoke the + * bus_dma machinery to arrange the memory mapping. + */ + error = bus_dmamap_load_mbuf_sg(adapter->rxtag, rx_buffer->map, + mp, segs, &nsegs, 0); + if (error != 0) { + m_free(mp); + return (error); + } + /* If nsegs is wrong then the stack is corrupt. */ + KASSERT(nsegs == 1, ("Too many segments returned!")); + rx_buffer->m_head = mp; + adapter->rx_desc_base[i].buffer_addr = htole64(segs[0].ds_addr); + bus_dmamap_sync(adapter->rxtag, rx_buffer->map, BUS_DMASYNC_PREREAD); + + return (0); +} + +/********************************************************************* + * + * Allocate memory for rx_buffer structures. Since we use one + * rx_buffer per received packet, the maximum number of rx_buffer's + * that we'll need is equal to the number of receive descriptors + * that we've allocated. + * + **********************************************************************/ +static int +em_allocate_receive_structures(struct adapter *adapter) +{ + device_t dev = adapter->dev; + struct em_buffer *rx_buffer; + int i, error; + + adapter->rx_buffer_area = malloc(sizeof(struct em_buffer) * + adapter->num_rx_desc, M_DEVBUF, M_NOWAIT); + if (adapter->rx_buffer_area == NULL) { + device_printf(dev, "Unable to allocate rx_buffer memory\n"); + return (ENOMEM); + } + + bzero(adapter->rx_buffer_area, + sizeof(struct em_buffer) * adapter->num_rx_desc); + + error = bus_dma_tag_create(NULL, /* parent */ + 1, 0, /* alignment, bounds */ + BUS_SPACE_MAXADDR, /* lowaddr */ + BUS_SPACE_MAXADDR, /* highaddr */ + NULL, NULL, /* filter, filterarg */ + MCLBYTES, /* maxsize */ + 1, /* nsegments */ + MCLBYTES, /* maxsegsize */ + 0, /* flags */ + NULL, /* lockfunc */ + NULL, /* lockarg */ + &adapter->rxtag); + if (error) { + device_printf(dev, "%s: bus_dma_tag_create failed %d\n", + __func__, error); + goto fail; + } + + rx_buffer = adapter->rx_buffer_area; + for (i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) { + error = bus_dmamap_create(adapter->rxtag, BUS_DMA_NOWAIT, + &rx_buffer->map); + if (error) { + device_printf(dev, "%s: bus_dmamap_create failed: %d\n", + __func__, error); + goto fail; + } + } + + return (0); + +fail: + em_free_receive_structures(adapter); + return (error); +} + +/********************************************************************* + * + * Allocate and initialize receive structures. + * + **********************************************************************/ +static int +em_setup_receive_structures(struct adapter *adapter) +{ + struct em_buffer *rx_buffer; + int i, error; + + bzero(adapter->rx_desc_base, + (sizeof(struct em_rx_desc)) * adapter->num_rx_desc); + + /* Free current RX buffers. */ + rx_buffer = adapter->rx_buffer_area; + for (i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) { + if (rx_buffer->m_head != NULL) { + bus_dmamap_sync(adapter->rxtag, rx_buffer->map, + BUS_DMASYNC_POSTREAD); + bus_dmamap_unload(adapter->rxtag, rx_buffer->map); + m_freem(rx_buffer->m_head); + rx_buffer->m_head = NULL; + } + } + + /* Allocate new ones. */ + for (i = 0; i < adapter->num_rx_desc; i++) { + error = em_get_buf(i, adapter, NULL); + if (error) + return (error); + } + + /* Setup our descriptor pointers */ + adapter->next_rx_desc_to_check = 0; + bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map, + BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); + + return (0); +} + +/********************************************************************* + * + * Enable receive unit. + * + **********************************************************************/ +static void +em_initialize_receive_unit(struct adapter *adapter) +{ + struct ifnet *ifp = adapter->ifp; + uint64_t bus_addr; + uint32_t reg_rctl; + uint32_t reg_rxcsum; + + INIT_DEBUGOUT("em_initialize_receive_unit: begin"); + + /* + * Make sure receives are disabled while setting + * up the descriptor ring + */ + E1000_WRITE_REG(&adapter->hw, RCTL, 0); + + if(adapter->hw.mac_type >= em_82540) { + E1000_WRITE_REG(&adapter->hw, RADV, + adapter->rx_abs_int_delay.value); + /* + * Set the interrupt throttling rate. Value is calculated + * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) + */ +#define MAX_INTS_PER_SEC 8000 +#define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256) + E1000_WRITE_REG(&adapter->hw, ITR, DEFAULT_ITR); + } + + /* Setup the Base and Length of the Rx Descriptor Ring */ + bus_addr = adapter->rxdma.dma_paddr; + E1000_WRITE_REG(&adapter->hw, RDLEN, adapter->num_rx_desc * + sizeof(struct em_rx_desc)); + E1000_WRITE_REG(&adapter->hw, RDBAH, (uint32_t)(bus_addr >> 32)); + E1000_WRITE_REG(&adapter->hw, RDBAL, (uint32_t)bus_addr); + + /* Setup the Receive Control Register */ + reg_rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO | + E1000_RCTL_RDMTS_HALF | + (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT); + + if (adapter->hw.tbi_compatibility_on == TRUE) + reg_rctl |= E1000_RCTL_SBP; + + + switch (adapter->rx_buffer_len) { + default: + case EM_RXBUFFER_2048: + reg_rctl |= E1000_RCTL_SZ_2048; + break; + case EM_RXBUFFER_4096: + reg_rctl |= E1000_RCTL_SZ_4096 | + E1000_RCTL_BSEX | E1000_RCTL_LPE; + break; + case EM_RXBUFFER_8192: + reg_rctl |= E1000_RCTL_SZ_8192 | + E1000_RCTL_BSEX | E1000_RCTL_LPE; + break; + case EM_RXBUFFER_16384: + reg_rctl |= E1000_RCTL_SZ_16384 | + E1000_RCTL_BSEX | E1000_RCTL_LPE; + break; + } + + if (ifp->if_mtu > ETHERMTU) + reg_rctl |= E1000_RCTL_LPE; + + /* Enable 82543 Receive Checksum Offload for TCP and UDP */ + if ((adapter->hw.mac_type >= em_82543) && + (ifp->if_capenable & IFCAP_RXCSUM)) { + reg_rxcsum = E1000_READ_REG(&adapter->hw, RXCSUM); + reg_rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL); + E1000_WRITE_REG(&adapter->hw, RXCSUM, reg_rxcsum); + } + + + /* Enable Receives */ + E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl); + + /* + * Setup the HW Rx Head and + * Tail Descriptor Pointers + */ + E1000_WRITE_REG(&adapter->hw, RDH, 0); + E1000_WRITE_REG(&adapter->hw, RDT, adapter->num_rx_desc - 1); + + return; +} + +/********************************************************************* + * + * Free receive related data structures. + * + **********************************************************************/ +static void +em_free_receive_structures(struct adapter *adapter) +{ + struct em_buffer *rx_buffer; + int i; + + INIT_DEBUGOUT("free_receive_structures: begin"); + + if (adapter->rx_buffer_area != NULL) { + rx_buffer = adapter->rx_buffer_area; + for (i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) { + if (rx_buffer->m_head != NULL) { + bus_dmamap_sync(adapter->rxtag, rx_buffer->map, + BUS_DMASYNC_POSTREAD); + bus_dmamap_unload(adapter->rxtag, + rx_buffer->map); + m_freem(rx_buffer->m_head); + rx_buffer->m_head = NULL; + } else if (rx_buffer->map != NULL) + bus_dmamap_unload(adapter->rxtag, + rx_buffer->map); + if (rx_buffer->map != NULL) { + bus_dmamap_destroy(adapter->rxtag, + rx_buffer->map); + rx_buffer->map = NULL; + } + } + } + if (adapter->rx_buffer_area != NULL) { + free(adapter->rx_buffer_area, M_DEVBUF); + adapter->rx_buffer_area = NULL; + } + if (adapter->rxtag != NULL) { + bus_dma_tag_destroy(adapter->rxtag); + adapter->rxtag = NULL; + } +} + +/********************************************************************* + * + * This routine executes in interrupt context. It replenishes + * the mbufs in the descriptor and sends data which has been + * dma'ed into host memory to upper layer. + * + * We loop at most count times if count is > 0, or until done if + * count < 0. + * + *********************************************************************/ +static int +em_rxeof(struct adapter *adapter, int count) +{ + struct ifnet *ifp; + struct mbuf *mp; + uint8_t accept_frame = 0; + uint8_t eop = 0; + uint16_t len, desc_len, prev_len_adj; + int i; + + /* Pointer to the receive descriptor being examined. */ + struct em_rx_desc *current_desc; + uint8_t status; + + ifp = adapter->ifp; + i = adapter->next_rx_desc_to_check; + current_desc = &adapter->rx_desc_base[i]; + bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map, + BUS_DMASYNC_POSTREAD); + + if (!((current_desc->status) & E1000_RXD_STAT_DD)) + return (0); + + while ((current_desc->status & E1000_RXD_STAT_DD) && + (count != 0) && + (ifp->if_drv_flags & IFF_DRV_RUNNING)) { + struct mbuf *m = NULL; + + mp = adapter->rx_buffer_area[i].m_head; + /* + * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT + * needs to access the last received byte in the mbuf. + */ + bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map, + BUS_DMASYNC_POSTREAD); + + accept_frame = 1; + prev_len_adj = 0; + desc_len = le16toh(current_desc->length); + status = current_desc->status; + if (status & E1000_RXD_STAT_EOP) { + count--; + eop = 1; + if (desc_len < ETHER_CRC_LEN) { + len = 0; + prev_len_adj = ETHER_CRC_LEN - desc_len; + } else + len = desc_len - ETHER_CRC_LEN; + } else { + eop = 0; + len = desc_len; + } + + if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) { + uint8_t last_byte; + uint32_t pkt_len = desc_len; + + if (adapter->fmp != NULL) + pkt_len += adapter->fmp->m_pkthdr.len; + + last_byte = *(mtod(mp, caddr_t) + desc_len - 1); + if (TBI_ACCEPT(&adapter->hw, status, + current_desc->errors, pkt_len, last_byte)) { + em_tbi_adjust_stats(&adapter->hw, + &adapter->stats, pkt_len, + adapter->hw.mac_addr); + if (len > 0) + len--; + } else + accept_frame = 0; + } + + if (accept_frame) { + if (em_get_buf(i, adapter, NULL) == ENOBUFS) { + adapter->dropped_pkts++; + em_get_buf(i, adapter, mp); + if (adapter->fmp != NULL) + m_freem(adapter->fmp); + adapter->fmp = NULL; + adapter->lmp = NULL; + break; + } + + /* Assign correct length to the current fragment */ + mp->m_len = len; + + if (adapter->fmp == NULL) { + mp->m_pkthdr.len = len; + adapter->fmp = mp; /* Store the first mbuf */ + adapter->lmp = mp; + } else { + /* Chain mbuf's together */ + mp->m_flags &= ~M_PKTHDR; + /* + * Adjust length of previous mbuf in chain if + * we received less than 4 bytes in the last + * descriptor. + */ + if (prev_len_adj > 0) { + adapter->lmp->m_len -= prev_len_adj; + adapter->fmp->m_pkthdr.len -= + prev_len_adj; + } + adapter->lmp->m_next = mp; + adapter->lmp = adapter->lmp->m_next; + adapter->fmp->m_pkthdr.len += len; + } + + if (eop) { + adapter->fmp->m_pkthdr.rcvif = ifp; + ifp->if_ipackets++; + em_receive_checksum(adapter, current_desc, + adapter->fmp); +#ifndef __NO_STRICT_ALIGNMENT + if (adapter->hw.max_frame_size > + (MCLBYTES - ETHER_ALIGN) && + em_fixup_rx(adapter) != 0) + goto skip; +#endif + if (status & E1000_RXD_STAT_VP) + VLAN_INPUT_TAG_NEW(ifp, adapter->fmp, + (le16toh(current_desc->special) & + E1000_RXD_SPC_VLAN_MASK)); +#ifndef __NO_STRICT_ALIGNMENT +skip: +#endif + m = adapter->fmp; + adapter->fmp = NULL; + adapter->lmp = NULL; + } + } else { + adapter->dropped_pkts++; + em_get_buf(i, adapter, mp); + if (adapter->fmp != NULL) + m_freem(adapter->fmp); + adapter->fmp = NULL; + adapter->lmp = NULL; + } + + /* Zero out the receive descriptors status. */ + current_desc->status = 0; + bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map, + BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); + + /* Advance our pointers to the next descriptor. */ + if (++i == adapter->num_rx_desc) + i = 0; + if (m != NULL) { + adapter->next_rx_desc_to_check = i; +#ifndef EM_FAST_INTR + EM_UNLOCK(adapter); + (*ifp->if_input)(ifp, m); + EM_LOCK(adapter); +#else + /* Already running unlocked */ + (*ifp->if_input)(ifp, m); +#endif + i = adapter->next_rx_desc_to_check; + } + current_desc = &adapter->rx_desc_base[i]; + } + adapter->next_rx_desc_to_check = i; + + /* Advance the E1000's Receive Queue #0 "Tail Pointer". */ + if (--i < 0) + i = adapter->num_rx_desc - 1; + E1000_WRITE_REG(&adapter->hw, RDT, i); + if (!((current_desc->status) & E1000_RXD_STAT_DD)) + return (0); + + return (1); +} + +#ifndef __NO_STRICT_ALIGNMENT +/* + * When jumbo frames are enabled we should realign entire payload on + * architecures with strict alignment. This is serious design mistake of 8254x + * as it nullifies DMA operations. 8254x just allows RX buffer size to be + * 2048/4096/8192/16384. What we really want is 2048 - ETHER_ALIGN to align its + * payload. On architecures without strict alignment restrictions 8254x still + * performs unaligned memory access which would reduce the performance too. + * To avoid copying over an entire frame to align, we allocate a new mbuf and + * copy ethernet header to the new mbuf. The new mbuf is prepended into the + * existing mbuf chain. + * + * Be aware, best performance of the 8254x is achived only when jumbo frame is + * not used at all on architectures with strict alignment. + */ +static int +em_fixup_rx(struct adapter *adapter) +{ + struct mbuf *m, *n; + int error; + + error = 0; + m = adapter->fmp; + if (m->m_len <= (MCLBYTES - ETHER_HDR_LEN)) { + bcopy(m->m_data, m->m_data + ETHER_HDR_LEN, m->m_len); + m->m_data += ETHER_HDR_LEN; + } else { + MGETHDR(n, M_DONTWAIT, MT_DATA); + if (n != NULL) { + bcopy(m->m_data, n->m_data, ETHER_HDR_LEN); + m->m_data += ETHER_HDR_LEN; + m->m_len -= ETHER_HDR_LEN; + n->m_len = ETHER_HDR_LEN; + M_MOVE_PKTHDR(n, m); + n->m_next = m; + adapter->fmp = n; + } else { + adapter->dropped_pkts++; + m_freem(adapter->fmp); + adapter->fmp = NULL; + error = ENOMEM; + } + } + + return (error); +} +#endif + +/********************************************************************* + * + * Verify that the hardware indicated that the checksum is valid. + * Inform the stack about the status of checksum so that stack + * doesn't spend time verifying the checksum. + * + *********************************************************************/ +static void +em_receive_checksum(struct adapter *adapter, + struct em_rx_desc *rx_desc, struct mbuf *mp) +{ + /* 82543 or newer only */ + if ((adapter->hw.mac_type < em_82543) || + /* Ignore Checksum bit is set */ + (rx_desc->status & E1000_RXD_STAT_IXSM)) { + mp->m_pkthdr.csum_flags = 0; + return; + } + + if (rx_desc->status & E1000_RXD_STAT_IPCS) { + /* Did it pass? */ + if (!(rx_desc->errors & E1000_RXD_ERR_IPE)) { + /* IP Checksum Good */ + mp->m_pkthdr.csum_flags = CSUM_IP_CHECKED; + mp->m_pkthdr.csum_flags |= CSUM_IP_VALID; + + } else { + mp->m_pkthdr.csum_flags = 0; + } + } + + if (rx_desc->status & E1000_RXD_STAT_TCPCS) { + /* Did it pass? */ + if (!(rx_desc->errors & E1000_RXD_ERR_TCPE)) { + mp->m_pkthdr.csum_flags |= + (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); + mp->m_pkthdr.csum_data = htons(0xffff); + } + } +} + + +static void +em_enable_vlans(struct adapter *adapter) +{ + uint32_t ctrl; + + E1000_WRITE_REG(&adapter->hw, VET, ETHERTYPE_VLAN); + + ctrl = E1000_READ_REG(&adapter->hw, CTRL); + ctrl |= E1000_CTRL_VME; + E1000_WRITE_REG(&adapter->hw, CTRL, ctrl); +} + +static void +em_disable_vlans(struct adapter *adapter) +{ + uint32_t ctrl; + + ctrl = E1000_READ_REG(&adapter->hw, CTRL); + ctrl &= ~E1000_CTRL_VME; + E1000_WRITE_REG(&adapter->hw, CTRL, ctrl); +} + +static void +em_enable_intr(struct adapter *adapter) +{ + E1000_WRITE_REG(&adapter->hw, IMS, (IMS_ENABLE_MASK)); +} + +static void +em_disable_intr(struct adapter *adapter) +{ + /* + * The first version of 82542 had an errata where when link was forced + * it would stay up even up even if the cable was disconnected. + * Sequence errors were used to detect the disconnect and then the + * driver would unforce the link. This code in the in the ISR. For this + * to work correctly the Sequence error interrupt had to be enabled + * all the time. + */ + + if (adapter->hw.mac_type == em_82542_rev2_0) + E1000_WRITE_REG(&adapter->hw, IMC, + (0xffffffff & ~E1000_IMC_RXSEQ)); + else + E1000_WRITE_REG(&adapter->hw, IMC, 0xffffffff); +} + +static int +em_is_valid_ether_addr(uint8_t *addr) +{ + char zero_addr[6] = { 0, 0, 0, 0, 0, 0 }; + + if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) { + return (FALSE); + } + + return (TRUE); +} + +void +em_write_pci_cfg(struct em_hw *hw, uint32_t reg, uint16_t *value) +{ + pci_write_config(((struct em_osdep *)hw->back)->dev, reg, *value, 2); +} + +void +em_read_pci_cfg(struct em_hw *hw, uint32_t reg, uint16_t *value) +{ + *value = pci_read_config(((struct em_osdep *)hw->back)->dev, reg, 2); +} + +void +em_pci_set_mwi(struct em_hw *hw) +{ + pci_write_config(((struct em_osdep *)hw->back)->dev, PCIR_COMMAND, + (hw->pci_cmd_word | CMD_MEM_WRT_INVALIDATE), 2); +} + +void +em_pci_clear_mwi(struct em_hw *hw) +{ + pci_write_config(((struct em_osdep *)hw->back)->dev, PCIR_COMMAND, + (hw->pci_cmd_word & ~CMD_MEM_WRT_INVALIDATE), 2); +} + +uint32_t +em_io_read(struct em_hw *hw, unsigned long port) +{ + struct em_osdep *io = hw->back; + uint32_t ret; + + ret = bus_space_read_4(io->io_bus_space_tag, + io->io_bus_space_handle, port); + return (ret); +} + +void +em_io_write(struct em_hw *hw, unsigned long port, uint32_t value) +{ + struct em_osdep *io = hw->back; + + bus_space_write_4(io->io_bus_space_tag, + io->io_bus_space_handle, port, value); + return; +} + +/* + * We may eventually really do this, but its unnecessary + * for now so we just return unsupported. + */ +int32_t +em_read_pcie_cap_reg(struct em_hw *hw, uint32_t reg, uint16_t *value) +{ + return (0); +} + +/********************************************************************* +* 82544 Coexistence issue workaround. +* There are 2 issues. +* 1. Transmit Hang issue. +* To detect this issue, following equation can be used... +* SIZE[3:0] + ADDR[2:0] = SUM[3:0]. +* If SUM[3:0] is in between 1 to 4, we will have this issue. +* +* 2. DAC issue. +* To detect this issue, following equation can be used... +* SIZE[3:0] + ADDR[2:0] = SUM[3:0]. +* If SUM[3:0] is in between 9 to c, we will have this issue. +* +* +* WORKAROUND: +* Make sure we do not have ending address +* as 1,2,3,4(Hang) or 9,a,b,c (DAC) +* +*************************************************************************/ +static uint32_t +em_fill_descriptors (bus_addr_t address, uint32_t length, + PDESC_ARRAY desc_array) +{ + /* Since issue is sensitive to length and address.*/ + /* Let us first check the address...*/ + uint32_t safe_terminator; + if (length <= 4) { + desc_array->descriptor[0].address = address; + desc_array->descriptor[0].length = length; + desc_array->elements = 1; + return (desc_array->elements); + } + safe_terminator = (uint32_t)((((uint32_t)address & 0x7) + + (length & 0xF)) & 0xF); + /* if it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */ + if (safe_terminator == 0 || + (safe_terminator > 4 && + safe_terminator < 9) || + (safe_terminator > 0xC && + safe_terminator <= 0xF)) { + desc_array->descriptor[0].address = address; + desc_array->descriptor[0].length = length; + desc_array->elements = 1; + return (desc_array->elements); + } + + desc_array->descriptor[0].address = address; + desc_array->descriptor[0].length = length - 4; + desc_array->descriptor[1].address = address + (length - 4); + desc_array->descriptor[1].length = 4; + desc_array->elements = 2; + return (desc_array->elements); +} + +/********************************************************************** + * + * Update the board statistics counters. + * + **********************************************************************/ +static void +em_update_stats_counters(struct adapter *adapter) +{ + struct ifnet *ifp; + + if(adapter->hw.media_type == em_media_type_copper || + (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) { + adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, SYMERRS); + adapter->stats.sec += E1000_READ_REG(&adapter->hw, SEC); + } + adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, CRCERRS); + adapter->stats.mpc += E1000_READ_REG(&adapter->hw, MPC); + adapter->stats.scc += E1000_READ_REG(&adapter->hw, SCC); + adapter->stats.ecol += E1000_READ_REG(&adapter->hw, ECOL); + + adapter->stats.mcc += E1000_READ_REG(&adapter->hw, MCC); + adapter->stats.latecol += E1000_READ_REG(&adapter->hw, LATECOL); + adapter->stats.colc += E1000_READ_REG(&adapter->hw, COLC); + adapter->stats.dc += E1000_READ_REG(&adapter->hw, DC); + adapter->stats.rlec += E1000_READ_REG(&adapter->hw, RLEC); + adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, XONRXC); + adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, XONTXC); + adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, XOFFRXC); + adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, XOFFTXC); + adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, FCRUC); + adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, PRC64); + adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, PRC127); + adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, PRC255); + adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, PRC511); + adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, PRC1023); + adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, PRC1522); + adapter->stats.gprc += E1000_READ_REG(&adapter->hw, GPRC); + adapter->stats.bprc += E1000_READ_REG(&adapter->hw, BPRC); + adapter->stats.mprc += E1000_READ_REG(&adapter->hw, MPRC); + adapter->stats.gptc += E1000_READ_REG(&adapter->hw, GPTC); + + /* For the 64-bit byte counters the low dword must be read first. */ + /* Both registers clear on the read of the high dword */ + + adapter->stats.gorcl += E1000_READ_REG(&adapter->hw, GORCL); + adapter->stats.gorch += E1000_READ_REG(&adapter->hw, GORCH); + adapter->stats.gotcl += E1000_READ_REG(&adapter->hw, GOTCL); + adapter->stats.gotch += E1000_READ_REG(&adapter->hw, GOTCH); + + adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, RNBC); + adapter->stats.ruc += E1000_READ_REG(&adapter->hw, RUC); + adapter->stats.rfc += E1000_READ_REG(&adapter->hw, RFC); + adapter->stats.roc += E1000_READ_REG(&adapter->hw, ROC); + adapter->stats.rjc += E1000_READ_REG(&adapter->hw, RJC); + + adapter->stats.torl += E1000_READ_REG(&adapter->hw, TORL); + adapter->stats.torh += E1000_READ_REG(&adapter->hw, TORH); + adapter->stats.totl += E1000_READ_REG(&adapter->hw, TOTL); + adapter->stats.toth += E1000_READ_REG(&adapter->hw, TOTH); + + adapter->stats.tpr += E1000_READ_REG(&adapter->hw, TPR); + adapter->stats.tpt += E1000_READ_REG(&adapter->hw, TPT); + adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, PTC64); + adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, PTC127); + adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, PTC255); + adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, PTC511); + adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, PTC1023); + adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, PTC1522); + adapter->stats.mptc += E1000_READ_REG(&adapter->hw, MPTC); + adapter->stats.bptc += E1000_READ_REG(&adapter->hw, BPTC); + + if (adapter->hw.mac_type >= em_82543) { + adapter->stats.algnerrc += + E1000_READ_REG(&adapter->hw, ALGNERRC); + adapter->stats.rxerrc += + E1000_READ_REG(&adapter->hw, RXERRC); + adapter->stats.tncrs += + E1000_READ_REG(&adapter->hw, TNCRS); + adapter->stats.cexterr += + E1000_READ_REG(&adapter->hw, CEXTERR); + adapter->stats.tsctc += + E1000_READ_REG(&adapter->hw, TSCTC); + adapter->stats.tsctfc += + E1000_READ_REG(&adapter->hw, TSCTFC); + } + ifp = adapter->ifp; + + ifp->if_collisions = adapter->stats.colc; + + /* Rx Errors */ + ifp->if_ierrors = adapter->dropped_pkts + adapter->stats.rxerrc + + adapter->stats.crcerrs + adapter->stats.algnerrc + + adapter->stats.ruc + adapter->stats.roc + + adapter->stats.mpc + adapter->stats.cexterr; + + /* Tx Errors */ + ifp->if_oerrors = adapter->stats.ecol + + adapter->stats.latecol + adapter->watchdog_events; +} + + +/********************************************************************** + * + * This routine is called only when em_display_debug_stats is enabled. + * This routine provides a way to take a look at important statistics + * maintained by the driver and hardware. + * + **********************************************************************/ +static void +em_print_debug_info(struct adapter *adapter) +{ + device_t dev = adapter->dev; + uint8_t *hw_addr = adapter->hw.hw_addr; + + device_printf(dev, "Adapter hardware address = %p \n", hw_addr); + device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n", + E1000_READ_REG(&adapter->hw, CTRL), + E1000_READ_REG(&adapter->hw, RCTL)); + device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n", + ((E1000_READ_REG(&adapter->hw, PBA) & 0xffff0000) >> 16),\ + (E1000_READ_REG(&adapter->hw, PBA) & 0xffff) ); + device_printf(dev, "Flow control watermarks high = %d low = %d\n", + adapter->hw.fc_high_water, + adapter->hw.fc_low_water); + device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n", + E1000_READ_REG(&adapter->hw, TIDV), + E1000_READ_REG(&adapter->hw, TADV)); + device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n", + E1000_READ_REG(&adapter->hw, RDTR), + E1000_READ_REG(&adapter->hw, RADV)); + device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n", + (long long)adapter->tx_fifo_wrk_cnt, + (long long)adapter->tx_fifo_reset_cnt); + device_printf(dev, "hw tdh = %d, hw tdt = %d\n", + E1000_READ_REG(&adapter->hw, TDH), + E1000_READ_REG(&adapter->hw, TDT)); + device_printf(dev, "Num Tx descriptors avail = %d\n", + adapter->num_tx_desc_avail); + device_printf(dev, "Tx Descriptors not avail1 = %ld\n", + adapter->no_tx_desc_avail1); + device_printf(dev, "Tx Descriptors not avail2 = %ld\n", + adapter->no_tx_desc_avail2); + device_printf(dev, "Std mbuf failed = %ld\n", + adapter->mbuf_alloc_failed); + device_printf(dev, "Std mbuf cluster failed = %ld\n", + adapter->mbuf_cluster_failed); + device_printf(dev, "Driver dropped packets = %ld\n", + adapter->dropped_pkts); + device_printf(dev, "Driver tx dma failure in encap = %ld\n", + adapter->no_tx_dma_setup); +} + +static void +em_print_hw_stats(struct adapter *adapter) +{ + device_t dev = adapter->dev; + + device_printf(dev, "Excessive collisions = %lld\n", + (long long)adapter->stats.ecol); +#if (DEBUG_HW > 0) /* Dont output these errors normally */ + device_printf(dev, "Symbol errors = %lld\n", + (long long)adapter->stats.symerrs); +#endif + device_printf(dev, "Sequence errors = %lld\n", + (long long)adapter->stats.sec); + device_printf(dev, "Defer count = %lld\n", + (long long)adapter->stats.dc); + device_printf(dev, "Missed Packets = %lld\n", + (long long)adapter->stats.mpc); + device_printf(dev, "Receive No Buffers = %lld\n", + (long long)adapter->stats.rnbc); + /* RLEC is inaccurate on some hardware, calculate our own. */ + device_printf(dev, "Receive Length Errors = %lld\n", + ((long long)adapter->stats.roc + (long long)adapter->stats.ruc)); + device_printf(dev, "Receive errors = %lld\n", + (long long)adapter->stats.rxerrc); + device_printf(dev, "Crc errors = %lld\n", + (long long)adapter->stats.crcerrs); + device_printf(dev, "Alignment errors = %lld\n", + (long long)adapter->stats.algnerrc); + device_printf(dev, "Carrier extension errors = %lld\n", + (long long)adapter->stats.cexterr); + device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns); + device_printf(dev, "watchdog timeouts = %ld\n", + adapter->watchdog_events); + device_printf(dev, "XON Rcvd = %lld\n", + (long long)adapter->stats.xonrxc); + device_printf(dev, "XON Xmtd = %lld\n", + (long long)adapter->stats.xontxc); + device_printf(dev, "XOFF Rcvd = %lld\n", + (long long)adapter->stats.xoffrxc); + device_printf(dev, "XOFF Xmtd = %lld\n", + (long long)adapter->stats.xofftxc); + device_printf(dev, "Good Packets Rcvd = %lld\n", + (long long)adapter->stats.gprc); + device_printf(dev, "Good Packets Xmtd = %lld\n", + (long long)adapter->stats.gptc); +#ifdef EM_TSO + device_printf(dev, "TSO Contexts Xmtd = %lld\n", + (long long)adapter->stats.tsctc); + device_printf(dev, "TSO Contexts Failed = %lld\n", + (long long)adapter->stats.tsctfc); +#endif +} + +static int +em_sysctl_debug_info(SYSCTL_HANDLER_ARGS) +{ + struct adapter *adapter; + int error; + int result; + + result = -1; + error = sysctl_handle_int(oidp, &result, 0, req); + + if (error || !req->newptr) + return (error); + + if (result == 1) { + adapter = (struct adapter *)arg1; + em_print_debug_info(adapter); + } + + return (error); +} + + +static int +em_sysctl_stats(SYSCTL_HANDLER_ARGS) +{ + struct adapter *adapter; + int error; + int result; + + result = -1; + error = sysctl_handle_int(oidp, &result, 0, req); + + if (error || !req->newptr) + return (error); + + if (result == 1) { + adapter = (struct adapter *)arg1; + em_print_hw_stats(adapter); + } + + return (error); +} + +static int +em_sysctl_int_delay(SYSCTL_HANDLER_ARGS) +{ + struct em_int_delay_info *info; + struct adapter *adapter; + uint32_t regval; + int error; + int usecs; + int ticks; + + info = (struct em_int_delay_info *)arg1; + usecs = info->value; + error = sysctl_handle_int(oidp, &usecs, 0, req); + if (error != 0 || req->newptr == NULL) + return (error); + if (usecs < 0 || usecs > E1000_TICKS_TO_USECS(65535)) + return (EINVAL); + info->value = usecs; + ticks = E1000_USECS_TO_TICKS(usecs); + + adapter = info->adapter; + + EM_LOCK(adapter); + regval = E1000_READ_OFFSET(&adapter->hw, info->offset); + regval = (regval & ~0xffff) | (ticks & 0xffff); + /* Handle a few special cases. */ + switch (info->offset) { + case E1000_RDTR: + case E1000_82542_RDTR: + regval |= E1000_RDT_FPDB; + break; + case E1000_TIDV: + case E1000_82542_TIDV: + if (ticks == 0) { + adapter->txd_cmd &= ~E1000_TXD_CMD_IDE; + /* Don't write 0 into the TIDV register. */ + regval++; + } else + adapter->txd_cmd |= E1000_TXD_CMD_IDE; + break; + } + E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval); + EM_UNLOCK(adapter); + return (0); +} + +static void +em_add_int_delay_sysctl(struct adapter *adapter, const char *name, + const char *description, struct em_int_delay_info *info, + int offset, int value) +{ + info->adapter = adapter; + info->offset = offset; + info->value = value; + SYSCTL_ADD_PROC(device_get_sysctl_ctx(adapter->dev), + SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)), + OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW, + info, 0, em_sysctl_int_delay, "I", description); +} + +static void +em_add_rx_process_limit(struct adapter *adapter, const char *name, + const char *description, int *limit, int value) +{ + *limit = value; + SYSCTL_ADD_INT(device_get_sysctl_ctx(adapter->dev), + SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)), + OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW, limit, value, description); +} diff --git a/src/add-ons/kernel/drivers/network/ipro1000/dev/em/if_em.h b/src/add-ons/kernel/drivers/network/ipro1000/dev/em/if_em.h new file mode 100644 index 0000000000..b98a8417f9 --- /dev/null +++ b/src/add-ons/kernel/drivers/network/ipro1000/dev/em/if_em.h @@ -0,0 +1,440 @@ +/************************************************************************** + +Copyright (c) 2001-2006, Intel Corporation +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. + +***************************************************************************/ +/*$FreeBSD: src/sys/dev/em/if_em.h,v 1.32.2.6 2006/11/10 09:30:27 jfv Exp $*/ + +#ifndef _EM_H_DEFINED_ +#define _EM_H_DEFINED_ + +/* Tunables */ + +/* + * EM_TXD: Maximum number of Transmit Descriptors + * Valid Range: 80-256 for 82542 and 82543-based adapters + * 80-4096 for others + * Default Value: 256 + * This value is the number of transmit descriptors allocated by the driver. + * Increasing this value allows the driver to queue more transmits. Each + * descriptor is 16 bytes. + * Since TDLEN should be multiple of 128bytes, the number of transmit + * desscriptors should meet the following condition. + * (num_tx_desc * sizeof(struct em_tx_desc)) % 128 == 0 + */ +#define EM_MIN_TXD 80 +#define EM_MAX_TXD_82543 256 +#define EM_MAX_TXD 4096 +#define EM_DEFAULT_TXD EM_MAX_TXD_82543 + +/* + * EM_RXD - Maximum number of receive Descriptors + * Valid Range: 80-256 for 82542 and 82543-based adapters + * 80-4096 for others + * Default Value: 256 + * This value is the number of receive descriptors allocated by the driver. + * Increasing this value allows the driver to buffer more incoming packets. + * Each descriptor is 16 bytes. A receive buffer is also allocated for each + * descriptor. The maximum MTU size is 16110. + * Since TDLEN should be multiple of 128bytes, the number of transmit + * desscriptors should meet the following condition. + * (num_tx_desc * sizeof(struct em_tx_desc)) % 128 == 0 + */ +#define EM_MIN_RXD 80 +#define EM_MAX_RXD_82543 256 +#define EM_MAX_RXD 4096 +#define EM_DEFAULT_RXD EM_MAX_RXD_82543 + +/* + * EM_TIDV - Transmit Interrupt Delay Value + * Valid Range: 0-65535 (0=off) + * Default Value: 64 + * This value delays the generation of transmit interrupts in units of + * 1.024 microseconds. Transmit interrupt reduction can improve CPU + * efficiency if properly tuned for specific network traffic. If the + * system is reporting dropped transmits, this value may be set too high + * causing the driver to run out of available transmit descriptors. + */ +#define EM_TIDV 64 + +/* + * EM_TADV - Transmit Absolute Interrupt Delay Value + * (Not valid for 82542/82543/82544) + * Valid Range: 0-65535 (0=off) + * Default Value: 64 + * This value, in units of 1.024 microseconds, limits the delay in which a + * transmit interrupt is generated. Useful only if EM_TIDV is non-zero, + * this value ensures that an interrupt is generated after the initial + * packet is sent on the wire within the set amount of time. Proper tuning, + * along with EM_TIDV, may improve traffic throughput in specific + * network conditions. + */ +#define EM_TADV 64 + +/* + * EM_RDTR - Receive Interrupt Delay Timer (Packet Timer) + * Valid Range: 0-65535 (0=off) + * Default Value: 0 + * This value delays the generation of receive interrupts in units of 1.024 + * microseconds. Receive interrupt reduction can improve CPU efficiency if + * properly tuned for specific network traffic. Increasing this value adds + * extra latency to frame reception and can end up decreasing the throughput + * of TCP traffic. If the system is reporting dropped receives, this value + * may be set too high, causing the driver to run out of available receive + * descriptors. + * + * CAUTION: When setting EM_RDTR to a value other than 0, adapters + * may hang (stop transmitting) under certain network conditions. + * If this occurs a WATCHDOG message is logged in the system + * event log. In addition, the controller is automatically reset, + * restoring the network connection. To eliminate the potential + * for the hang ensure that EM_RDTR is set to 0. + */ +#define EM_RDTR 0 + +/* + * Receive Interrupt Absolute Delay Timer (Not valid for 82542/82543/82544) + * Valid Range: 0-65535 (0=off) + * Default Value: 64 + * This value, in units of 1.024 microseconds, limits the delay in which a + * receive interrupt is generated. Useful only if EM_RDTR is non-zero, + * this value ensures that an interrupt is generated after the initial + * packet is received within the set amount of time. Proper tuning, + * along with EM_RDTR, may improve traffic throughput in specific network + * conditions. + */ +#define EM_RADV 64 + +/* + * Inform the stack about transmit checksum offload capabilities. + */ +#define EM_CHECKSUM_FEATURES (CSUM_TCP | CSUM_UDP) + +#ifdef EM_TSO +/* + * Inform the stack about transmit segmentation offload capabilities. + */ +#define EM_TCPSEG_FEATURES CSUM_TSO +#endif + +/* + * This parameter controls the duration of transmit watchdog timer. + */ +#define EM_TX_TIMEOUT 5 /* set to 5 seconds */ + +/* + * These parameters controls when the driver calls the routine to reclaim + * transmit descriptors. + */ +#define EM_TX_CLEANUP_THRESHOLD (adapter->num_tx_desc / 8) +#define EM_TX_OP_THRESHOLD (adapter->num_tx_desc / 32) + +/* + * This parameter controls whether or not autonegotation is enabled. + * 0 - Disable autonegotiation + * 1 - Enable autonegotiation + */ +#define DO_AUTO_NEG 1 + +/* + * This parameter control whether or not the driver will wait for + * autonegotiation to complete. + * 1 - Wait for autonegotiation to complete + * 0 - Don't wait for autonegotiation to complete + */ +#define WAIT_FOR_AUTO_NEG_DEFAULT 0 + +/* + * EM_MASTER_SLAVE is only defined to enable a workaround for a known + * compatibility issue with 82541/82547 devices and some switches. + * See the "Known Limitations" section of the README file for a complete + * description and a list of affected switches. + * + * 0 = Hardware default + * 1 = Master mode + * 2 = Slave mode + * 3 = Auto master/slave + */ +/* #define EM_MASTER_SLAVE 2 */ + +/* Tunables -- End */ + +#define AUTONEG_ADV_DEFAULT (ADVERTISE_10_HALF | ADVERTISE_10_FULL | \ + ADVERTISE_100_HALF | ADVERTISE_100_FULL | \ + ADVERTISE_1000_FULL) + +#define EM_VENDOR_ID 0x8086 +#define EM_FLASH 0x0014 /* Flash memory on ICH8 */ + +#define EM_JUMBO_PBA 0x00000028 +#define EM_DEFAULT_PBA 0x00000030 +#define EM_SMARTSPEED_DOWNSHIFT 3 +#define EM_SMARTSPEED_MAX 15 + +#define MAX_NUM_MULTICAST_ADDRESSES 128 +#define PCI_ANY_ID (~0U) +#define ETHER_ALIGN 2 + +/* + * TDBA/RDBA should be aligned on 16 byte boundary. But TDLEN/RDLEN should be + * multiple of 128 bytes. So we align TDBA/RDBA on 128 byte boundary. This will + * also optimize cache line size effect. H/W supports up to cache line size 128. + */ +#define EM_DBA_ALIGN 128 + +#define SPEED_MODE_BIT (1<<21) /* On PCI-E MACs only */ + +/* PCI Config defines */ +#define EM_BAR_TYPE(v) ((v) & EM_BAR_TYPE_MASK) +#define EM_BAR_TYPE_MASK 0x00000001 +#define EM_BAR_TYPE_MMEM 0x00000000 +#define EM_BAR_TYPE_IO 0x00000001 +#define EM_BAR_MEM_TYPE(v) ((v) & EM_BAR_MEM_TYPE_MASK) +#define EM_BAR_MEM_TYPE_MASK 0x00000006 +#define EM_BAR_MEM_TYPE_32BIT 0x00000000 +#define EM_BAR_MEM_TYPE_64BIT 0x00000004 +/* + * Backward compatibility workaround + */ +#if !defined(PCIR_CIS) +#define PCIR_CIS PCIR_CARDBUSCIS +#endif + +/* Defines for printing debug information */ +#define DEBUG_INIT 1 +#define DEBUG_IOCTL 1 +#define DEBUG_HW 1 + +#define INIT_DEBUGOUT(S) if (DEBUG_INIT) printf(S "\n") +#define INIT_DEBUGOUT1(S, A) if (DEBUG_INIT) printf(S "\n", A) +#define INIT_DEBUGOUT2(S, A, B) if (DEBUG_INIT) printf(S "\n", A, B) +#define IOCTL_DEBUGOUT(S) if (DEBUG_IOCTL) printf(S "\n") +#define IOCTL_DEBUGOUT1(S, A) if (DEBUG_IOCTL) printf(S "\n", A) +#define IOCTL_DEBUGOUT2(S, A, B) if (DEBUG_IOCTL) printf(S "\n", A, B) +#define HW_DEBUGOUT(S) if (DEBUG_HW) printf(S "\n") +#define HW_DEBUGOUT1(S, A) if (DEBUG_HW) printf(S "\n", A) +#define HW_DEBUGOUT2(S, A, B) if (DEBUG_HW) printf(S "\n", A, B) + + +/* Supported RX Buffer Sizes */ +#define EM_RXBUFFER_2048 2048 +#define EM_RXBUFFER_4096 4096 +#define EM_RXBUFFER_8192 8192 +#define EM_RXBUFFER_16384 16384 + +#define EM_MAX_SCATTER 64 +#define EM_TSO_SIZE 65535 /* maxsize of a dma transfer */ + +/* ****************************************************************************** + * vendor_info_array + * + * This array contains the list of Subvendor/Subdevice IDs on which the driver + * should load. + * + * ******************************************************************************/ +typedef struct _em_vendor_info_t { + unsigned int vendor_id; + unsigned int device_id; + unsigned int subvendor_id; + unsigned int subdevice_id; + unsigned int index; +} em_vendor_info_t; + + +struct em_buffer { + int next_eop; /* Index of the desc to watch */ + struct mbuf *m_head; + bus_dmamap_t map; /* bus_dma map for packet */ +}; + +/* + * Bus dma allocation structure used by + * em_dma_malloc and em_dma_free. + */ +struct em_dma_alloc { + bus_addr_t dma_paddr; + caddr_t dma_vaddr; + bus_dma_tag_t dma_tag; + bus_dmamap_t dma_map; + bus_dma_segment_t dma_seg; + int dma_nseg; +}; + +typedef enum _XSUM_CONTEXT_T { + OFFLOAD_NONE, + OFFLOAD_TCP_IP, + OFFLOAD_UDP_IP +} XSUM_CONTEXT_T; + +struct adapter; +struct em_int_delay_info { + struct adapter *adapter; /* Back-pointer to the adapter struct */ + int offset; /* Register offset to read/write */ + int value; /* Current value in usecs */ +}; + +/* For 82544 PCIX Workaround */ +typedef struct _ADDRESS_LENGTH_PAIR +{ + uint64_t address; + uint32_t length; +} ADDRESS_LENGTH_PAIR, *PADDRESS_LENGTH_PAIR; + +typedef struct _DESCRIPTOR_PAIR +{ + ADDRESS_LENGTH_PAIR descriptor[4]; + uint32_t elements; +} DESC_ARRAY, *PDESC_ARRAY; + +/* Our adapter structure */ +struct adapter { + struct ifnet *ifp; + struct em_hw hw; + + /* FreeBSD operating-system-specific structures. */ + struct em_osdep osdep; + struct device *dev; + struct resource *res_memory; + struct resource *flash_mem; + struct resource *res_ioport; + struct resource *res_interrupt; + void *int_handler_tag; + struct ifmedia media; + struct callout timer; + struct callout tx_fifo_timer; + int watchdog_timer; + int io_rid; + int if_flags; + struct mtx mtx; + int em_insert_vlan_header; + +#ifdef EM_FAST_INTR + struct task link_task; + struct task rxtx_task; + struct taskqueue *tq; +#endif + /* Info about the board itself */ + uint32_t part_num; + uint8_t link_active; + uint16_t link_speed; + uint16_t link_duplex; + uint32_t smartspeed; + struct em_int_delay_info tx_int_delay; + struct em_int_delay_info tx_abs_int_delay; + struct em_int_delay_info rx_int_delay; + struct em_int_delay_info rx_abs_int_delay; + + XSUM_CONTEXT_T active_checksum_context; + + /* + * Transmit definitions + * + * We have an array of num_tx_desc descriptors (handled + * by the controller) paired with an array of tx_buffers + * (at tx_buffer_area). + * The index of the next available descriptor is next_avail_tx_desc. + * The number of remaining tx_desc is num_tx_desc_avail. + */ + struct em_dma_alloc txdma; /* bus_dma glue for tx desc */ + struct em_tx_desc *tx_desc_base; + uint32_t next_avail_tx_desc; + uint32_t next_tx_to_clean; + volatile uint16_t num_tx_desc_avail; + uint16_t num_tx_desc; + uint32_t txd_cmd; + struct em_buffer *tx_buffer_area; + bus_dma_tag_t txtag; /* dma tag for tx */ + uint32_t tx_tso; /* last tx was tso */ + + /* + * Receive definitions + * + * we have an array of num_rx_desc rx_desc (handled by the + * controller), and paired with an array of rx_buffers + * (at rx_buffer_area). + * The next pair to check on receive is at offset next_rx_desc_to_check + */ + struct em_dma_alloc rxdma; /* bus_dma glue for rx desc */ + struct em_rx_desc *rx_desc_base; + uint32_t next_rx_desc_to_check; + uint32_t rx_buffer_len; + uint16_t num_rx_desc; + int rx_process_limit; + struct em_buffer *rx_buffer_area; + bus_dma_tag_t rxtag; + + /* + * First/last mbuf pointers, for + * collecting multisegment RX packets. + */ + struct mbuf *fmp; + struct mbuf *lmp; + + /* Misc stats maintained by the driver */ + unsigned long dropped_pkts; + unsigned long mbuf_alloc_failed; + unsigned long mbuf_cluster_failed; + unsigned long no_tx_desc_avail1; + unsigned long no_tx_desc_avail2; + unsigned long no_tx_map_avail; + unsigned long no_tx_dma_setup; + unsigned long watchdog_events; + unsigned long rx_overruns; + + /* Used in for 82547 10Mb Half workaround */ + #define EM_PBA_BYTES_SHIFT 0xA + #define EM_TX_HEAD_ADDR_SHIFT 7 + #define EM_PBA_TX_MASK 0xFFFF0000 + #define EM_FIFO_HDR 0x10 + + #define EM_82547_PKT_THRESH 0x3e0 + + uint32_t tx_fifo_size; + uint32_t tx_fifo_head; + uint32_t tx_fifo_head_addr; + uint64_t tx_fifo_reset_cnt; + uint64_t tx_fifo_wrk_cnt; + uint32_t tx_head_addr; + + /* For 82544 PCIX Workaround */ + boolean_t pcix_82544; + boolean_t in_detach; + + struct em_hw_stats stats; +}; + +#define EM_LOCK_INIT(_sc, _name) \ + mtx_init(&(_sc)->mtx, _name, MTX_NETWORK_LOCK, MTX_DEF) +#define EM_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->mtx) +#define EM_LOCK(_sc) mtx_lock(&(_sc)->mtx) +#define EM_UNLOCK(_sc) mtx_unlock(&(_sc)->mtx) +#define EM_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->mtx, MA_OWNED) + +#endif /* _EM_H_DEFINED_ */ diff --git a/src/add-ons/kernel/drivers/network/ipro1000/dev/em/if_em_hw.c b/src/add-ons/kernel/drivers/network/ipro1000/dev/em/if_em_hw.c new file mode 100644 index 0000000000..57c5901c5a --- /dev/null +++ b/src/add-ons/kernel/drivers/network/ipro1000/dev/em/if_em_hw.c @@ -0,0 +1,9147 @@ +/******************************************************************************* + + Copyright (c) 2001-2005, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +*******************************************************************************/ + +/*$FreeBSD: src/sys/dev/em/if_em_hw.c,v 1.16.2.4 2006/10/28 01:37:14 jfv Exp $*/ + +/* if_em_hw.c + * Shared functions for accessing and configuring the MAC + */ + +#define STATIC static + +#include + +static int32_t em_swfw_sync_acquire(struct em_hw *hw, uint16_t mask); +static void em_swfw_sync_release(struct em_hw *hw, uint16_t mask); +static int32_t em_read_kmrn_reg(struct em_hw *hw, uint32_t reg_addr, uint16_t *data); +static int32_t em_write_kmrn_reg(struct em_hw *hw, uint32_t reg_addr, uint16_t data); +static int32_t em_get_software_semaphore(struct em_hw *hw); +static void em_release_software_semaphore(struct em_hw *hw); + +static uint8_t em_arc_subsystem_valid(struct em_hw *hw); +static int32_t em_check_downshift(struct em_hw *hw); +static int32_t em_check_polarity(struct em_hw *hw, em_rev_polarity *polarity); +static void em_clear_vfta(struct em_hw *hw); +static int32_t em_commit_shadow_ram(struct em_hw *hw); +static int32_t em_config_dsp_after_link_change(struct em_hw *hw, boolean_t link_up); +static int32_t em_config_fc_after_link_up(struct em_hw *hw); +static int32_t em_detect_gig_phy(struct em_hw *hw); +static int32_t em_erase_ich8_4k_segment(struct em_hw *hw, uint32_t bank); +static int32_t em_get_auto_rd_done(struct em_hw *hw); +static int32_t em_get_cable_length(struct em_hw *hw, uint16_t *min_length, uint16_t *max_length); +static int32_t em_get_hw_eeprom_semaphore(struct em_hw *hw); +static int32_t em_get_phy_cfg_done(struct em_hw *hw); +static int32_t em_get_software_flag(struct em_hw *hw); +static int32_t em_ich8_cycle_init(struct em_hw *hw); +static int32_t em_ich8_flash_cycle(struct em_hw *hw, uint32_t timeout); +static int32_t em_id_led_init(struct em_hw *hw); +static int32_t em_init_lcd_from_nvm_config_region(struct em_hw *hw, uint32_t cnf_base_addr, uint32_t cnf_size); +static int32_t em_init_lcd_from_nvm(struct em_hw *hw); +static void em_init_rx_addrs(struct em_hw *hw); +static void em_initialize_hardware_bits(struct em_hw *hw); +static boolean_t em_is_onboard_nvm_eeprom(struct em_hw *hw); +static int32_t em_kumeran_lock_loss_workaround(struct em_hw *hw); +static int32_t em_mng_enable_host_if(struct em_hw *hw); +static int32_t em_mng_host_if_write(struct em_hw *hw, uint8_t *buffer, uint16_t length, uint16_t offset, uint8_t *sum); +static int32_t em_mng_write_cmd_header(struct em_hw* hw, struct em_host_mng_command_header* hdr); +static int32_t em_mng_write_commit(struct em_hw *hw); +static int32_t em_phy_ife_get_info(struct em_hw *hw, struct em_phy_info *phy_info); +static int32_t em_phy_igp_get_info(struct em_hw *hw, struct em_phy_info *phy_info); +static int32_t em_read_eeprom_eerd(struct em_hw *hw, uint16_t offset, uint16_t words, uint16_t *data); +static int32_t em_write_eeprom_eewr(struct em_hw *hw, uint16_t offset, uint16_t words, uint16_t *data); +static int32_t em_poll_eerd_eewr_done(struct em_hw *hw, int eerd); +static int32_t em_phy_m88_get_info(struct em_hw *hw, struct em_phy_info *phy_info); +static void em_put_hw_eeprom_semaphore(struct em_hw *hw); +static int32_t em_read_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t *data); +static int32_t em_verify_write_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t byte); +static int32_t em_write_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t byte); +static int32_t em_read_ich8_word(struct em_hw *hw, uint32_t index, uint16_t *data); +static int32_t em_read_ich8_data(struct em_hw *hw, uint32_t index, uint32_t size, uint16_t *data); +static int32_t em_write_ich8_data(struct em_hw *hw, uint32_t index, uint32_t size, uint16_t data); +static int32_t em_read_eeprom_ich8(struct em_hw *hw, uint16_t offset, uint16_t words, uint16_t *data); +static int32_t em_write_eeprom_ich8(struct em_hw *hw, uint16_t offset, uint16_t words, uint16_t *data); +static void em_release_software_flag(struct em_hw *hw); +static int32_t em_set_d3_lplu_state(struct em_hw *hw, boolean_t active); +static int32_t em_set_d0_lplu_state(struct em_hw *hw, boolean_t active); +static int32_t em_set_pci_ex_no_snoop(struct em_hw *hw, uint32_t no_snoop); +static void em_set_pci_express_master_disable(struct em_hw *hw); +static int32_t em_wait_autoneg(struct em_hw *hw); +static void em_write_reg_io(struct em_hw *hw, uint32_t offset, uint32_t value); +static int32_t em_set_phy_type(struct em_hw *hw); +static void em_phy_init_script(struct em_hw *hw); +static int32_t em_setup_copper_link(struct em_hw *hw); +static int32_t em_setup_fiber_serdes_link(struct em_hw *hw); +static int32_t em_adjust_serdes_amplitude(struct em_hw *hw); +static int32_t em_phy_force_speed_duplex(struct em_hw *hw); +static int32_t em_config_mac_to_phy(struct em_hw *hw); +static void em_raise_mdi_clk(struct em_hw *hw, uint32_t *ctrl); +static void em_lower_mdi_clk(struct em_hw *hw, uint32_t *ctrl); +static void em_shift_out_mdi_bits(struct em_hw *hw, uint32_t data, + uint16_t count); +static uint16_t em_shift_in_mdi_bits(struct em_hw *hw); +static int32_t em_phy_reset_dsp(struct em_hw *hw); +static int32_t em_write_eeprom_spi(struct em_hw *hw, uint16_t offset, + uint16_t words, uint16_t *data); +static int32_t em_write_eeprom_microwire(struct em_hw *hw, + uint16_t offset, uint16_t words, + uint16_t *data); +static int32_t em_spi_eeprom_ready(struct em_hw *hw); +static void em_raise_ee_clk(struct em_hw *hw, uint32_t *eecd); +static void em_lower_ee_clk(struct em_hw *hw, uint32_t *eecd); +static void em_shift_out_ee_bits(struct em_hw *hw, uint16_t data, + uint16_t count); +static int32_t em_write_phy_reg_ex(struct em_hw *hw, uint32_t reg_addr, + uint16_t phy_data); +static int32_t em_read_phy_reg_ex(struct em_hw *hw,uint32_t reg_addr, + uint16_t *phy_data); +static uint16_t em_shift_in_ee_bits(struct em_hw *hw, uint16_t count); +static int32_t em_acquire_eeprom(struct em_hw *hw); +static void em_release_eeprom(struct em_hw *hw); +static void em_standby_eeprom(struct em_hw *hw); +static int32_t em_set_vco_speed(struct em_hw *hw); +static int32_t em_polarity_reversal_workaround(struct em_hw *hw); +static int32_t em_set_phy_mode(struct em_hw *hw); +static int32_t em_host_if_read_cookie(struct em_hw *hw, uint8_t *buffer); +static uint8_t em_calculate_mng_checksum(char *buffer, uint32_t length); +static int32_t em_configure_kmrn_for_10_100(struct em_hw *hw, + uint16_t duplex); +static int32_t em_configure_kmrn_for_1000(struct em_hw *hw); + +/* IGP cable length table */ +static const +uint16_t em_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = + { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25, + 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40, + 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60, + 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90, + 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, + 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, + 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120}; + +static const +uint16_t em_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] = + { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, + 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, + 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, + 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, + 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, + 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, + 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124, + 104, 109, 114, 118, 121, 124}; + +/****************************************************************************** + * Set the phy type member in the hw struct. + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +STATIC int32_t +em_set_phy_type(struct em_hw *hw) +{ + DEBUGFUNC("em_set_phy_type"); + + if (hw->mac_type == em_undefined) + return -E1000_ERR_PHY_TYPE; + + switch (hw->phy_id) { + case M88E1000_E_PHY_ID: + case M88E1000_I_PHY_ID: + case M88E1011_I_PHY_ID: + case M88E1111_I_PHY_ID: + hw->phy_type = em_phy_m88; + break; + case IGP01E1000_I_PHY_ID: + if (hw->mac_type == em_82541 || + hw->mac_type == em_82541_rev_2 || + hw->mac_type == em_82547 || + hw->mac_type == em_82547_rev_2) { + hw->phy_type = em_phy_igp; + break; + } + case IGP03E1000_E_PHY_ID: + hw->phy_type = em_phy_igp_3; + break; + case IFE_E_PHY_ID: + case IFE_PLUS_E_PHY_ID: + case IFE_C_E_PHY_ID: + hw->phy_type = em_phy_ife; + break; + case GG82563_E_PHY_ID: + if (hw->mac_type == em_80003es2lan) { + hw->phy_type = em_phy_gg82563; + break; + } + /* Fall Through */ + default: + /* Should never have loaded on this device */ + hw->phy_type = em_phy_undefined; + return -E1000_ERR_PHY_TYPE; + } + + return E1000_SUCCESS; +} + +/****************************************************************************** + * IGP phy init script - initializes the GbE PHY + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +static void +em_phy_init_script(struct em_hw *hw) +{ + uint32_t ret_val; + uint16_t phy_saved_data; + + DEBUGFUNC("em_phy_init_script"); + + if (hw->phy_init_script) { + msec_delay(20); + + /* Save off the current value of register 0x2F5B to be restored at + * the end of this routine. */ + ret_val = em_read_phy_reg(hw, 0x2F5B, &phy_saved_data); + + /* Disabled the PHY transmitter */ + em_write_phy_reg(hw, 0x2F5B, 0x0003); + + msec_delay(20); + + em_write_phy_reg(hw,0x0000,0x0140); + + msec_delay(5); + + switch (hw->mac_type) { + case em_82541: + case em_82547: + em_write_phy_reg(hw, 0x1F95, 0x0001); + + em_write_phy_reg(hw, 0x1F71, 0xBD21); + + em_write_phy_reg(hw, 0x1F79, 0x0018); + + em_write_phy_reg(hw, 0x1F30, 0x1600); + + em_write_phy_reg(hw, 0x1F31, 0x0014); + + em_write_phy_reg(hw, 0x1F32, 0x161C); + + em_write_phy_reg(hw, 0x1F94, 0x0003); + + em_write_phy_reg(hw, 0x1F96, 0x003F); + + em_write_phy_reg(hw, 0x2010, 0x0008); + break; + + case em_82541_rev_2: + case em_82547_rev_2: + em_write_phy_reg(hw, 0x1F73, 0x0099); + break; + default: + break; + } + + em_write_phy_reg(hw, 0x0000, 0x3300); + + msec_delay(20); + + /* Now enable the transmitter */ + em_write_phy_reg(hw, 0x2F5B, phy_saved_data); + + if (hw->mac_type == em_82547) { + uint16_t fused, fine, coarse; + + /* Move to analog registers page */ + em_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused); + + if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { + em_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused); + + fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK; + coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK; + + if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { + coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10; + fine -= IGP01E1000_ANALOG_FUSE_FINE_1; + } else if (coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH) + fine -= IGP01E1000_ANALOG_FUSE_FINE_10; + + fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) | + (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) | + (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK); + + em_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused); + em_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS, + IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL); + } + } + } +} + +/****************************************************************************** + * Set the mac type member in the hw struct. + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +int32_t +em_set_mac_type(struct em_hw *hw) +{ + DEBUGFUNC("em_set_mac_type"); + + switch (hw->device_id) { + case E1000_DEV_ID_82542: + switch (hw->revision_id) { + case E1000_82542_2_0_REV_ID: + hw->mac_type = em_82542_rev2_0; + break; + case E1000_82542_2_1_REV_ID: + hw->mac_type = em_82542_rev2_1; + break; + default: + /* Invalid 82542 revision ID */ + return -E1000_ERR_MAC_TYPE; + } + break; + case E1000_DEV_ID_82543GC_FIBER: + case E1000_DEV_ID_82543GC_COPPER: + hw->mac_type = em_82543; + break; + case E1000_DEV_ID_82544EI_COPPER: + case E1000_DEV_ID_82544EI_FIBER: + case E1000_DEV_ID_82544GC_COPPER: + case E1000_DEV_ID_82544GC_LOM: + hw->mac_type = em_82544; + break; + case E1000_DEV_ID_82540EM: + case E1000_DEV_ID_82540EM_LOM: + case E1000_DEV_ID_82540EP: + case E1000_DEV_ID_82540EP_LOM: + case E1000_DEV_ID_82540EP_LP: + hw->mac_type = em_82540; + break; + case E1000_DEV_ID_82545EM_COPPER: + case E1000_DEV_ID_82545EM_FIBER: + hw->mac_type = em_82545; + break; + case E1000_DEV_ID_82545GM_COPPER: + case E1000_DEV_ID_82545GM_FIBER: + case E1000_DEV_ID_82545GM_SERDES: + hw->mac_type = em_82545_rev_3; + break; + case E1000_DEV_ID_82546EB_COPPER: + case E1000_DEV_ID_82546EB_FIBER: + case E1000_DEV_ID_82546EB_QUAD_COPPER: + hw->mac_type = em_82546; + break; + case E1000_DEV_ID_82546GB_COPPER: + case E1000_DEV_ID_82546GB_FIBER: + case E1000_DEV_ID_82546GB_SERDES: + case E1000_DEV_ID_82546GB_PCIE: + case E1000_DEV_ID_82546GB_QUAD_COPPER: + case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: + hw->mac_type = em_82546_rev_3; + break; + case E1000_DEV_ID_82541EI: + case E1000_DEV_ID_82541EI_MOBILE: + case E1000_DEV_ID_82541ER_LOM: + hw->mac_type = em_82541; + break; + case E1000_DEV_ID_82541ER: + case E1000_DEV_ID_82541GI: + case E1000_DEV_ID_82541GI_LF: + case E1000_DEV_ID_82541GI_MOBILE: + hw->mac_type = em_82541_rev_2; + break; + case E1000_DEV_ID_82547EI: + case E1000_DEV_ID_82547EI_MOBILE: + hw->mac_type = em_82547; + break; + case E1000_DEV_ID_82547GI: + hw->mac_type = em_82547_rev_2; + break; + case E1000_DEV_ID_82571EB_COPPER: + case E1000_DEV_ID_82571EB_FIBER: + case E1000_DEV_ID_82571EB_SERDES: + case E1000_DEV_ID_82571EB_QUAD_COPPER: + case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE: + hw->mac_type = em_82571; + break; + case E1000_DEV_ID_82572EI_COPPER: + case E1000_DEV_ID_82572EI_FIBER: + case E1000_DEV_ID_82572EI_SERDES: + case E1000_DEV_ID_82572EI: + hw->mac_type = em_82572; + break; + case E1000_DEV_ID_82573E: + case E1000_DEV_ID_82573E_IAMT: + case E1000_DEV_ID_82573L: + hw->mac_type = em_82573; + break; + case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: + case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: + case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: + case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: + hw->mac_type = em_80003es2lan; + break; + case E1000_DEV_ID_ICH8_IGP_M_AMT: + case E1000_DEV_ID_ICH8_IGP_AMT: + case E1000_DEV_ID_ICH8_IGP_C: + case E1000_DEV_ID_ICH8_IFE: + case E1000_DEV_ID_ICH8_IFE_GT: + case E1000_DEV_ID_ICH8_IFE_G: + case E1000_DEV_ID_ICH8_IGP_M: + hw->mac_type = em_ich8lan; + break; + default: + /* Should never have loaded on this device */ + return -E1000_ERR_MAC_TYPE; + } + + switch (hw->mac_type) { + case em_ich8lan: + hw->swfwhw_semaphore_present = TRUE; + hw->asf_firmware_present = TRUE; + break; + case em_80003es2lan: + hw->swfw_sync_present = TRUE; + /* fall through */ + case em_82571: + case em_82572: + case em_82573: + hw->eeprom_semaphore_present = TRUE; + /* fall through */ + case em_82541: + case em_82547: + case em_82541_rev_2: + case em_82547_rev_2: + hw->asf_firmware_present = TRUE; + break; + default: + break; + } + + return E1000_SUCCESS; +} + +/***************************************************************************** + * Set media type and TBI compatibility. + * + * hw - Struct containing variables accessed by shared code + * **************************************************************************/ +void +em_set_media_type(struct em_hw *hw) +{ + uint32_t status; + + DEBUGFUNC("em_set_media_type"); + + if (hw->mac_type != em_82543) { + /* tbi_compatibility is only valid on 82543 */ + hw->tbi_compatibility_en = FALSE; + } + + switch (hw->device_id) { + case E1000_DEV_ID_82545GM_SERDES: + case E1000_DEV_ID_82546GB_SERDES: + case E1000_DEV_ID_82571EB_SERDES: + case E1000_DEV_ID_82572EI_SERDES: + case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: + hw->media_type = em_media_type_internal_serdes; + break; + default: + switch (hw->mac_type) { + case em_82542_rev2_0: + case em_82542_rev2_1: + hw->media_type = em_media_type_fiber; + break; + case em_ich8lan: + case em_82573: + /* The STATUS_TBIMODE bit is reserved or reused for the this + * device. + */ + hw->media_type = em_media_type_copper; + break; + default: + status = E1000_READ_REG(hw, STATUS); + if (status & E1000_STATUS_TBIMODE) { + hw->media_type = em_media_type_fiber; + /* tbi_compatibility not valid on fiber */ + hw->tbi_compatibility_en = FALSE; + } else { + hw->media_type = em_media_type_copper; + } + break; + } + } +} + +/****************************************************************************** + * Reset the transmit and receive units; mask and clear all interrupts. + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +int32_t +em_reset_hw(struct em_hw *hw) +{ + uint32_t ctrl; + uint32_t ctrl_ext; + uint32_t icr; + uint32_t manc; + uint32_t led_ctrl; + uint32_t timeout; + uint32_t extcnf_ctrl; + int32_t ret_val; + + DEBUGFUNC("em_reset_hw"); + + /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ + if (hw->mac_type == em_82542_rev2_0) { + DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); + em_pci_clear_mwi(hw); + } + + if (hw->bus_type == em_bus_type_pci_express) { + /* Prevent the PCI-E bus from sticking if there is no TLP connection + * on the last TLP read/write transaction when MAC is reset. + */ + if (em_disable_pciex_master(hw) != E1000_SUCCESS) { + DEBUGOUT("PCI-E Master disable polling has failed.\n"); + } + } + + /* Clear interrupt mask to stop board from generating interrupts */ + DEBUGOUT("Masking off all interrupts\n"); + E1000_WRITE_REG(hw, IMC, 0xffffffff); + + /* Disable the Transmit and Receive units. Then delay to allow + * any pending transactions to complete before we hit the MAC with + * the global reset. + */ + E1000_WRITE_REG(hw, RCTL, 0); + E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP); + E1000_WRITE_FLUSH(hw); + + /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */ + hw->tbi_compatibility_on = FALSE; + + /* Delay to allow any outstanding PCI transactions to complete before + * resetting the device + */ + msec_delay(10); + + ctrl = E1000_READ_REG(hw, CTRL); + + /* Must reset the PHY before resetting the MAC */ + if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) { + E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST)); + msec_delay(5); + } + + /* Must acquire the MDIO ownership before MAC reset. + * Ownership defaults to firmware after a reset. */ + if (hw->mac_type == em_82573) { + timeout = 10; + + extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); + extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; + + do { + E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl); + extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); + + if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP) + break; + else + extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; + + msec_delay(2); + timeout--; + } while (timeout); + } + + /* Workaround for ICH8 bit corruption issue in FIFO memory */ + if (hw->mac_type == em_ich8lan) { + /* Set Tx and Rx buffer allocation to 8k apiece. */ + E1000_WRITE_REG(hw, PBA, E1000_PBA_8K); + /* Set Packet Buffer Size to 16k. */ + E1000_WRITE_REG(hw, PBS, E1000_PBS_16K); + } + + /* Issue a global reset to the MAC. This will reset the chip's + * transmit, receive, DMA, and link units. It will not effect + * the current PCI configuration. The global reset bit is self- + * clearing, and should clear within a microsecond. + */ + DEBUGOUT("Issuing a global reset to MAC\n"); + + switch (hw->mac_type) { + case em_82544: + case em_82540: + case em_82545: + case em_82546: + case em_82541: + case em_82541_rev_2: + /* These controllers can't ack the 64-bit write when issuing the + * reset, so use IO-mapping as a workaround to issue the reset */ + E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST)); + break; + case em_82545_rev_3: + case em_82546_rev_3: + /* Reset is performed on a shadow of the control register */ + E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST)); + break; + case em_ich8lan: + if (!hw->phy_reset_disable && + em_check_phy_reset_block(hw) == E1000_SUCCESS) { + /* em_ich8lan PHY HW reset requires MAC CORE reset + * at the same time to make sure the interface between + * MAC and the external PHY is reset. + */ + ctrl |= E1000_CTRL_PHY_RST; + } + + em_get_software_flag(hw); + E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); + msec_delay(5); + break; + default: + E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); + break; + } + + /* After MAC reset, force reload of EEPROM to restore power-on settings to + * device. Later controllers reload the EEPROM automatically, so just wait + * for reload to complete. + */ + switch (hw->mac_type) { + case em_82542_rev2_0: + case em_82542_rev2_1: + case em_82543: + case em_82544: + /* Wait for reset to complete */ + usec_delay(10); + ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); + ctrl_ext |= E1000_CTRL_EXT_EE_RST; + E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); + E1000_WRITE_FLUSH(hw); + /* Wait for EEPROM reload */ + msec_delay(2); + break; + case em_82541: + case em_82541_rev_2: + case em_82547: + case em_82547_rev_2: + /* Wait for EEPROM reload */ + msec_delay(20); + break; + case em_82573: + if (em_is_onboard_nvm_eeprom(hw) == FALSE) { + usec_delay(10); + ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); + ctrl_ext |= E1000_CTRL_EXT_EE_RST; + E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); + E1000_WRITE_FLUSH(hw); + } + /* fall through */ + default: + /* Auto read done will delay 5ms or poll based on mac type */ + ret_val = em_get_auto_rd_done(hw); + if (ret_val) + return ret_val; + break; + } + + /* Disable HW ARPs on ASF enabled adapters */ + if (hw->mac_type >= em_82540 && hw->mac_type <= em_82547_rev_2) { + manc = E1000_READ_REG(hw, MANC); + manc &= ~(E1000_MANC_ARP_EN); + E1000_WRITE_REG(hw, MANC, manc); + } + + if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) { + em_phy_init_script(hw); + + /* Configure activity LED after PHY reset */ + led_ctrl = E1000_READ_REG(hw, LEDCTL); + led_ctrl &= IGP_ACTIVITY_LED_MASK; + led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); + E1000_WRITE_REG(hw, LEDCTL, led_ctrl); + } + + /* Clear interrupt mask to stop board from generating interrupts */ + DEBUGOUT("Masking off all interrupts\n"); + E1000_WRITE_REG(hw, IMC, 0xffffffff); + + /* Clear any pending interrupt events. */ + icr = E1000_READ_REG(hw, ICR); + + /* If MWI was previously enabled, reenable it. */ + if (hw->mac_type == em_82542_rev2_0) { + if (hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) + em_pci_set_mwi(hw); + } + + if (hw->mac_type == em_ich8lan) { + uint32_t kab = E1000_READ_REG(hw, KABGTXD); + kab |= E1000_KABGTXD_BGSQLBIAS; + E1000_WRITE_REG(hw, KABGTXD, kab); + } + + return E1000_SUCCESS; +} + +/****************************************************************************** + * + * Initialize a number of hardware-dependent bits + * + * hw: Struct containing variables accessed by shared code + * + *****************************************************************************/ +STATIC void +em_initialize_hardware_bits(struct em_hw *hw) +{ + if ((hw->mac_type >= em_82571) && (!hw->initialize_hw_bits_disable)) { + /* Settings common to all silicon */ + uint32_t reg_ctrl, reg_ctrl_ext; + uint32_t reg_tarc0, reg_tarc1; + uint32_t reg_tctl; + uint32_t reg_txdctl, reg_txdctl1; + + reg_tarc0 = E1000_READ_REG(hw, TARC0); + reg_tarc0 &= ~0x78000000; /* Clear bits 30, 29, 28, and 27 */ + + reg_txdctl = E1000_READ_REG(hw, TXDCTL); + reg_txdctl |= E1000_TXDCTL_COUNT_DESC; /* Set bit 22 */ + E1000_WRITE_REG(hw, TXDCTL, reg_txdctl); + + reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1); + reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC; /* Set bit 22 */ + E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1); + + switch (hw->mac_type) { + case em_82571: + case em_82572: + reg_tarc1 = E1000_READ_REG(hw, TARC1); + reg_tctl = E1000_READ_REG(hw, TCTL); + + /* Set the phy Tx compatible mode bits */ + reg_tarc1 &= ~0x60000000; /* Clear bits 30 and 29 */ + + reg_tarc0 |= 0x07800000; /* Set TARC0 bits 23-26 */ + reg_tarc1 |= 0x07000000; /* Set TARC1 bits 24-26 */ + + if (reg_tctl & E1000_TCTL_MULR) + reg_tarc1 &= ~0x10000000; /* Clear bit 28 if MULR is 1b */ + else + reg_tarc1 |= 0x10000000; /* Set bit 28 if MULR is 0b */ + + E1000_WRITE_REG(hw, TARC1, reg_tarc1); + break; + case em_82573: + reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); + reg_ctrl = E1000_READ_REG(hw, CTRL); + + reg_ctrl_ext &= ~0x00800000; /* Clear bit 23 */ + reg_ctrl_ext |= 0x00400000; /* Set bit 22 */ + reg_ctrl &= ~0x20000000; /* Clear bit 29 */ + + E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext); + E1000_WRITE_REG(hw, CTRL, reg_ctrl); + break; + case em_80003es2lan: + if ((hw->media_type == em_media_type_fiber) || + (hw->media_type == em_media_type_internal_serdes)) { + reg_tarc0 &= ~0x00100000; /* Clear bit 20 */ + } + + reg_tctl = E1000_READ_REG(hw, TCTL); + reg_tarc1 = E1000_READ_REG(hw, TARC1); + if (reg_tctl & E1000_TCTL_MULR) + reg_tarc1 &= ~0x10000000; /* Clear bit 28 if MULR is 1b */ + else + reg_tarc1 |= 0x10000000; /* Set bit 28 if MULR is 0b */ + + E1000_WRITE_REG(hw, TARC1, reg_tarc1); + break; + case em_ich8lan: + if ((hw->revision_id < 3) || + ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) && + (hw->device_id != E1000_DEV_ID_ICH8_IGP_M))) + reg_tarc0 |= 0x30000000; /* Set TARC0 bits 29 and 28 */ + reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); + reg_ctrl_ext |= 0x00400000; /* Set bit 22 */ + E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext); + + reg_tarc0 |= 0x0d800000; /* Set TARC0 bits 23, 24, 26, 27 */ + + reg_tarc1 = E1000_READ_REG(hw, TARC1); + reg_tctl = E1000_READ_REG(hw, TCTL); + + if (reg_tctl & E1000_TCTL_MULR) + reg_tarc1 &= ~0x10000000; /* Clear bit 28 if MULR is 1b */ + else + reg_tarc1 |= 0x10000000; /* Set bit 28 if MULR is 0b */ + + reg_tarc1 |= 0x45000000; /* Set bit 24, 26 and 30 */ + + E1000_WRITE_REG(hw, TARC1, reg_tarc1); + break; + default: + break; + } + + E1000_WRITE_REG(hw, TARC0, reg_tarc0); + } +} + +/****************************************************************************** + * Performs basic configuration of the adapter. + * + * hw - Struct containing variables accessed by shared code + * + * Assumes that the controller has previously been reset and is in a + * post-reset uninitialized state. Initializes the receive address registers, + * multicast table, and VLAN filter table. Calls routines to setup link + * configuration and flow control settings. Clears all on-chip counters. Leaves + * the transmit and receive units disabled and uninitialized. + *****************************************************************************/ +int32_t +em_init_hw(struct em_hw *hw) +{ + uint32_t ctrl; + uint32_t i; + int32_t ret_val; + uint16_t pcix_cmd_word; + uint16_t pcix_stat_hi_word; + uint16_t cmd_mmrbc; + uint16_t stat_mmrbc; + uint32_t mta_size; + uint32_t reg_data; + uint32_t ctrl_ext; + + DEBUGFUNC("em_init_hw"); + + /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */ + if ((hw->mac_type == em_ich8lan) && + ((hw->revision_id < 3) || + ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) && + (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) { + reg_data = E1000_READ_REG(hw, STATUS); + reg_data &= ~0x80000000; + E1000_WRITE_REG(hw, STATUS, reg_data); + } + + /* Initialize Identification LED */ + ret_val = em_id_led_init(hw); + if (ret_val) { + DEBUGOUT("Error Initializing Identification LED\n"); + return ret_val; + } + + /* Set the media type and TBI compatibility */ + em_set_media_type(hw); + + /* Must be called after em_set_media_type because media_type is used */ + em_initialize_hardware_bits(hw); + + /* Disabling VLAN filtering. */ + DEBUGOUT("Initializing the IEEE VLAN\n"); + /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */ + if (hw->mac_type != em_ich8lan) { + if (hw->mac_type < em_82545_rev_3) + E1000_WRITE_REG(hw, VET, 0); + em_clear_vfta(hw); + } + + /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ + if (hw->mac_type == em_82542_rev2_0) { + DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); + em_pci_clear_mwi(hw); + E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST); + E1000_WRITE_FLUSH(hw); + msec_delay(5); + } + + /* Setup the receive address. This involves initializing all of the Receive + * Address Registers (RARs 0 - 15). + */ + em_init_rx_addrs(hw); + + /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ + if (hw->mac_type == em_82542_rev2_0) { + E1000_WRITE_REG(hw, RCTL, 0); + E1000_WRITE_FLUSH(hw); + msec_delay(1); + if (hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) + em_pci_set_mwi(hw); + } + + /* Zero out the Multicast HASH table */ + DEBUGOUT("Zeroing the MTA\n"); + mta_size = E1000_MC_TBL_SIZE; + if (hw->mac_type == em_ich8lan) + mta_size = E1000_MC_TBL_SIZE_ICH8LAN; + for (i = 0; i < mta_size; i++) { + E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); + /* use write flush to prevent Memory Write Block (MWB) from + * occuring when accessing our register space */ + E1000_WRITE_FLUSH(hw); + } + + /* Set the PCI priority bit correctly in the CTRL register. This + * determines if the adapter gives priority to receives, or if it + * gives equal priority to transmits and receives. Valid only on + * 82542 and 82543 silicon. + */ + if (hw->dma_fairness && hw->mac_type <= em_82543) { + ctrl = E1000_READ_REG(hw, CTRL); + E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR); + } + + switch (hw->mac_type) { + case em_82545_rev_3: + case em_82546_rev_3: + break; + default: + /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */ + if (hw->bus_type == em_bus_type_pcix) { + em_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word); + em_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, + &pcix_stat_hi_word); + cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >> + PCIX_COMMAND_MMRBC_SHIFT; + stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >> + PCIX_STATUS_HI_MMRBC_SHIFT; + if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K) + stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K; + if (cmd_mmrbc > stat_mmrbc) { + pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK; + pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT; + em_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, + &pcix_cmd_word); + } + } + break; + } + + /* More time needed for PHY to initialize */ + if (hw->mac_type == em_ich8lan) + msec_delay(15); + + /* Call a subroutine to configure the link and setup flow control. */ + ret_val = em_setup_link(hw); + + /* Set the transmit descriptor write-back policy */ + if (hw->mac_type > em_82544) { + ctrl = E1000_READ_REG(hw, TXDCTL); + ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; + E1000_WRITE_REG(hw, TXDCTL, ctrl); + } + + if (hw->mac_type == em_82573) { + em_enable_tx_pkt_filtering(hw); + } + + switch (hw->mac_type) { + default: + break; + case em_80003es2lan: + /* Enable retransmit on late collisions */ + reg_data = E1000_READ_REG(hw, TCTL); + reg_data |= E1000_TCTL_RTLC; + E1000_WRITE_REG(hw, TCTL, reg_data); + + /* Configure Gigabit Carry Extend Padding */ + reg_data = E1000_READ_REG(hw, TCTL_EXT); + reg_data &= ~E1000_TCTL_EXT_GCEX_MASK; + reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX; + E1000_WRITE_REG(hw, TCTL_EXT, reg_data); + + /* Configure Transmit Inter-Packet Gap */ + reg_data = E1000_READ_REG(hw, TIPG); + reg_data &= ~E1000_TIPG_IPGT_MASK; + reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000; + E1000_WRITE_REG(hw, TIPG, reg_data); + + reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001); + reg_data &= ~0x00100000; + E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data); + /* Fall through */ + case em_82571: + case em_82572: + case em_ich8lan: + ctrl = E1000_READ_REG(hw, TXDCTL1); + ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; + E1000_WRITE_REG(hw, TXDCTL1, ctrl); + break; + } + + + if (hw->mac_type == em_82573) { + uint32_t gcr = E1000_READ_REG(hw, GCR); + gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX; + E1000_WRITE_REG(hw, GCR, gcr); + } + + /* Clear all of the statistics registers (clear on read). It is + * important that we do this after we have tried to establish link + * because the symbol error count will increment wildly if there + * is no link. + */ + em_clear_hw_cntrs(hw); + + /* ICH8 No-snoop bits are opposite polarity. + * Set to snoop by default after reset. */ + if (hw->mac_type == em_ich8lan) + em_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL); + + if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER || + hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) { + ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); + /* Relaxed ordering must be disabled to avoid a parity + * error crash in a PCI slot. */ + ctrl_ext |= E1000_CTRL_EXT_RO_DIS; + E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); + } + + return ret_val; +} + +/****************************************************************************** + * Adjust SERDES output amplitude based on EEPROM setting. + * + * hw - Struct containing variables accessed by shared code. + *****************************************************************************/ +static int32_t +em_adjust_serdes_amplitude(struct em_hw *hw) +{ + uint16_t eeprom_data; + int32_t ret_val; + + DEBUGFUNC("em_adjust_serdes_amplitude"); + + if (hw->media_type != em_media_type_internal_serdes) + return E1000_SUCCESS; + + switch (hw->mac_type) { + case em_82545_rev_3: + case em_82546_rev_3: + break; + default: + return E1000_SUCCESS; + } + + ret_val = em_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data); + if (ret_val) { + return ret_val; + } + + if (eeprom_data != EEPROM_RESERVED_WORD) { + /* Adjust SERDES output amplitude only. */ + eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK; + ret_val = em_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data); + if (ret_val) + return ret_val; + } + + return E1000_SUCCESS; +} + +/****************************************************************************** + * Configures flow control and link settings. + * + * hw - Struct containing variables accessed by shared code + * + * Determines which flow control settings to use. Calls the apropriate media- + * specific link configuration function. Configures the flow control settings. + * Assuming the adapter has a valid link partner, a valid link should be + * established. Assumes the hardware has previously been reset and the + * transmitter and receiver are not enabled. + *****************************************************************************/ +int32_t +em_setup_link(struct em_hw *hw) +{ + uint32_t ctrl_ext; + int32_t ret_val; + uint16_t eeprom_data; + + DEBUGFUNC("em_setup_link"); + + /* In the case of the phy reset being blocked, we already have a link. + * We do not have to set it up again. */ + if (em_check_phy_reset_block(hw)) + return E1000_SUCCESS; + + /* Read and store word 0x0F of the EEPROM. This word contains bits + * that determine the hardware's default PAUSE (flow control) mode, + * a bit that determines whether the HW defaults to enabling or + * disabling auto-negotiation, and the direction of the + * SW defined pins. If there is no SW over-ride of the flow + * control setting, then the variable hw->fc will + * be initialized based on a value in the EEPROM. + */ + if (hw->fc == E1000_FC_DEFAULT) { + switch (hw->mac_type) { + case em_ich8lan: + case em_82573: + hw->fc = E1000_FC_FULL; + break; + default: + ret_val = em_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, + 1, &eeprom_data); + if (ret_val) { + DEBUGOUT("EEPROM Read Error\n"); + return -E1000_ERR_EEPROM; + } + if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0) + hw->fc = E1000_FC_NONE; + else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == + EEPROM_WORD0F_ASM_DIR) + hw->fc = E1000_FC_TX_PAUSE; + else + hw->fc = E1000_FC_FULL; + break; + } + } + + /* We want to save off the original Flow Control configuration just + * in case we get disconnected and then reconnected into a different + * hub or switch with different Flow Control capabilities. + */ + if (hw->mac_type == em_82542_rev2_0) + hw->fc &= (~E1000_FC_TX_PAUSE); + + if ((hw->mac_type < em_82543) && (hw->report_tx_early == 1)) + hw->fc &= (~E1000_FC_RX_PAUSE); + + hw->original_fc = hw->fc; + + DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc); + + /* Take the 4 bits from EEPROM word 0x0F that determine the initial + * polarity value for the SW controlled pins, and setup the + * Extended Device Control reg with that info. + * This is needed because one of the SW controlled pins is used for + * signal detection. So this should be done before em_setup_pcs_link() + * or em_phy_setup() is called. + */ + if (hw->mac_type == em_82543) { + ret_val = em_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, + 1, &eeprom_data); + if (ret_val) { + DEBUGOUT("EEPROM Read Error\n"); + return -E1000_ERR_EEPROM; + } + ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << + SWDPIO__EXT_SHIFT); + E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); + } + + /* Call the necessary subroutine to configure the link. */ + ret_val = (hw->media_type == em_media_type_copper) ? + em_setup_copper_link(hw) : + em_setup_fiber_serdes_link(hw); + + /* Initialize the flow control address, type, and PAUSE timer + * registers to their default values. This is done even if flow + * control is disabled, because it does not hurt anything to + * initialize these registers. + */ + DEBUGOUT("Initializing the Flow Control address, type and timer regs\n"); + + /* FCAL/H and FCT are hardcoded to standard values in em_ich8lan. */ + if (hw->mac_type != em_ich8lan) { + E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE); + E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH); + E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW); + } + + E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time); + + /* Set the flow control receive threshold registers. Normally, + * these registers will be set to a default threshold that may be + * adjusted later by the driver's runtime code. However, if the + * ability to transmit pause frames in not enabled, then these + * registers will be set to 0. + */ + if (!(hw->fc & E1000_FC_TX_PAUSE)) { + E1000_WRITE_REG(hw, FCRTL, 0); + E1000_WRITE_REG(hw, FCRTH, 0); + } else { + /* We need to set up the Receive Threshold high and low water marks + * as well as (optionally) enabling the transmission of XON frames. + */ + if (hw->fc_send_xon) { + E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE)); + E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); + } else { + E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water); + E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); + } + } + return ret_val; +} + +/****************************************************************************** + * Sets up link for a fiber based or serdes based adapter + * + * hw - Struct containing variables accessed by shared code + * + * Manipulates Physical Coding Sublayer functions in order to configure + * link. Assumes the hardware has been previously reset and the transmitter + * and receiver are not enabled. + *****************************************************************************/ +static int32_t +em_setup_fiber_serdes_link(struct em_hw *hw) +{ + uint32_t ctrl; + uint32_t status; + uint32_t txcw = 0; + uint32_t i; + uint32_t signal = 0; + int32_t ret_val; + + DEBUGFUNC("em_setup_fiber_serdes_link"); + + /* On 82571 and 82572 Fiber connections, SerDes loopback mode persists + * until explicitly turned off or a power cycle is performed. A read to + * the register does not indicate its status. Therefore, we ensure + * loopback mode is disabled during initialization. + */ + if (hw->mac_type == em_82571 || hw->mac_type == em_82572) + E1000_WRITE_REG(hw, SCTL, E1000_DISABLE_SERDES_LOOPBACK); + + /* On adapters with a MAC newer than 82544, SWDP 1 will be + * set when the optics detect a signal. On older adapters, it will be + * cleared when there is a signal. This applies to fiber media only. + * If we're on serdes media, adjust the output amplitude to value + * set in the EEPROM. + */ + ctrl = E1000_READ_REG(hw, CTRL); + if (hw->media_type == em_media_type_fiber) + signal = (hw->mac_type > em_82544) ? E1000_CTRL_SWDPIN1 : 0; + + ret_val = em_adjust_serdes_amplitude(hw); + if (ret_val) + return ret_val; + + /* Take the link out of reset */ + ctrl &= ~(E1000_CTRL_LRST); + + /* Adjust VCO speed to improve BER performance */ + ret_val = em_set_vco_speed(hw); + if (ret_val) + return ret_val; + + em_config_collision_dist(hw); + + /* Check for a software override of the flow control settings, and setup + * the device accordingly. If auto-negotiation is enabled, then software + * will have to set the "PAUSE" bits to the correct value in the Tranmsit + * Config Word Register (TXCW) and re-start auto-negotiation. However, if + * auto-negotiation is disabled, then software will have to manually + * configure the two flow control enable bits in the CTRL register. + * + * The possible values of the "fc" parameter are: + * 0: Flow control is completely disabled + * 1: Rx flow control is enabled (we can receive pause frames, but + * not send pause frames). + * 2: Tx flow control is enabled (we can send pause frames but we do + * not support receiving pause frames). + * 3: Both Rx and TX flow control (symmetric) are enabled. + */ + switch (hw->fc) { + case E1000_FC_NONE: + /* Flow control is completely disabled by a software over-ride. */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); + break; + case E1000_FC_RX_PAUSE: + /* RX Flow control is enabled and TX Flow control is disabled by a + * software over-ride. Since there really isn't a way to advertise + * that we are capable of RX Pause ONLY, we will advertise that we + * support both symmetric and asymmetric RX PAUSE. Later, we will + * disable the adapter's ability to send PAUSE frames. + */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); + break; + case E1000_FC_TX_PAUSE: + /* TX Flow control is enabled, and RX Flow control is disabled, by a + * software over-ride. + */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); + break; + case E1000_FC_FULL: + /* Flow control (both RX and TX) is enabled by a software over-ride. */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); + break; + default: + DEBUGOUT("Flow control param set incorrectly\n"); + return -E1000_ERR_CONFIG; + break; + } + + /* Since auto-negotiation is enabled, take the link out of reset (the link + * will be in reset, because we previously reset the chip). This will + * restart auto-negotiation. If auto-neogtiation is successful then the + * link-up status bit will be set and the flow control enable bits (RFCE + * and TFCE) will be set according to their negotiated value. + */ + DEBUGOUT("Auto-negotiation enabled\n"); + + E1000_WRITE_REG(hw, TXCW, txcw); + E1000_WRITE_REG(hw, CTRL, ctrl); + E1000_WRITE_FLUSH(hw); + + hw->txcw = txcw; + msec_delay(1); + + /* If we have a signal (the cable is plugged in) then poll for a "Link-Up" + * indication in the Device Status Register. Time-out if a link isn't + * seen in 500 milliseconds seconds (Auto-negotiation should complete in + * less than 500 milliseconds even if the other end is doing it in SW). + * For internal serdes, we just assume a signal is present, then poll. + */ + if (hw->media_type == em_media_type_internal_serdes || + (E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) { + DEBUGOUT("Looking for Link\n"); + for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { + msec_delay(10); + status = E1000_READ_REG(hw, STATUS); + if (status & E1000_STATUS_LU) break; + } + if (i == (LINK_UP_TIMEOUT / 10)) { + DEBUGOUT("Never got a valid link from auto-neg!!!\n"); + hw->autoneg_failed = 1; + /* AutoNeg failed to achieve a link, so we'll call + * em_check_for_link. This routine will force the link up if + * we detect a signal. This will allow us to communicate with + * non-autonegotiating link partners. + */ + ret_val = em_check_for_link(hw); + if (ret_val) { + DEBUGOUT("Error while checking for link\n"); + return ret_val; + } + hw->autoneg_failed = 0; + } else { + hw->autoneg_failed = 0; + DEBUGOUT("Valid Link Found\n"); + } + } else { + DEBUGOUT("No Signal Detected\n"); + } + return E1000_SUCCESS; +} + +/****************************************************************************** +* Make sure we have a valid PHY and change PHY mode before link setup. +* +* hw - Struct containing variables accessed by shared code +******************************************************************************/ +static int32_t +em_copper_link_preconfig(struct em_hw *hw) +{ + uint32_t ctrl; + int32_t ret_val; + uint16_t phy_data; + + DEBUGFUNC("em_copper_link_preconfig"); + + ctrl = E1000_READ_REG(hw, CTRL); + /* With 82543, we need to force speed and duplex on the MAC equal to what + * the PHY speed and duplex configuration is. In addition, we need to + * perform a hardware reset on the PHY to take it out of reset. + */ + if (hw->mac_type > em_82543) { + ctrl |= E1000_CTRL_SLU; + ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + E1000_WRITE_REG(hw, CTRL, ctrl); + } else { + ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); + E1000_WRITE_REG(hw, CTRL, ctrl); + ret_val = em_phy_hw_reset(hw); + if (ret_val) + return ret_val; + } + + /* Make sure we have a valid PHY */ + ret_val = em_detect_gig_phy(hw); + if (ret_val) { + DEBUGOUT("Error, did not detect valid phy.\n"); + return ret_val; + } + DEBUGOUT1("Phy ID = %x \n", hw->phy_id); + + /* Set PHY to class A mode (if necessary) */ + ret_val = em_set_phy_mode(hw); + if (ret_val) + return ret_val; + + if ((hw->mac_type == em_82545_rev_3) || + (hw->mac_type == em_82546_rev_3)) { + ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + phy_data |= 0x00000008; + ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); + } + + if (hw->mac_type <= em_82543 || + hw->mac_type == em_82541 || hw->mac_type == em_82547 || + hw->mac_type == em_82541_rev_2 || hw->mac_type == em_82547_rev_2) + hw->phy_reset_disable = FALSE; + + return E1000_SUCCESS; +} + + +/******************************************************************** +* Copper link setup for em_phy_igp series. +* +* hw - Struct containing variables accessed by shared code +*********************************************************************/ +static int32_t +em_copper_link_igp_setup(struct em_hw *hw) +{ + uint32_t led_ctrl; + int32_t ret_val; + uint16_t phy_data; + + DEBUGFUNC("em_copper_link_igp_setup"); + + if (hw->phy_reset_disable) + return E1000_SUCCESS; + + ret_val = em_phy_reset(hw); + if (ret_val) { + DEBUGOUT("Error Resetting the PHY\n"); + return ret_val; + } + + /* Wait 15ms for MAC to configure PHY from eeprom settings */ + msec_delay(15); + if (hw->mac_type != em_ich8lan) { + /* Configure activity LED after PHY reset */ + led_ctrl = E1000_READ_REG(hw, LEDCTL); + led_ctrl &= IGP_ACTIVITY_LED_MASK; + led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); + E1000_WRITE_REG(hw, LEDCTL, led_ctrl); + } + + /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */ + if (hw->phy_type == em_phy_igp) { + /* disable lplu d3 during driver init */ + ret_val = em_set_d3_lplu_state(hw, FALSE); + if (ret_val) { + DEBUGOUT("Error Disabling LPLU D3\n"); + return ret_val; + } + } + + /* disable lplu d0 during driver init */ + ret_val = em_set_d0_lplu_state(hw, FALSE); + if (ret_val) { + DEBUGOUT("Error Disabling LPLU D0\n"); + return ret_val; + } + /* Configure mdi-mdix settings */ + ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); + if (ret_val) + return ret_val; + + if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) { + hw->dsp_config_state = em_dsp_config_disabled; + /* Force MDI for earlier revs of the IGP PHY */ + phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX); + hw->mdix = 1; + + } else { + hw->dsp_config_state = em_dsp_config_enabled; + phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; + + switch (hw->mdix) { + case 1: + phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; + break; + case 2: + phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; + break; + case 0: + default: + phy_data |= IGP01E1000_PSCR_AUTO_MDIX; + break; + } + } + ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); + if (ret_val) + return ret_val; + + /* set auto-master slave resolution settings */ + if (hw->autoneg) { + em_ms_type phy_ms_setting = hw->master_slave; + + if (hw->ffe_config_state == em_ffe_config_active) + hw->ffe_config_state = em_ffe_config_enabled; + + if (hw->dsp_config_state == em_dsp_config_activated) + hw->dsp_config_state = em_dsp_config_enabled; + + /* when autonegotiation advertisment is only 1000Mbps then we + * should disable SmartSpeed and enable Auto MasterSlave + * resolution as hardware default. */ + if (hw->autoneg_advertised == ADVERTISE_1000_FULL) { + /* Disable SmartSpeed */ + ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + &phy_data); + if (ret_val) + return ret_val; + phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + phy_data); + if (ret_val) + return ret_val; + /* Set auto Master/Slave resolution process */ + ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); + if (ret_val) + return ret_val; + phy_data &= ~CR_1000T_MS_ENABLE; + ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); + if (ret_val) + return ret_val; + } + + ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); + if (ret_val) + return ret_val; + + /* load defaults for future use */ + hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ? + ((phy_data & CR_1000T_MS_VALUE) ? + em_ms_force_master : + em_ms_force_slave) : + em_ms_auto; + + switch (phy_ms_setting) { + case em_ms_force_master: + phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); + break; + case em_ms_force_slave: + phy_data |= CR_1000T_MS_ENABLE; + phy_data &= ~(CR_1000T_MS_VALUE); + break; + case em_ms_auto: + phy_data &= ~CR_1000T_MS_ENABLE; + default: + break; + } + ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); + if (ret_val) + return ret_val; + } + + return E1000_SUCCESS; +} + +/******************************************************************** +* Copper link setup for em_phy_gg82563 series. +* +* hw - Struct containing variables accessed by shared code +*********************************************************************/ +static int32_t +em_copper_link_ggp_setup(struct em_hw *hw) +{ + int32_t ret_val; + uint16_t phy_data; + uint32_t reg_data; + + DEBUGFUNC("em_copper_link_ggp_setup"); + + if (!hw->phy_reset_disable) { + + /* Enable CRS on TX for half-duplex operation. */ + ret_val = em_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, + &phy_data); + if (ret_val) + return ret_val; + + phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX; + /* Use 25MHz for both link down and 1000BASE-T for Tx clock */ + phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ; + + ret_val = em_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, + phy_data); + if (ret_val) + return ret_val; + + /* Options: + * MDI/MDI-X = 0 (default) + * 0 - Auto for all speeds + * 1 - MDI mode + * 2 - MDI-X mode + * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) + */ + ret_val = em_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK; + + switch (hw->mdix) { + case 1: + phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI; + break; + case 2: + phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX; + break; + case 0: + default: + phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO; + break; + } + + /* Options: + * disable_polarity_correction = 0 (default) + * Automatic Correction for Reversed Cable Polarity + * 0 - Disabled + * 1 - Enabled + */ + phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE; + if (hw->disable_polarity_correction == 1) + phy_data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE; + ret_val = em_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data); + + if (ret_val) + return ret_val; + + /* SW Reset the PHY so all changes take effect */ + ret_val = em_phy_reset(hw); + if (ret_val) { + DEBUGOUT("Error Resetting the PHY\n"); + return ret_val; + } + } /* phy_reset_disable */ + + if (hw->mac_type == em_80003es2lan) { + /* Bypass RX and TX FIFO's */ + ret_val = em_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL, + E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS | + E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS); + if (ret_val) + return ret_val; + + ret_val = em_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG; + ret_val = em_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, phy_data); + + if (ret_val) + return ret_val; + + reg_data = E1000_READ_REG(hw, CTRL_EXT); + reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK); + E1000_WRITE_REG(hw, CTRL_EXT, reg_data); + + ret_val = em_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, + &phy_data); + if (ret_val) + return ret_val; + + /* Do not init these registers when the HW is in IAMT mode, since the + * firmware will have already initialized them. We only initialize + * them if the HW is not in IAMT mode. + */ + if (em_check_mng_mode(hw) == FALSE) { + /* Enable Electrical Idle on the PHY */ + phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE; + ret_val = em_write_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, + phy_data); + if (ret_val) + return ret_val; + + ret_val = em_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, + &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; + ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, + phy_data); + + if (ret_val) + return ret_val; + } + + /* Workaround: Disable padding in Kumeran interface in the MAC + * and in the PHY to avoid CRC errors. + */ + ret_val = em_read_phy_reg(hw, GG82563_PHY_INBAND_CTRL, + &phy_data); + if (ret_val) + return ret_val; + phy_data |= GG82563_ICR_DIS_PADDING; + ret_val = em_write_phy_reg(hw, GG82563_PHY_INBAND_CTRL, + phy_data); + if (ret_val) + return ret_val; + } + + return E1000_SUCCESS; +} + +/******************************************************************** +* Copper link setup for em_phy_m88 series. +* +* hw - Struct containing variables accessed by shared code +*********************************************************************/ +static int32_t +em_copper_link_mgp_setup(struct em_hw *hw) +{ + int32_t ret_val; + uint16_t phy_data; + + DEBUGFUNC("em_copper_link_mgp_setup"); + + if (hw->phy_reset_disable) + return E1000_SUCCESS; + + /* Enable CRS on TX. This must be set for half-duplex operation. */ + ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; + + /* Options: + * MDI/MDI-X = 0 (default) + * 0 - Auto for all speeds + * 1 - MDI mode + * 2 - MDI-X mode + * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) + */ + phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; + + switch (hw->mdix) { + case 1: + phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; + break; + case 2: + phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; + break; + case 3: + phy_data |= M88E1000_PSCR_AUTO_X_1000T; + break; + case 0: + default: + phy_data |= M88E1000_PSCR_AUTO_X_MODE; + break; + } + + /* Options: + * disable_polarity_correction = 0 (default) + * Automatic Correction for Reversed Cable Polarity + * 0 - Disabled + * 1 - Enabled + */ + phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; + if (hw->disable_polarity_correction == 1) + phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; + ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); + if (ret_val) + return ret_val; + + if (hw->phy_revision < M88E1011_I_REV_4) { + /* Force TX_CLK in the Extended PHY Specific Control Register + * to 25MHz clock. + */ + ret_val = em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data |= M88E1000_EPSCR_TX_CLK_25; + + if ((hw->phy_revision == E1000_REVISION_2) && + (hw->phy_id == M88E1111_I_PHY_ID)) { + /* Vidalia Phy, set the downshift counter to 5x */ + phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK); + phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; + ret_val = em_write_phy_reg(hw, + M88E1000_EXT_PHY_SPEC_CTRL, phy_data); + if (ret_val) + return ret_val; + } else { + /* Configure Master and Slave downshift values */ + phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | + M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); + phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | + M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); + ret_val = em_write_phy_reg(hw, + M88E1000_EXT_PHY_SPEC_CTRL, phy_data); + if (ret_val) + return ret_val; + } + } + + /* SW Reset the PHY so all changes take effect */ + ret_val = em_phy_reset(hw); + if (ret_val) { + DEBUGOUT("Error Resetting the PHY\n"); + return ret_val; + } + + return E1000_SUCCESS; +} + +/******************************************************************** +* Setup auto-negotiation and flow control advertisements, +* and then perform auto-negotiation. +* +* hw - Struct containing variables accessed by shared code +*********************************************************************/ +static int32_t +em_copper_link_autoneg(struct em_hw *hw) +{ + int32_t ret_val; + uint16_t phy_data; + + DEBUGFUNC("em_copper_link_autoneg"); + + /* Perform some bounds checking on the hw->autoneg_advertised + * parameter. If this variable is zero, then set it to the default. + */ + hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; + + /* If autoneg_advertised is zero, we assume it was not defaulted + * by the calling code so we set to advertise full capability. + */ + if (hw->autoneg_advertised == 0) + hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; + + /* IFE phy only supports 10/100 */ + if (hw->phy_type == em_phy_ife) + hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL; + + DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); + ret_val = em_phy_setup_autoneg(hw); + if (ret_val) { + DEBUGOUT("Error Setting up Auto-Negotiation\n"); + return ret_val; + } + DEBUGOUT("Restarting Auto-Neg\n"); + + /* Restart auto-negotiation by setting the Auto Neg Enable bit and + * the Auto Neg Restart bit in the PHY control register. + */ + ret_val = em_read_phy_reg(hw, PHY_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); + ret_val = em_write_phy_reg(hw, PHY_CTRL, phy_data); + if (ret_val) + return ret_val; + + /* Does the user want to wait for Auto-Neg to complete here, or + * check at a later time (for example, callback routine). + */ + if (hw->wait_autoneg_complete) { + ret_val = em_wait_autoneg(hw); + if (ret_val) { + DEBUGOUT("Error while waiting for autoneg to complete\n"); + return ret_val; + } + } + + hw->get_link_status = TRUE; + + return E1000_SUCCESS; +} + +/****************************************************************************** +* Config the MAC and the PHY after link is up. +* 1) Set up the MAC to the current PHY speed/duplex +* if we are on 82543. If we +* are on newer silicon, we only need to configure +* collision distance in the Transmit Control Register. +* 2) Set up flow control on the MAC to that established with +* the link partner. +* 3) Config DSP to improve Gigabit link quality for some PHY revisions. +* +* hw - Struct containing variables accessed by shared code +******************************************************************************/ +static int32_t +em_copper_link_postconfig(struct em_hw *hw) +{ + int32_t ret_val; + DEBUGFUNC("em_copper_link_postconfig"); + + if (hw->mac_type >= em_82544) { + em_config_collision_dist(hw); + } else { + ret_val = em_config_mac_to_phy(hw); + if (ret_val) { + DEBUGOUT("Error configuring MAC to PHY settings\n"); + return ret_val; + } + } + ret_val = em_config_fc_after_link_up(hw); + if (ret_val) { + DEBUGOUT("Error Configuring Flow Control\n"); + return ret_val; + } + + /* Config DSP to improve Giga link quality */ + if (hw->phy_type == em_phy_igp) { + ret_val = em_config_dsp_after_link_change(hw, TRUE); + if (ret_val) { + DEBUGOUT("Error Configuring DSP after link up\n"); + return ret_val; + } + } + + return E1000_SUCCESS; +} + +/****************************************************************************** +* Detects which PHY is present and setup the speed and duplex +* +* hw - Struct containing variables accessed by shared code +******************************************************************************/ +static int32_t +em_setup_copper_link(struct em_hw *hw) +{ + int32_t ret_val; + uint16_t i; + uint16_t phy_data; + uint16_t reg_data; + + DEBUGFUNC("em_setup_copper_link"); + + switch (hw->mac_type) { + case em_80003es2lan: + case em_ich8lan: + /* Set the mac to wait the maximum time between each + * iteration and increase the max iterations when + * polling the phy; this fixes erroneous timeouts at 10Mbps. */ + ret_val = em_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF); + if (ret_val) + return ret_val; + ret_val = em_read_kmrn_reg(hw, GG82563_REG(0x34, 9), ®_data); + if (ret_val) + return ret_val; + reg_data |= 0x3F; + ret_val = em_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data); + if (ret_val) + return ret_val; + default: + break; + } + + /* Check if it is a valid PHY and set PHY mode if necessary. */ + ret_val = em_copper_link_preconfig(hw); + if (ret_val) + return ret_val; + + switch (hw->mac_type) { + case em_80003es2lan: + /* Kumeran registers are written-only */ + reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT; + reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING; + ret_val = em_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL, + reg_data); + if (ret_val) + return ret_val; + break; + default: + break; + } + + if (hw->phy_type == em_phy_igp || + hw->phy_type == em_phy_igp_3 || + hw->phy_type == em_phy_igp_2) { + ret_val = em_copper_link_igp_setup(hw); + if (ret_val) + return ret_val; + } else if (hw->phy_type == em_phy_m88) { + ret_val = em_copper_link_mgp_setup(hw); + if (ret_val) + return ret_val; + } else if (hw->phy_type == em_phy_gg82563) { + ret_val = em_copper_link_ggp_setup(hw); + if (ret_val) + return ret_val; + } + + if (hw->autoneg) { + /* Setup autoneg and flow control advertisement + * and perform autonegotiation */ + ret_val = em_copper_link_autoneg(hw); + if (ret_val) + return ret_val; + } else { + /* PHY will be set to 10H, 10F, 100H,or 100F + * depending on value from forced_speed_duplex. */ + DEBUGOUT("Forcing speed and duplex\n"); + ret_val = em_phy_force_speed_duplex(hw); + if (ret_val) { + DEBUGOUT("Error Forcing Speed and Duplex\n"); + return ret_val; + } + } + + /* Check link status. Wait up to 100 microseconds for link to become + * valid. + */ + for (i = 0; i < 10; i++) { + ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data); + if (ret_val) + return ret_val; + ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data); + if (ret_val) + return ret_val; + + if (phy_data & MII_SR_LINK_STATUS) { + /* Config the MAC and PHY after link is up */ + ret_val = em_copper_link_postconfig(hw); + if (ret_val) + return ret_val; + + DEBUGOUT("Valid link established!!!\n"); + return E1000_SUCCESS; + } + usec_delay(10); + } + + DEBUGOUT("Unable to establish link!!!\n"); + return E1000_SUCCESS; +} + +/****************************************************************************** +* Configure the MAC-to-PHY interface for 10/100Mbps +* +* hw - Struct containing variables accessed by shared code +******************************************************************************/ +static int32_t +em_configure_kmrn_for_10_100(struct em_hw *hw, uint16_t duplex) +{ + int32_t ret_val = E1000_SUCCESS; + uint32_t tipg; + uint16_t reg_data; + + DEBUGFUNC("em_configure_kmrn_for_10_100"); + + reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT; + ret_val = em_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL, + reg_data); + if (ret_val) + return ret_val; + + /* Configure Transmit Inter-Packet Gap */ + tipg = E1000_READ_REG(hw, TIPG); + tipg &= ~E1000_TIPG_IPGT_MASK; + tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100; + E1000_WRITE_REG(hw, TIPG, tipg); + + ret_val = em_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); + + if (ret_val) + return ret_val; + + if (duplex == HALF_DUPLEX) + reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER; + else + reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; + + ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); + + return ret_val; +} + +static int32_t +em_configure_kmrn_for_1000(struct em_hw *hw) +{ + int32_t ret_val = E1000_SUCCESS; + uint16_t reg_data; + uint32_t tipg; + + DEBUGFUNC("em_configure_kmrn_for_1000"); + + reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT; + ret_val = em_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL, + reg_data); + if (ret_val) + return ret_val; + + /* Configure Transmit Inter-Packet Gap */ + tipg = E1000_READ_REG(hw, TIPG); + tipg &= ~E1000_TIPG_IPGT_MASK; + tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000; + E1000_WRITE_REG(hw, TIPG, tipg); + + ret_val = em_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); + + if (ret_val) + return ret_val; + + reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; + ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); + + return ret_val; +} + +/****************************************************************************** +* Configures PHY autoneg and flow control advertisement settings +* +* hw - Struct containing variables accessed by shared code +******************************************************************************/ +int32_t +em_phy_setup_autoneg(struct em_hw *hw) +{ + int32_t ret_val; + uint16_t mii_autoneg_adv_reg; + uint16_t mii_1000t_ctrl_reg; + + DEBUGFUNC("em_phy_setup_autoneg"); + + /* Read the MII Auto-Neg Advertisement Register (Address 4). */ + ret_val = em_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); + if (ret_val) + return ret_val; + + if (hw->phy_type != em_phy_ife) { + /* Read the MII 1000Base-T Control Register (Address 9). */ + ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); + if (ret_val) + return ret_val; + } else + mii_1000t_ctrl_reg=0; + + /* Need to parse both autoneg_advertised and fc and set up + * the appropriate PHY registers. First we will parse for + * autoneg_advertised software override. Since we can advertise + * a plethora of combinations, we need to check each bit + * individually. + */ + + /* First we clear all the 10/100 mb speed bits in the Auto-Neg + * Advertisement Register (Address 4) and the 1000 mb speed bits in + * the 1000Base-T Control Register (Address 9). + */ + mii_autoneg_adv_reg &= ~REG4_SPEED_MASK; + mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; + + DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised); + + /* Do we want to advertise 10 Mb Half Duplex? */ + if (hw->autoneg_advertised & ADVERTISE_10_HALF) { + DEBUGOUT("Advertise 10mb Half duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; + } + + /* Do we want to advertise 10 Mb Full Duplex? */ + if (hw->autoneg_advertised & ADVERTISE_10_FULL) { + DEBUGOUT("Advertise 10mb Full duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; + } + + /* Do we want to advertise 100 Mb Half Duplex? */ + if (hw->autoneg_advertised & ADVERTISE_100_HALF) { + DEBUGOUT("Advertise 100mb Half duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; + } + + /* Do we want to advertise 100 Mb Full Duplex? */ + if (hw->autoneg_advertised & ADVERTISE_100_FULL) { + DEBUGOUT("Advertise 100mb Full duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; + } + + /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ + if (hw->autoneg_advertised & ADVERTISE_1000_HALF) { + DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n"); + } + + /* Do we want to advertise 1000 Mb Full Duplex? */ + if (hw->autoneg_advertised & ADVERTISE_1000_FULL) { + DEBUGOUT("Advertise 1000mb Full duplex\n"); + mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; + if (hw->phy_type == em_phy_ife) { + DEBUGOUT("em_phy_ife is a 10/100 PHY. Gigabit speed is not supported.\n"); + } + } + + /* Check for a software override of the flow control settings, and + * setup the PHY advertisement registers accordingly. If + * auto-negotiation is enabled, then software will have to set the + * "PAUSE" bits to the correct value in the Auto-Negotiation + * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation. + * + * The possible values of the "fc" parameter are: + * 0: Flow control is completely disabled + * 1: Rx flow control is enabled (we can receive pause frames + * but not send pause frames). + * 2: Tx flow control is enabled (we can send pause frames + * but we do not support receiving pause frames). + * 3: Both Rx and TX flow control (symmetric) are enabled. + * other: No software override. The flow control configuration + * in the EEPROM is used. + */ + switch (hw->fc) { + case E1000_FC_NONE: /* 0 */ + /* Flow control (RX & TX) is completely disabled by a + * software over-ride. + */ + mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); + break; + case E1000_FC_RX_PAUSE: /* 1 */ + /* RX Flow control is enabled, and TX Flow control is + * disabled, by a software over-ride. + */ + /* Since there really isn't a way to advertise that we are + * capable of RX Pause ONLY, we will advertise that we + * support both symmetric and asymmetric RX PAUSE. Later + * (in em_config_fc_after_link_up) we will disable the + *hw's ability to send PAUSE frames. + */ + mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); + break; + case E1000_FC_TX_PAUSE: /* 2 */ + /* TX Flow control is enabled, and RX Flow control is + * disabled, by a software over-ride. + */ + mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; + mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; + break; + case E1000_FC_FULL: /* 3 */ + /* Flow control (both RX and TX) is enabled by a software + * over-ride. + */ + mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); + break; + default: + DEBUGOUT("Flow control param set incorrectly\n"); + return -E1000_ERR_CONFIG; + } + + ret_val = em_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); + if (ret_val) + return ret_val; + + DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); + + if (hw->phy_type != em_phy_ife) { + ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); + if (ret_val) + return ret_val; + } + + return E1000_SUCCESS; +} + +/****************************************************************************** +* Force PHY speed and duplex settings to hw->forced_speed_duplex +* +* hw - Struct containing variables accessed by shared code +******************************************************************************/ +static int32_t +em_phy_force_speed_duplex(struct em_hw *hw) +{ + uint32_t ctrl; + int32_t ret_val; + uint16_t mii_ctrl_reg; + uint16_t mii_status_reg; + uint16_t phy_data; + uint16_t i; + + DEBUGFUNC("em_phy_force_speed_duplex"); + + /* Turn off Flow control if we are forcing speed and duplex. */ + hw->fc = E1000_FC_NONE; + + DEBUGOUT1("hw->fc = %d\n", hw->fc); + + /* Read the Device Control Register. */ + ctrl = E1000_READ_REG(hw, CTRL); + + /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */ + ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + ctrl &= ~(DEVICE_SPEED_MASK); + + /* Clear the Auto Speed Detect Enable bit. */ + ctrl &= ~E1000_CTRL_ASDE; + + /* Read the MII Control Register. */ + ret_val = em_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg); + if (ret_val) + return ret_val; + + /* We need to disable autoneg in order to force link and duplex. */ + + mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN; + + /* Are we forcing Full or Half Duplex? */ + if (hw->forced_speed_duplex == em_100_full || + hw->forced_speed_duplex == em_10_full) { + /* We want to force full duplex so we SET the full duplex bits in the + * Device and MII Control Registers. + */ + ctrl |= E1000_CTRL_FD; + mii_ctrl_reg |= MII_CR_FULL_DUPLEX; + DEBUGOUT("Full Duplex\n"); + } else { + /* We want to force half duplex so we CLEAR the full duplex bits in + * the Device and MII Control Registers. + */ + ctrl &= ~E1000_CTRL_FD; + mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX; + DEBUGOUT("Half Duplex\n"); + } + + /* Are we forcing 100Mbps??? */ + if (hw->forced_speed_duplex == em_100_full || + hw->forced_speed_duplex == em_100_half) { + /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */ + ctrl |= E1000_CTRL_SPD_100; + mii_ctrl_reg |= MII_CR_SPEED_100; + mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); + DEBUGOUT("Forcing 100mb "); + } else { + /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */ + ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); + mii_ctrl_reg |= MII_CR_SPEED_10; + mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); + DEBUGOUT("Forcing 10mb "); + } + + em_config_collision_dist(hw); + + /* Write the configured values back to the Device Control Reg. */ + E1000_WRITE_REG(hw, CTRL, ctrl); + + if ((hw->phy_type == em_phy_m88) || + (hw->phy_type == em_phy_gg82563)) { + ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI + * forced whenever speed are duplex are forced. + */ + phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; + ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); + if (ret_val) + return ret_val; + + DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data); + + /* Need to reset the PHY or these changes will be ignored */ + mii_ctrl_reg |= MII_CR_RESET; + + /* Disable MDI-X support for 10/100 */ + } else if (hw->phy_type == em_phy_ife) { + ret_val = em_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~IFE_PMC_AUTO_MDIX; + phy_data &= ~IFE_PMC_FORCE_MDIX; + + ret_val = em_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, phy_data); + if (ret_val) + return ret_val; + + } else { + /* Clear Auto-Crossover to force MDI manually. IGP requires MDI + * forced whenever speed or duplex are forced. + */ + ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; + phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; + + ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); + if (ret_val) + return ret_val; + } + + /* Write back the modified PHY MII control register. */ + ret_val = em_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg); + if (ret_val) + return ret_val; + + usec_delay(1); + + /* The wait_autoneg_complete flag may be a little misleading here. + * Since we are forcing speed and duplex, Auto-Neg is not enabled. + * But we do want to delay for a period while forcing only so we + * don't generate false No Link messages. So we will wait here + * only if the user has set wait_autoneg_complete to 1, which is + * the default. + */ + if (hw->wait_autoneg_complete) { + /* We will wait for autoneg to complete. */ + DEBUGOUT("Waiting for forced speed/duplex link.\n"); + mii_status_reg = 0; + + /* We will wait for autoneg to complete or 4.5 seconds to expire. */ + for (i = PHY_FORCE_TIME; i > 0; i--) { + /* Read the MII Status Register and wait for Auto-Neg Complete bit + * to be set. + */ + ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + return ret_val; + + ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + return ret_val; + + if (mii_status_reg & MII_SR_LINK_STATUS) break; + msec_delay(100); + } + if ((i == 0) && + ((hw->phy_type == em_phy_m88) || + (hw->phy_type == em_phy_gg82563))) { + /* We didn't get link. Reset the DSP and wait again for link. */ + ret_val = em_phy_reset_dsp(hw); + if (ret_val) { + DEBUGOUT("Error Resetting PHY DSP\n"); + return ret_val; + } + } + /* This loop will early-out if the link condition has been met. */ + for (i = PHY_FORCE_TIME; i > 0; i--) { + if (mii_status_reg & MII_SR_LINK_STATUS) break; + msec_delay(100); + /* Read the MII Status Register and wait for Auto-Neg Complete bit + * to be set. + */ + ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + return ret_val; + + ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + return ret_val; + } + } + + if (hw->phy_type == em_phy_m88) { + /* Because we reset the PHY above, we need to re-force TX_CLK in the + * Extended PHY Specific Control Register to 25MHz clock. This value + * defaults back to a 2.5MHz clock when the PHY is reset. + */ + ret_val = em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data |= M88E1000_EPSCR_TX_CLK_25; + ret_val = em_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); + if (ret_val) + return ret_val; + + /* In addition, because of the s/w reset above, we need to enable CRS on + * TX. This must be set for both full and half duplex operation. + */ + ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; + ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); + if (ret_val) + return ret_val; + + if ((hw->mac_type == em_82544 || hw->mac_type == em_82543) && + (!hw->autoneg) && (hw->forced_speed_duplex == em_10_full || + hw->forced_speed_duplex == em_10_half)) { + ret_val = em_polarity_reversal_workaround(hw); + if (ret_val) + return ret_val; + } + } else if (hw->phy_type == em_phy_gg82563) { + /* The TX_CLK of the Extended PHY Specific Control Register defaults + * to 2.5MHz on a reset. We need to re-force it back to 25MHz, if + * we're not in a forced 10/duplex configuration. */ + ret_val = em_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~GG82563_MSCR_TX_CLK_MASK; + if ((hw->forced_speed_duplex == em_10_full) || + (hw->forced_speed_duplex == em_10_half)) + phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ; + else + phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25MHZ; + + /* Also due to the reset, we need to enable CRS on Tx. */ + phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX; + + ret_val = em_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data); + if (ret_val) + return ret_val; + } + return E1000_SUCCESS; +} + +/****************************************************************************** +* Sets the collision distance in the Transmit Control register +* +* hw - Struct containing variables accessed by shared code +* +* Link should have been established previously. Reads the speed and duplex +* information from the Device Status register. +******************************************************************************/ +void +em_config_collision_dist(struct em_hw *hw) +{ + uint32_t tctl, coll_dist; + + DEBUGFUNC("em_config_collision_dist"); + + if (hw->mac_type < em_82543) + coll_dist = E1000_COLLISION_DISTANCE_82542; + else + coll_dist = E1000_COLLISION_DISTANCE; + + tctl = E1000_READ_REG(hw, TCTL); + + tctl &= ~E1000_TCTL_COLD; + tctl |= coll_dist << E1000_COLD_SHIFT; + + E1000_WRITE_REG(hw, TCTL, tctl); + E1000_WRITE_FLUSH(hw); +} + +/****************************************************************************** +* Sets MAC speed and duplex settings to reflect the those in the PHY +* +* hw - Struct containing variables accessed by shared code +* mii_reg - data to write to the MII control register +* +* The contents of the PHY register containing the needed information need to +* be passed in. +******************************************************************************/ +static int32_t +em_config_mac_to_phy(struct em_hw *hw) +{ + uint32_t ctrl; + int32_t ret_val; + uint16_t phy_data; + + DEBUGFUNC("em_config_mac_to_phy"); + + /* 82544 or newer MAC, Auto Speed Detection takes care of + * MAC speed/duplex configuration.*/ + if (hw->mac_type >= em_82544) + return E1000_SUCCESS; + + /* Read the Device Control Register and set the bits to Force Speed + * and Duplex. + */ + ctrl = E1000_READ_REG(hw, CTRL); + ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS); + + /* Set up duplex in the Device Control and Transmit Control + * registers depending on negotiated values. + */ + ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); + if (ret_val) + return ret_val; + + if (phy_data & M88E1000_PSSR_DPLX) + ctrl |= E1000_CTRL_FD; + else + ctrl &= ~E1000_CTRL_FD; + + em_config_collision_dist(hw); + + /* Set up speed in the Device Control register depending on + * negotiated values. + */ + if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) + ctrl |= E1000_CTRL_SPD_1000; + else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) + ctrl |= E1000_CTRL_SPD_100; + + /* Write the configured values back to the Device Control Reg. */ + E1000_WRITE_REG(hw, CTRL, ctrl); + return E1000_SUCCESS; +} + +/****************************************************************************** + * Forces the MAC's flow control settings. + * + * hw - Struct containing variables accessed by shared code + * + * Sets the TFCE and RFCE bits in the device control register to reflect + * the adapter settings. TFCE and RFCE need to be explicitly set by + * software when a Copper PHY is used because autonegotiation is managed + * by the PHY rather than the MAC. Software must also configure these + * bits when link is forced on a fiber connection. + *****************************************************************************/ +int32_t +em_force_mac_fc(struct em_hw *hw) +{ + uint32_t ctrl; + + DEBUGFUNC("em_force_mac_fc"); + + /* Get the current configuration of the Device Control Register */ + ctrl = E1000_READ_REG(hw, CTRL); + + /* Because we didn't get link via the internal auto-negotiation + * mechanism (we either forced link or we got link via PHY + * auto-neg), we have to manually enable/disable transmit an + * receive flow control. + * + * The "Case" statement below enables/disable flow control + * according to the "hw->fc" parameter. + * + * The possible values of the "fc" parameter are: + * 0: Flow control is completely disabled + * 1: Rx flow control is enabled (we can receive pause + * frames but not send pause frames). + * 2: Tx flow control is enabled (we can send pause frames + * frames but we do not receive pause frames). + * 3: Both Rx and TX flow control (symmetric) is enabled. + * other: No other values should be possible at this point. + */ + + switch (hw->fc) { + case E1000_FC_NONE: + ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); + break; + case E1000_FC_RX_PAUSE: + ctrl &= (~E1000_CTRL_TFCE); + ctrl |= E1000_CTRL_RFCE; + break; + case E1000_FC_TX_PAUSE: + ctrl &= (~E1000_CTRL_RFCE); + ctrl |= E1000_CTRL_TFCE; + break; + case E1000_FC_FULL: + ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); + break; + default: + DEBUGOUT("Flow control param set incorrectly\n"); + return -E1000_ERR_CONFIG; + } + + /* Disable TX Flow Control for 82542 (rev 2.0) */ + if (hw->mac_type == em_82542_rev2_0) + ctrl &= (~E1000_CTRL_TFCE); + + E1000_WRITE_REG(hw, CTRL, ctrl); + return E1000_SUCCESS; +} + +/****************************************************************************** + * Configures flow control settings after link is established + * + * hw - Struct containing variables accessed by shared code + * + * Should be called immediately after a valid link has been established. + * Forces MAC flow control settings if link was forced. When in MII/GMII mode + * and autonegotiation is enabled, the MAC flow control settings will be set + * based on the flow control negotiated by the PHY. In TBI mode, the TFCE + * and RFCE bits will be automaticaly set to the negotiated flow control mode. + *****************************************************************************/ +STATIC int32_t +em_config_fc_after_link_up(struct em_hw *hw) +{ + int32_t ret_val; + uint16_t mii_status_reg; + uint16_t mii_nway_adv_reg; + uint16_t mii_nway_lp_ability_reg; + uint16_t speed; + uint16_t duplex; + + DEBUGFUNC("em_config_fc_after_link_up"); + + /* Check for the case where we have fiber media and auto-neg failed + * so we had to force link. In this case, we need to force the + * configuration of the MAC to match the "fc" parameter. + */ + if (((hw->media_type == em_media_type_fiber) && (hw->autoneg_failed)) || + ((hw->media_type == em_media_type_internal_serdes) && + (hw->autoneg_failed)) || + ((hw->media_type == em_media_type_copper) && (!hw->autoneg))) { + ret_val = em_force_mac_fc(hw); + if (ret_val) { + DEBUGOUT("Error forcing flow control settings\n"); + return ret_val; + } + } + + /* Check for the case where we have copper media and auto-neg is + * enabled. In this case, we need to check and see if Auto-Neg + * has completed, and if so, how the PHY and link partner has + * flow control configured. + */ + if ((hw->media_type == em_media_type_copper) && hw->autoneg) { + /* Read the MII Status Register and check to see if AutoNeg + * has completed. We read this twice because this reg has + * some "sticky" (latched) bits. + */ + ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + return ret_val; + ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + return ret_val; + + if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) { + /* The AutoNeg process has completed, so we now need to + * read both the Auto Negotiation Advertisement Register + * (Address 4) and the Auto_Negotiation Base Page Ability + * Register (Address 5) to determine how flow control was + * negotiated. + */ + ret_val = em_read_phy_reg(hw, PHY_AUTONEG_ADV, + &mii_nway_adv_reg); + if (ret_val) + return ret_val; + ret_val = em_read_phy_reg(hw, PHY_LP_ABILITY, + &mii_nway_lp_ability_reg); + if (ret_val) + return ret_val; + + /* Two bits in the Auto Negotiation Advertisement Register + * (Address 4) and two bits in the Auto Negotiation Base + * Page Ability Register (Address 5) determine flow control + * for both the PHY and the link partner. The following + * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, + * 1999, describes these PAUSE resolution bits and how flow + * control is determined based upon these settings. + * NOTE: DC = Don't Care + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution + *-------|---------|-------|---------|-------------------- + * 0 | 0 | DC | DC | em_fc_none + * 0 | 1 | 0 | DC | em_fc_none + * 0 | 1 | 1 | 0 | em_fc_none + * 0 | 1 | 1 | 1 | em_fc_tx_pause + * 1 | 0 | 0 | DC | em_fc_none + * 1 | DC | 1 | DC | em_fc_full + * 1 | 1 | 0 | 0 | em_fc_none + * 1 | 1 | 0 | 1 | em_fc_rx_pause + * + */ + /* Are both PAUSE bits set to 1? If so, this implies + * Symmetric Flow Control is enabled at both ends. The + * ASM_DIR bits are irrelevant per the spec. + * + * For Symmetric Flow Control: + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 1 | DC | 1 | DC | em_fc_full + * + */ + if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { + /* Now we need to check if the user selected RX ONLY + * of pause frames. In this case, we had to advertise + * FULL flow control because we could not advertise RX + * ONLY. Hence, we must now check to see if we need to + * turn OFF the TRANSMISSION of PAUSE frames. + */ + if (hw->original_fc == E1000_FC_FULL) { + hw->fc = E1000_FC_FULL; + DEBUGOUT("Flow Control = FULL.\n"); + } else { + hw->fc = E1000_FC_RX_PAUSE; + DEBUGOUT("Flow Control = RX PAUSE frames only.\n"); + } + } + /* For receiving PAUSE frames ONLY. + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 0 | 1 | 1 | 1 | em_fc_tx_pause + * + */ + else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && + (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { + hw->fc = E1000_FC_TX_PAUSE; + DEBUGOUT("Flow Control = TX PAUSE frames only.\n"); + } + /* For transmitting PAUSE frames ONLY. + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 1 | 1 | 0 | 1 | em_fc_rx_pause + * + */ + else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && + !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { + hw->fc = E1000_FC_RX_PAUSE; + DEBUGOUT("Flow Control = RX PAUSE frames only.\n"); + } + /* Per the IEEE spec, at this point flow control should be + * disabled. However, we want to consider that we could + * be connected to a legacy switch that doesn't advertise + * desired flow control, but can be forced on the link + * partner. So if we advertised no flow control, that is + * what we will resolve to. If we advertised some kind of + * receive capability (Rx Pause Only or Full Flow Control) + * and the link partner advertised none, we will configure + * ourselves to enable Rx Flow Control only. We can do + * this safely for two reasons: If the link partner really + * didn't want flow control enabled, and we enable Rx, no + * harm done since we won't be receiving any PAUSE frames + * anyway. If the intent on the link partner was to have + * flow control enabled, then by us enabling RX only, we + * can at least receive pause frames and process them. + * This is a good idea because in most cases, since we are + * predominantly a server NIC, more times than not we will + * be asked to delay transmission of packets than asking + * our link partner to pause transmission of frames. + */ + else if ((hw->original_fc == E1000_FC_NONE|| + hw->original_fc == E1000_FC_TX_PAUSE) || + hw->fc_strict_ieee) { + hw->fc = E1000_FC_NONE; + DEBUGOUT("Flow Control = NONE.\n"); + } else { + hw->fc = E1000_FC_RX_PAUSE; + DEBUGOUT("Flow Control = RX PAUSE frames only.\n"); + } + + /* Now we need to do one last check... If we auto- + * negotiated to HALF DUPLEX, flow control should not be + * enabled per IEEE 802.3 spec. + */ + ret_val = em_get_speed_and_duplex(hw, &speed, &duplex); + if (ret_val) { + DEBUGOUT("Error getting link speed and duplex\n"); + return ret_val; + } + + if (duplex == HALF_DUPLEX) + hw->fc = E1000_FC_NONE; + + /* Now we call a subroutine to actually force the MAC + * controller to use the correct flow control settings. + */ + ret_val = em_force_mac_fc(hw); + if (ret_val) { + DEBUGOUT("Error forcing flow control settings\n"); + return ret_val; + } + } else { + DEBUGOUT("Copper PHY and Auto Neg has not completed.\n"); + } + } + return E1000_SUCCESS; +} + +/****************************************************************************** + * Checks to see if the link status of the hardware has changed. + * + * hw - Struct containing variables accessed by shared code + * + * Called by any function that needs to check the link status of the adapter. + *****************************************************************************/ +int32_t +em_check_for_link(struct em_hw *hw) +{ + uint32_t rxcw = 0; + uint32_t ctrl; + uint32_t status; + uint32_t rctl; + uint32_t icr; + uint32_t signal = 0; + int32_t ret_val; + uint16_t phy_data; + + DEBUGFUNC("em_check_for_link"); + + ctrl = E1000_READ_REG(hw, CTRL); + status = E1000_READ_REG(hw, STATUS); + + /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be + * set when the optics detect a signal. On older adapters, it will be + * cleared when there is a signal. This applies to fiber media only. + */ + if ((hw->media_type == em_media_type_fiber) || + (hw->media_type == em_media_type_internal_serdes)) { + rxcw = E1000_READ_REG(hw, RXCW); + + if (hw->media_type == em_media_type_fiber) { + signal = (hw->mac_type > em_82544) ? E1000_CTRL_SWDPIN1 : 0; + if (status & E1000_STATUS_LU) + hw->get_link_status = FALSE; + } + } + + /* If we have a copper PHY then we only want to go out to the PHY + * registers to see if Auto-Neg has completed and/or if our link + * status has changed. The get_link_status flag will be set if we + * receive a Link Status Change interrupt or we have Rx Sequence + * Errors. + */ + if ((hw->media_type == em_media_type_copper) && hw->get_link_status) { + /* First we want to see if the MII Status Register reports + * link. If so, then we want to get the current speed/duplex + * of the PHY. + * Read the register twice since the link bit is sticky. + */ + ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data); + if (ret_val) + return ret_val; + ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data); + if (ret_val) + return ret_val; + + if (phy_data & MII_SR_LINK_STATUS) { + hw->get_link_status = FALSE; + /* Check if there was DownShift, must be checked immediately after + * link-up */ + em_check_downshift(hw); + + /* If we are on 82544 or 82543 silicon and speed/duplex + * are forced to 10H or 10F, then we will implement the polarity + * reversal workaround. We disable interrupts first, and upon + * returning, place the devices interrupt state to its previous + * value except for the link status change interrupt which will + * happen due to the execution of this workaround. + */ + + if ((hw->mac_type == em_82544 || hw->mac_type == em_82543) && + (!hw->autoneg) && + (hw->forced_speed_duplex == em_10_full || + hw->forced_speed_duplex == em_10_half)) { + E1000_WRITE_REG(hw, IMC, 0xffffffff); + ret_val = em_polarity_reversal_workaround(hw); + icr = E1000_READ_REG(hw, ICR); + E1000_WRITE_REG(hw, ICS, (icr & ~E1000_ICS_LSC)); + E1000_WRITE_REG(hw, IMS, IMS_ENABLE_MASK); + } + + } else { + /* No link detected */ + em_config_dsp_after_link_change(hw, FALSE); + return 0; + } + + /* If we are forcing speed/duplex, then we simply return since + * we have already determined whether we have link or not. + */ + if (!hw->autoneg) return -E1000_ERR_CONFIG; + + /* optimize the dsp settings for the igp phy */ + em_config_dsp_after_link_change(hw, TRUE); + + /* We have a M88E1000 PHY and Auto-Neg is enabled. If we + * have Si on board that is 82544 or newer, Auto + * Speed Detection takes care of MAC speed/duplex + * configuration. So we only need to configure Collision + * Distance in the MAC. Otherwise, we need to force + * speed/duplex on the MAC to the current PHY speed/duplex + * settings. + */ + if (hw->mac_type >= em_82544) + em_config_collision_dist(hw); + else { + ret_val = em_config_mac_to_phy(hw); + if (ret_val) { + DEBUGOUT("Error configuring MAC to PHY settings\n"); + return ret_val; + } + } + + /* Configure Flow Control now that Auto-Neg has completed. First, we + * need to restore the desired flow control settings because we may + * have had to re-autoneg with a different link partner. + */ + ret_val = em_config_fc_after_link_up(hw); + if (ret_val) { + DEBUGOUT("Error configuring flow control\n"); + return ret_val; + } + + /* At this point we know that we are on copper and we have + * auto-negotiated link. These are conditions for checking the link + * partner capability register. We use the link speed to determine if + * TBI compatibility needs to be turned on or off. If the link is not + * at gigabit speed, then TBI compatibility is not needed. If we are + * at gigabit speed, we turn on TBI compatibility. + */ + if (hw->tbi_compatibility_en) { + uint16_t speed, duplex; + ret_val = em_get_speed_and_duplex(hw, &speed, &duplex); + if (ret_val) { + DEBUGOUT("Error getting link speed and duplex\n"); + return ret_val; + } + if (speed != SPEED_1000) { + /* If link speed is not set to gigabit speed, we do not need + * to enable TBI compatibility. + */ + if (hw->tbi_compatibility_on) { + /* If we previously were in the mode, turn it off. */ + rctl = E1000_READ_REG(hw, RCTL); + rctl &= ~E1000_RCTL_SBP; + E1000_WRITE_REG(hw, RCTL, rctl); + hw->tbi_compatibility_on = FALSE; + } + } else { + /* If TBI compatibility is was previously off, turn it on. For + * compatibility with a TBI link partner, we will store bad + * packets. Some frames have an additional byte on the end and + * will look like CRC errors to to the hardware. + */ + if (!hw->tbi_compatibility_on) { + hw->tbi_compatibility_on = TRUE; + rctl = E1000_READ_REG(hw, RCTL); + rctl |= E1000_RCTL_SBP; + E1000_WRITE_REG(hw, RCTL, rctl); + } + } + } + } + /* If we don't have link (auto-negotiation failed or link partner cannot + * auto-negotiate), the cable is plugged in (we have signal), and our + * link partner is not trying to auto-negotiate with us (we are receiving + * idles or data), we need to force link up. We also need to give + * auto-negotiation time to complete, in case the cable was just plugged + * in. The autoneg_failed flag does this. + */ + else if ((((hw->media_type == em_media_type_fiber) && + ((ctrl & E1000_CTRL_SWDPIN1) == signal)) || + (hw->media_type == em_media_type_internal_serdes)) && + (!(status & E1000_STATUS_LU)) && + (!(rxcw & E1000_RXCW_C))) { + if (hw->autoneg_failed == 0) { + hw->autoneg_failed = 1; + return 0; + } + DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n"); + + /* Disable auto-negotiation in the TXCW register */ + E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE)); + + /* Force link-up and also force full-duplex. */ + ctrl = E1000_READ_REG(hw, CTRL); + ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); + E1000_WRITE_REG(hw, CTRL, ctrl); + + /* Configure Flow Control after forcing link up. */ + ret_val = em_config_fc_after_link_up(hw); + if (ret_val) { + DEBUGOUT("Error configuring flow control\n"); + return ret_val; + } + } + /* If we are forcing link and we are receiving /C/ ordered sets, re-enable + * auto-negotiation in the TXCW register and disable forced link in the + * Device Control register in an attempt to auto-negotiate with our link + * partner. + */ + else if (((hw->media_type == em_media_type_fiber) || + (hw->media_type == em_media_type_internal_serdes)) && + (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { + DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n"); + E1000_WRITE_REG(hw, TXCW, hw->txcw); + E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU)); + + hw->serdes_link_down = FALSE; + } + /* If we force link for non-auto-negotiation switch, check link status + * based on MAC synchronization for internal serdes media type. + */ + else if ((hw->media_type == em_media_type_internal_serdes) && + !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) { + /* SYNCH bit and IV bit are sticky. */ + usec_delay(10); + if (E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) { + if (!(rxcw & E1000_RXCW_IV)) { + hw->serdes_link_down = FALSE; + DEBUGOUT("SERDES: Link is up.\n"); + } + } else { + hw->serdes_link_down = TRUE; + DEBUGOUT("SERDES: Link is down.\n"); + } + } + if ((hw->media_type == em_media_type_internal_serdes) && + (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) { + hw->serdes_link_down = !(E1000_STATUS_LU & E1000_READ_REG(hw, STATUS)); + } + return E1000_SUCCESS; +} + +/****************************************************************************** + * Detects the current speed and duplex settings of the hardware. + * + * hw - Struct containing variables accessed by shared code + * speed - Speed of the connection + * duplex - Duplex setting of the connection + *****************************************************************************/ +int32_t +em_get_speed_and_duplex(struct em_hw *hw, + uint16_t *speed, + uint16_t *duplex) +{ + uint32_t status; + int32_t ret_val; + uint16_t phy_data; + + DEBUGFUNC("em_get_speed_and_duplex"); + + if (hw->mac_type >= em_82543) { + status = E1000_READ_REG(hw, STATUS); + if (status & E1000_STATUS_SPEED_1000) { + *speed = SPEED_1000; + DEBUGOUT("1000 Mbs, "); + } else if (status & E1000_STATUS_SPEED_100) { + *speed = SPEED_100; + DEBUGOUT("100 Mbs, "); + } else { + *speed = SPEED_10; + DEBUGOUT("10 Mbs, "); + } + + if (status & E1000_STATUS_FD) { + *duplex = FULL_DUPLEX; + DEBUGOUT("Full Duplex\n"); + } else { + *duplex = HALF_DUPLEX; + DEBUGOUT(" Half Duplex\n"); + } + } else { + DEBUGOUT("1000 Mbs, Full Duplex\n"); + *speed = SPEED_1000; + *duplex = FULL_DUPLEX; + } + + /* IGP01 PHY may advertise full duplex operation after speed downgrade even + * if it is operating at half duplex. Here we set the duplex settings to + * match the duplex in the link partner's capabilities. + */ + if (hw->phy_type == em_phy_igp && hw->speed_downgraded) { + ret_val = em_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data); + if (ret_val) + return ret_val; + + if (!(phy_data & NWAY_ER_LP_NWAY_CAPS)) + *duplex = HALF_DUPLEX; + else { + ret_val = em_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data); + if (ret_val) + return ret_val; + if ((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) || + (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS))) + *duplex = HALF_DUPLEX; + } + } + + if ((hw->mac_type == em_80003es2lan) && + (hw->media_type == em_media_type_copper)) { + if (*speed == SPEED_1000) + ret_val = em_configure_kmrn_for_1000(hw); + else + ret_val = em_configure_kmrn_for_10_100(hw, *duplex); + if (ret_val) + return ret_val; + } + + if ((hw->phy_type == em_phy_igp_3) && (*speed == SPEED_1000)) { + ret_val = em_kumeran_lock_loss_workaround(hw); + if (ret_val) + return ret_val; + } + + return E1000_SUCCESS; +} + +/****************************************************************************** +* Blocks until autoneg completes or times out (~4.5 seconds) +* +* hw - Struct containing variables accessed by shared code +******************************************************************************/ +STATIC int32_t +em_wait_autoneg(struct em_hw *hw) +{ + int32_t ret_val; + uint16_t i; + uint16_t phy_data; + + DEBUGFUNC("em_wait_autoneg"); + DEBUGOUT("Waiting for Auto-Neg to complete.\n"); + + /* We will wait for autoneg to complete or 4.5 seconds to expire. */ + for (i = PHY_AUTO_NEG_TIME; i > 0; i--) { + /* Read the MII Status Register and wait for Auto-Neg + * Complete bit to be set. + */ + ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data); + if (ret_val) + return ret_val; + ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data); + if (ret_val) + return ret_val; + if (phy_data & MII_SR_AUTONEG_COMPLETE) { + return E1000_SUCCESS; + } + msec_delay(100); + } + return E1000_SUCCESS; +} + +/****************************************************************************** +* Raises the Management Data Clock +* +* hw - Struct containing variables accessed by shared code +* ctrl - Device control register's current value +******************************************************************************/ +static void +em_raise_mdi_clk(struct em_hw *hw, + uint32_t *ctrl) +{ + /* Raise the clock input to the Management Data Clock (by setting the MDC + * bit), and then delay 10 microseconds. + */ + E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC)); + E1000_WRITE_FLUSH(hw); + usec_delay(10); +} + +/****************************************************************************** +* Lowers the Management Data Clock +* +* hw - Struct containing variables accessed by shared code +* ctrl - Device control register's current value +******************************************************************************/ +static void +em_lower_mdi_clk(struct em_hw *hw, + uint32_t *ctrl) +{ + /* Lower the clock input to the Management Data Clock (by clearing the MDC + * bit), and then delay 10 microseconds. + */ + E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC)); + E1000_WRITE_FLUSH(hw); + usec_delay(10); +} + +/****************************************************************************** +* Shifts data bits out to the PHY +* +* hw - Struct containing variables accessed by shared code +* data - Data to send out to the PHY +* count - Number of bits to shift out +* +* Bits are shifted out in MSB to LSB order. +******************************************************************************/ +static void +em_shift_out_mdi_bits(struct em_hw *hw, + uint32_t data, + uint16_t count) +{ + uint32_t ctrl; + uint32_t mask; + + /* We need to shift "count" number of bits out to the PHY. So, the value + * in the "data" parameter will be shifted out to the PHY one bit at a + * time. In order to do this, "data" must be broken down into bits. + */ + mask = 0x01; + mask <<= (count - 1); + + ctrl = E1000_READ_REG(hw, CTRL); + + /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ + ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); + + while (mask) { + /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and + * then raising and lowering the Management Data Clock. A "0" is + * shifted out to the PHY by setting the MDIO bit to "0" and then + * raising and lowering the clock. + */ + if (data & mask) + ctrl |= E1000_CTRL_MDIO; + else + ctrl &= ~E1000_CTRL_MDIO; + + E1000_WRITE_REG(hw, CTRL, ctrl); + E1000_WRITE_FLUSH(hw); + + usec_delay(10); + + em_raise_mdi_clk(hw, &ctrl); + em_lower_mdi_clk(hw, &ctrl); + + mask = mask >> 1; + } +} + +/****************************************************************************** +* Shifts data bits in from the PHY +* +* hw - Struct containing variables accessed by shared code +* +* Bits are shifted in in MSB to LSB order. +******************************************************************************/ +static uint16_t +em_shift_in_mdi_bits(struct em_hw *hw) +{ + uint32_t ctrl; + uint16_t data = 0; + uint8_t i; + + /* In order to read a register from the PHY, we need to shift in a total + * of 18 bits from the PHY. The first two bit (turnaround) times are used + * to avoid contention on the MDIO pin when a read operation is performed. + * These two bits are ignored by us and thrown away. Bits are "shifted in" + * by raising the input to the Management Data Clock (setting the MDC bit), + * and then reading the value of the MDIO bit. + */ + ctrl = E1000_READ_REG(hw, CTRL); + + /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */ + ctrl &= ~E1000_CTRL_MDIO_DIR; + ctrl &= ~E1000_CTRL_MDIO; + + E1000_WRITE_REG(hw, CTRL, ctrl); + E1000_WRITE_FLUSH(hw); + + /* Raise and Lower the clock before reading in the data. This accounts for + * the turnaround bits. The first clock occurred when we clocked out the + * last bit of the Register Address. + */ + em_raise_mdi_clk(hw, &ctrl); + em_lower_mdi_clk(hw, &ctrl); + + for (data = 0, i = 0; i < 16; i++) { + data = data << 1; + em_raise_mdi_clk(hw, &ctrl); + ctrl = E1000_READ_REG(hw, CTRL); + /* Check to see if we shifted in a "1". */ + if (ctrl & E1000_CTRL_MDIO) + data |= 1; + em_lower_mdi_clk(hw, &ctrl); + } + + em_raise_mdi_clk(hw, &ctrl); + em_lower_mdi_clk(hw, &ctrl); + + return data; +} + +STATIC int32_t +em_swfw_sync_acquire(struct em_hw *hw, uint16_t mask) +{ + uint32_t swfw_sync = 0; + uint32_t swmask = mask; + uint32_t fwmask = mask << 16; + int32_t timeout = 200; + + DEBUGFUNC("em_swfw_sync_acquire"); + + if (hw->swfwhw_semaphore_present) + return em_get_software_flag(hw); + + if (!hw->swfw_sync_present) + return em_get_hw_eeprom_semaphore(hw); + + while (timeout) { + if (em_get_hw_eeprom_semaphore(hw)) + return -E1000_ERR_SWFW_SYNC; + + swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC); + if (!(swfw_sync & (fwmask | swmask))) { + break; + } + + /* firmware currently using resource (fwmask) */ + /* or other software thread currently using resource (swmask) */ + em_put_hw_eeprom_semaphore(hw); + msec_delay_irq(5); + timeout--; + } + + if (!timeout) { + DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n"); + return -E1000_ERR_SWFW_SYNC; + } + + swfw_sync |= swmask; + E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync); + + em_put_hw_eeprom_semaphore(hw); + return E1000_SUCCESS; +} + +STATIC void +em_swfw_sync_release(struct em_hw *hw, uint16_t mask) +{ + uint32_t swfw_sync; + uint32_t swmask = mask; + + DEBUGFUNC("em_swfw_sync_release"); + + if (hw->swfwhw_semaphore_present) { + em_release_software_flag(hw); + return; + } + + if (!hw->swfw_sync_present) { + em_put_hw_eeprom_semaphore(hw); + return; + } + + /* if (em_get_hw_eeprom_semaphore(hw)) + * return -E1000_ERR_SWFW_SYNC; */ + while (em_get_hw_eeprom_semaphore(hw) != E1000_SUCCESS); + /* empty */ + + swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC); + swfw_sync &= ~swmask; + E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync); + + em_put_hw_eeprom_semaphore(hw); +} + +/***************************************************************************** +* Reads the value from a PHY register, if the value is on a specific non zero +* page, sets the page first. +* hw - Struct containing variables accessed by shared code +* reg_addr - address of the PHY register to read +******************************************************************************/ +int32_t +em_read_phy_reg(struct em_hw *hw, + uint32_t reg_addr, + uint16_t *phy_data) +{ + uint32_t ret_val; + uint16_t swfw; + + DEBUGFUNC("em_read_phy_reg"); + + if ((hw->mac_type == em_80003es2lan) && + (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) { + swfw = E1000_SWFW_PHY1_SM; + } else { + swfw = E1000_SWFW_PHY0_SM; + } + if (em_swfw_sync_acquire(hw, swfw)) + return -E1000_ERR_SWFW_SYNC; + + if ((hw->phy_type == em_phy_igp || + hw->phy_type == em_phy_igp_3 || + hw->phy_type == em_phy_igp_2) && + (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { + ret_val = em_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, + (uint16_t)reg_addr); + if (ret_val) { + em_swfw_sync_release(hw, swfw); + return ret_val; + } + } else if (hw->phy_type == em_phy_gg82563) { + if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) || + (hw->mac_type == em_80003es2lan)) { + /* Select Configuration Page */ + if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) { + ret_val = em_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT, + (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT)); + } else { + /* Use Alternative Page Select register to access + * registers 30 and 31 + */ + ret_val = em_write_phy_reg_ex(hw, + GG82563_PHY_PAGE_SELECT_ALT, + (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT)); + } + + if (ret_val) { + em_swfw_sync_release(hw, swfw); + return ret_val; + } + } + } + + ret_val = em_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, + phy_data); + + em_swfw_sync_release(hw, swfw); + return ret_val; +} + +STATIC int32_t +em_read_phy_reg_ex(struct em_hw *hw, uint32_t reg_addr, + uint16_t *phy_data) +{ + uint32_t i; + uint32_t mdic = 0; + const uint32_t phy_addr = 1; + + DEBUGFUNC("em_read_phy_reg_ex"); + + if (reg_addr > MAX_PHY_REG_ADDRESS) { + DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); + return -E1000_ERR_PARAM; + } + + if (hw->mac_type > em_82543) { + /* Set up Op-code, Phy Address, and register address in the MDI + * Control register. The MAC will take care of interfacing with the + * PHY to retrieve the desired data. + */ + mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | + (phy_addr << E1000_MDIC_PHY_SHIFT) | + (E1000_MDIC_OP_READ)); + + E1000_WRITE_REG(hw, MDIC, mdic); + + /* Poll the ready bit to see if the MDI read completed */ + for (i = 0; i < 64; i++) { + usec_delay(50); + mdic = E1000_READ_REG(hw, MDIC); + if (mdic & E1000_MDIC_READY) break; + } + if (!(mdic & E1000_MDIC_READY)) { + DEBUGOUT("MDI Read did not complete\n"); + return -E1000_ERR_PHY; + } + if (mdic & E1000_MDIC_ERROR) { + DEBUGOUT("MDI Error\n"); + return -E1000_ERR_PHY; + } + *phy_data = (uint16_t) mdic; + } else { + /* We must first send a preamble through the MDIO pin to signal the + * beginning of an MII instruction. This is done by sending 32 + * consecutive "1" bits. + */ + em_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); + + /* Now combine the next few fields that are required for a read + * operation. We use this method instead of calling the + * em_shift_out_mdi_bits routine five different times. The format of + * a MII read instruction consists of a shift out of 14 bits and is + * defined as follows: + * + * followed by a shift in of 18 bits. This first two bits shifted in + * are TurnAround bits used to avoid contention on the MDIO pin when a + * READ operation is performed. These two bits are thrown away + * followed by a shift in of 16 bits which contains the desired data. + */ + mdic = ((reg_addr) | (phy_addr << 5) | + (PHY_OP_READ << 10) | (PHY_SOF << 12)); + + em_shift_out_mdi_bits(hw, mdic, 14); + + /* Now that we've shifted out the read command to the MII, we need to + * "shift in" the 16-bit value (18 total bits) of the requested PHY + * register address. + */ + *phy_data = em_shift_in_mdi_bits(hw); + } + return E1000_SUCCESS; +} + +/****************************************************************************** +* Writes a value to a PHY register +* +* hw - Struct containing variables accessed by shared code +* reg_addr - address of the PHY register to write +* data - data to write to the PHY +******************************************************************************/ +int32_t +em_write_phy_reg(struct em_hw *hw, uint32_t reg_addr, + uint16_t phy_data) +{ + uint32_t ret_val; + uint16_t swfw; + + DEBUGFUNC("em_write_phy_reg"); + + if ((hw->mac_type == em_80003es2lan) && + (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) { + swfw = E1000_SWFW_PHY1_SM; + } else { + swfw = E1000_SWFW_PHY0_SM; + } + if (em_swfw_sync_acquire(hw, swfw)) + return -E1000_ERR_SWFW_SYNC; + + if ((hw->phy_type == em_phy_igp || + hw->phy_type == em_phy_igp_3 || + hw->phy_type == em_phy_igp_2) && + (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { + ret_val = em_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, + (uint16_t)reg_addr); + if (ret_val) { + em_swfw_sync_release(hw, swfw); + return ret_val; + } + } else if (hw->phy_type == em_phy_gg82563) { + if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) || + (hw->mac_type == em_80003es2lan)) { + /* Select Configuration Page */ + if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) { + ret_val = em_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT, + (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT)); + } else { + /* Use Alternative Page Select register to access + * registers 30 and 31 + */ + ret_val = em_write_phy_reg_ex(hw, + GG82563_PHY_PAGE_SELECT_ALT, + (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT)); + } + + if (ret_val) { + em_swfw_sync_release(hw, swfw); + return ret_val; + } + } + } + + ret_val = em_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, + phy_data); + + em_swfw_sync_release(hw, swfw); + return ret_val; +} + +STATIC int32_t +em_write_phy_reg_ex(struct em_hw *hw, uint32_t reg_addr, + uint16_t phy_data) +{ + uint32_t i; + uint32_t mdic = 0; + const uint32_t phy_addr = 1; + + DEBUGFUNC("em_write_phy_reg_ex"); + + if (reg_addr > MAX_PHY_REG_ADDRESS) { + DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); + return -E1000_ERR_PARAM; + } + + if (hw->mac_type > em_82543) { + /* Set up Op-code, Phy Address, register address, and data intended + * for the PHY register in the MDI Control register. The MAC will take + * care of interfacing with the PHY to send the desired data. + */ + mdic = (((uint32_t) phy_data) | + (reg_addr << E1000_MDIC_REG_SHIFT) | + (phy_addr << E1000_MDIC_PHY_SHIFT) | + (E1000_MDIC_OP_WRITE)); + + E1000_WRITE_REG(hw, MDIC, mdic); + + /* Poll the ready bit to see if the MDI read completed */ + for (i = 0; i < 641; i++) { + usec_delay(5); + mdic = E1000_READ_REG(hw, MDIC); + if (mdic & E1000_MDIC_READY) break; + } + if (!(mdic & E1000_MDIC_READY)) { + DEBUGOUT("MDI Write did not complete\n"); + return -E1000_ERR_PHY; + } + } else { + /* We'll need to use the SW defined pins to shift the write command + * out to the PHY. We first send a preamble to the PHY to signal the + * beginning of the MII instruction. This is done by sending 32 + * consecutive "1" bits. + */ + em_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); + + /* Now combine the remaining required fields that will indicate a + * write operation. We use this method instead of calling the + * em_shift_out_mdi_bits routine for each field in the command. The + * format of a MII write instruction is as follows: + * . + */ + mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) | + (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); + mdic <<= 16; + mdic |= (uint32_t) phy_data; + + em_shift_out_mdi_bits(hw, mdic, 32); + } + + return E1000_SUCCESS; +} + +STATIC int32_t +em_read_kmrn_reg(struct em_hw *hw, + uint32_t reg_addr, + uint16_t *data) +{ + uint32_t reg_val; + uint16_t swfw; + DEBUGFUNC("em_read_kmrn_reg"); + + if ((hw->mac_type == em_80003es2lan) && + (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) { + swfw = E1000_SWFW_PHY1_SM; + } else { + swfw = E1000_SWFW_PHY0_SM; + } + if (em_swfw_sync_acquire(hw, swfw)) + return -E1000_ERR_SWFW_SYNC; + + /* Write register address */ + reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) & + E1000_KUMCTRLSTA_OFFSET) | + E1000_KUMCTRLSTA_REN; + E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val); + usec_delay(2); + + /* Read the data returned */ + reg_val = E1000_READ_REG(hw, KUMCTRLSTA); + *data = (uint16_t)reg_val; + + em_swfw_sync_release(hw, swfw); + return E1000_SUCCESS; +} + +STATIC int32_t +em_write_kmrn_reg(struct em_hw *hw, + uint32_t reg_addr, + uint16_t data) +{ + uint32_t reg_val; + uint16_t swfw; + DEBUGFUNC("em_write_kmrn_reg"); + + if ((hw->mac_type == em_80003es2lan) && + (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) { + swfw = E1000_SWFW_PHY1_SM; + } else { + swfw = E1000_SWFW_PHY0_SM; + } + if (em_swfw_sync_acquire(hw, swfw)) + return -E1000_ERR_SWFW_SYNC; + + reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) & + E1000_KUMCTRLSTA_OFFSET) | data; + E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val); + usec_delay(2); + + em_swfw_sync_release(hw, swfw); + return E1000_SUCCESS; +} + +/****************************************************************************** +* Returns the PHY to the power-on reset state +* +* hw - Struct containing variables accessed by shared code +******************************************************************************/ +int32_t +em_phy_hw_reset(struct em_hw *hw) +{ + uint32_t ctrl, ctrl_ext; + uint32_t led_ctrl; + int32_t ret_val; + uint16_t swfw; + + DEBUGFUNC("em_phy_hw_reset"); + + /* In the case of the phy reset being blocked, it's not an error, we + * simply return success without performing the reset. */ + ret_val = em_check_phy_reset_block(hw); + if (ret_val) + return E1000_SUCCESS; + + DEBUGOUT("Resetting Phy...\n"); + + if (hw->mac_type > em_82543) { + if ((hw->mac_type == em_80003es2lan) && + (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) { + swfw = E1000_SWFW_PHY1_SM; + } else { + swfw = E1000_SWFW_PHY0_SM; + } + if (em_swfw_sync_acquire(hw, swfw)) { + DEBUGOUT("Unable to acquire swfw sync\n"); + return -E1000_ERR_SWFW_SYNC; + } + /* Read the device control register and assert the E1000_CTRL_PHY_RST + * bit. Then, take it out of reset. + * For pre-em_82571 hardware, we delay for 10ms between the assert + * and deassert. For em_82571 hardware and later, we instead delay + * for 50us between and 10ms after the deassertion. + */ + ctrl = E1000_READ_REG(hw, CTRL); + E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST); + E1000_WRITE_FLUSH(hw); + + if (hw->mac_type < em_82571) + msec_delay(10); + else + usec_delay(100); + + E1000_WRITE_REG(hw, CTRL, ctrl); + E1000_WRITE_FLUSH(hw); + + if (hw->mac_type >= em_82571) + msec_delay_irq(10); + + em_swfw_sync_release(hw, swfw); + } else { + /* Read the Extended Device Control Register, assert the PHY_RESET_DIR + * bit to put the PHY into reset. Then, take it out of reset. + */ + ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); + ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; + ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; + E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); + E1000_WRITE_FLUSH(hw); + msec_delay(10); + ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; + E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); + E1000_WRITE_FLUSH(hw); + } + usec_delay(150); + + if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) { + /* Configure activity LED after PHY reset */ + led_ctrl = E1000_READ_REG(hw, LEDCTL); + led_ctrl &= IGP_ACTIVITY_LED_MASK; + led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); + E1000_WRITE_REG(hw, LEDCTL, led_ctrl); + } + + /* Wait for FW to finish PHY configuration. */ + ret_val = em_get_phy_cfg_done(hw); + if (ret_val != E1000_SUCCESS) + return ret_val; + em_release_software_semaphore(hw); + + if ((hw->mac_type == em_ich8lan) && (hw->phy_type == em_phy_igp_3)) + ret_val = em_init_lcd_from_nvm(hw); + + return ret_val; +} + +/****************************************************************************** +* Resets the PHY +* +* hw - Struct containing variables accessed by shared code +* +* Sets bit 15 of the MII Control regiser +******************************************************************************/ +int32_t +em_phy_reset(struct em_hw *hw) +{ + int32_t ret_val; + uint16_t phy_data; + + DEBUGFUNC("em_phy_reset"); + + /* In the case of the phy reset being blocked, it's not an error, we + * simply return success without performing the reset. */ + ret_val = em_check_phy_reset_block(hw); + if (ret_val) + return E1000_SUCCESS; + + switch (hw->phy_type) { + case em_phy_igp: + case em_phy_igp_2: + case em_phy_igp_3: + case em_phy_ife: + ret_val = em_phy_hw_reset(hw); + if (ret_val) + return ret_val; + break; + default: + ret_val = em_read_phy_reg(hw, PHY_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data |= MII_CR_RESET; + ret_val = em_write_phy_reg(hw, PHY_CTRL, phy_data); + if (ret_val) + return ret_val; + + usec_delay(1); + break; + } + + if (hw->phy_type == em_phy_igp || hw->phy_type == em_phy_igp_2) + em_phy_init_script(hw); + + return E1000_SUCCESS; +} + +/****************************************************************************** +* Work-around for 82566 power-down: on D3 entry- +* 1) disable gigabit link +* 2) write VR power-down enable +* 3) read it back +* if successful continue, else issue LCD reset and repeat +* +* hw - struct containing variables accessed by shared code +******************************************************************************/ +void +em_phy_powerdown_workaround(struct em_hw *hw) +{ + int32_t reg; + uint16_t phy_data; + int32_t retry = 0; + + DEBUGFUNC("em_phy_powerdown_workaround"); + + if (hw->phy_type != em_phy_igp_3) + return; + + do { + /* Disable link */ + reg = E1000_READ_REG(hw, PHY_CTRL); + E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE | + E1000_PHY_CTRL_NOND0A_GBE_DISABLE); + + /* Write VR power-down enable - bits 9:8 should be 10b */ + em_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data); + phy_data |= (1 << 9); + phy_data &= ~(1 << 8); + em_write_phy_reg(hw, IGP3_VR_CTRL, phy_data); + + /* Read it back and test */ + em_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data); + if (((phy_data & IGP3_VR_CTRL_MODE_MASK) == IGP3_VR_CTRL_MODE_SHUT) || retry) + break; + + /* Issue PHY reset and repeat at most one more time */ + reg = E1000_READ_REG(hw, CTRL); + E1000_WRITE_REG(hw, CTRL, reg | E1000_CTRL_PHY_RST); + retry++; + } while (retry); + + return; + +} + +/****************************************************************************** +* Work-around for 82566 Kumeran PCS lock loss: +* On link status change (i.e. PCI reset, speed change) and link is up and +* speed is gigabit- +* 0) if workaround is optionally disabled do nothing +* 1) wait 1ms for Kumeran link to come up +* 2) check Kumeran Diagnostic register PCS lock loss bit +* 3) if not set the link is locked (all is good), otherwise... +* 4) reset the PHY +* 5) repeat up to 10 times +* Note: this is only called for IGP3 copper when speed is 1gb. +* +* hw - struct containing variables accessed by shared code +******************************************************************************/ +STATIC int32_t +em_kumeran_lock_loss_workaround(struct em_hw *hw) +{ + int32_t ret_val; + int32_t reg; + int32_t cnt; + uint16_t phy_data; + + if (hw->kmrn_lock_loss_workaround_disabled) + return E1000_SUCCESS; + + /* Make sure link is up before proceeding. If not just return. + * Attempting this while link is negotiating fouled up link + * stability */ + ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data); + ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data); + + if (phy_data & MII_SR_LINK_STATUS) { + for (cnt = 0; cnt < 10; cnt++) { + /* read once to clear */ + ret_val = em_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data); + if (ret_val) + return ret_val; + /* and again to get new status */ + ret_val = em_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data); + if (ret_val) + return ret_val; + + /* check for PCS lock */ + if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) + return E1000_SUCCESS; + + /* Issue PHY reset */ + em_phy_hw_reset(hw); + msec_delay_irq(5); + } + /* Disable GigE link negotiation */ + reg = E1000_READ_REG(hw, PHY_CTRL); + E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE | + E1000_PHY_CTRL_NOND0A_GBE_DISABLE); + + /* unable to acquire PCS lock */ + return E1000_ERR_PHY; + } + + return E1000_SUCCESS; +} + +/****************************************************************************** +* Probes the expected PHY address for known PHY IDs +* +* hw - Struct containing variables accessed by shared code +******************************************************************************/ +STATIC int32_t +em_detect_gig_phy(struct em_hw *hw) +{ + int32_t phy_init_status, ret_val; + uint16_t phy_id_high, phy_id_low; + boolean_t match = FALSE; + + DEBUGFUNC("em_detect_gig_phy"); + + if (hw->phy_id != 0) + return E1000_SUCCESS; + + /* The 82571 firmware may still be configuring the PHY. In this + * case, we cannot access the PHY until the configuration is done. So + * we explicitly set the PHY values. */ + if (hw->mac_type == em_82571 || + hw->mac_type == em_82572) { + hw->phy_id = IGP01E1000_I_PHY_ID; + hw->phy_type = em_phy_igp_2; + return E1000_SUCCESS; + } + + /* ESB-2 PHY reads require em_phy_gg82563 to be set because of a work- + * around that forces PHY page 0 to be set or the reads fail. The rest of + * the code in this routine uses em_read_phy_reg to read the PHY ID. + * So for ESB-2 we need to have this set so our reads won't fail. If the + * attached PHY is not a em_phy_gg82563, the routines below will figure + * this out as well. */ + if (hw->mac_type == em_80003es2lan) + hw->phy_type = em_phy_gg82563; + + /* Read the PHY ID Registers to identify which PHY is onboard. */ + ret_val = em_read_phy_reg(hw, PHY_ID1, &phy_id_high); + if (ret_val) + return ret_val; + + hw->phy_id = (uint32_t) (phy_id_high << 16); + usec_delay(20); + ret_val = em_read_phy_reg(hw, PHY_ID2, &phy_id_low); + if (ret_val) + return ret_val; + + hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK); + hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK; + + switch (hw->mac_type) { + case em_82543: + if (hw->phy_id == M88E1000_E_PHY_ID) match = TRUE; + break; + case em_82544: + if (hw->phy_id == M88E1000_I_PHY_ID) match = TRUE; + break; + case em_82540: + case em_82545: + case em_82545_rev_3: + case em_82546: + case em_82546_rev_3: + if (hw->phy_id == M88E1011_I_PHY_ID) match = TRUE; + break; + case em_82541: + case em_82541_rev_2: + case em_82547: + case em_82547_rev_2: + if (hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE; + break; + case em_82573: + if (hw->phy_id == M88E1111_I_PHY_ID) match = TRUE; + break; + case em_80003es2lan: + if (hw->phy_id == GG82563_E_PHY_ID) match = TRUE; + break; + case em_ich8lan: + if (hw->phy_id == IGP03E1000_E_PHY_ID) match = TRUE; + if (hw->phy_id == IFE_E_PHY_ID) match = TRUE; + if (hw->phy_id == IFE_PLUS_E_PHY_ID) match = TRUE; + if (hw->phy_id == IFE_C_E_PHY_ID) match = TRUE; + break; + default: + DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type); + return -E1000_ERR_CONFIG; + } + phy_init_status = em_set_phy_type(hw); + + if ((match) && (phy_init_status == E1000_SUCCESS)) { + DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id); + return E1000_SUCCESS; + } + DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id); + return -E1000_ERR_PHY; +} + +/****************************************************************************** +* Resets the PHY's DSP +* +* hw - Struct containing variables accessed by shared code +******************************************************************************/ +static int32_t +em_phy_reset_dsp(struct em_hw *hw) +{ + int32_t ret_val; + DEBUGFUNC("em_phy_reset_dsp"); + + do { + if (hw->phy_type != em_phy_gg82563) { + ret_val = em_write_phy_reg(hw, 29, 0x001d); + if (ret_val) break; + } + ret_val = em_write_phy_reg(hw, 30, 0x00c1); + if (ret_val) break; + ret_val = em_write_phy_reg(hw, 30, 0x0000); + if (ret_val) break; + ret_val = E1000_SUCCESS; + } while (0); + + return ret_val; +} + +/****************************************************************************** +* Get PHY information from various PHY registers for igp PHY only. +* +* hw - Struct containing variables accessed by shared code +* phy_info - PHY information structure +******************************************************************************/ +STATIC int32_t +em_phy_igp_get_info(struct em_hw *hw, + struct em_phy_info *phy_info) +{ + int32_t ret_val; + uint16_t phy_data, min_length, max_length, average; + em_rev_polarity polarity; + + DEBUGFUNC("em_phy_igp_get_info"); + + /* The downshift status is checked only once, after link is established, + * and it stored in the hw->speed_downgraded parameter. */ + phy_info->downshift = (em_downshift)hw->speed_downgraded; + + /* IGP01E1000 does not need to support it. */ + phy_info->extended_10bt_distance = em_10bt_ext_dist_enable_normal; + + /* IGP01E1000 always correct polarity reversal */ + phy_info->polarity_correction = em_polarity_reversal_enabled; + + /* Check polarity status */ + ret_val = em_check_polarity(hw, &polarity); + if (ret_val) + return ret_val; + + phy_info->cable_polarity = polarity; + + ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data); + if (ret_val) + return ret_val; + + phy_info->mdix_mode = (em_auto_x_mode)((phy_data & IGP01E1000_PSSR_MDIX) >> + IGP01E1000_PSSR_MDIX_SHIFT); + + if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == + IGP01E1000_PSSR_SPEED_1000MBPS) { + /* Local/Remote Receiver Information are only valid at 1000 Mbps */ + ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); + if (ret_val) + return ret_val; + + phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >> + SR_1000T_LOCAL_RX_STATUS_SHIFT) ? + em_1000t_rx_status_ok : em_1000t_rx_status_not_ok; + phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >> + SR_1000T_REMOTE_RX_STATUS_SHIFT) ? + em_1000t_rx_status_ok : em_1000t_rx_status_not_ok; + + /* Get cable length */ + ret_val = em_get_cable_length(hw, &min_length, &max_length); + if (ret_val) + return ret_val; + + /* Translate to old method */ + average = (max_length + min_length) / 2; + + if (average <= em_igp_cable_length_50) + phy_info->cable_length = em_cable_length_50; + else if (average <= em_igp_cable_length_80) + phy_info->cable_length = em_cable_length_50_80; + else if (average <= em_igp_cable_length_110) + phy_info->cable_length = em_cable_length_80_110; + else if (average <= em_igp_cable_length_140) + phy_info->cable_length = em_cable_length_110_140; + else + phy_info->cable_length = em_cable_length_140; + } + + return E1000_SUCCESS; +} + +/****************************************************************************** +* Get PHY information from various PHY registers for ife PHY only. +* +* hw - Struct containing variables accessed by shared code +* phy_info - PHY information structure +******************************************************************************/ +STATIC int32_t +em_phy_ife_get_info(struct em_hw *hw, + struct em_phy_info *phy_info) +{ + int32_t ret_val; + uint16_t phy_data; + em_rev_polarity polarity; + + DEBUGFUNC("em_phy_ife_get_info"); + + phy_info->downshift = (em_downshift)hw->speed_downgraded; + phy_info->extended_10bt_distance = em_10bt_ext_dist_enable_normal; + + ret_val = em_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data); + if (ret_val) + return ret_val; + phy_info->polarity_correction = + ((phy_data & IFE_PSC_AUTO_POLARITY_DISABLE) >> + IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT) ? + em_polarity_reversal_disabled : em_polarity_reversal_enabled; + + if (phy_info->polarity_correction == em_polarity_reversal_enabled) { + ret_val = em_check_polarity(hw, &polarity); + if (ret_val) + return ret_val; + } else { + /* Polarity is forced. */ + polarity = ((phy_data & IFE_PSC_FORCE_POLARITY) >> + IFE_PSC_FORCE_POLARITY_SHIFT) ? + em_rev_polarity_reversed : em_rev_polarity_normal; + } + phy_info->cable_polarity = polarity; + + ret_val = em_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data); + if (ret_val) + return ret_val; + + phy_info->mdix_mode = (em_auto_x_mode) + ((phy_data & (IFE_PMC_AUTO_MDIX | IFE_PMC_FORCE_MDIX)) >> + IFE_PMC_MDIX_MODE_SHIFT); + + return E1000_SUCCESS; +} + +/****************************************************************************** +* Get PHY information from various PHY registers fot m88 PHY only. +* +* hw - Struct containing variables accessed by shared code +* phy_info - PHY information structure +******************************************************************************/ +STATIC int32_t +em_phy_m88_get_info(struct em_hw *hw, + struct em_phy_info *phy_info) +{ + int32_t ret_val; + uint16_t phy_data; + em_rev_polarity polarity; + + DEBUGFUNC("em_phy_m88_get_info"); + + /* The downshift status is checked only once, after link is established, + * and it stored in the hw->speed_downgraded parameter. */ + phy_info->downshift = (em_downshift)hw->speed_downgraded; + + ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_info->extended_10bt_distance = + ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >> + M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ? + em_10bt_ext_dist_enable_lower : em_10bt_ext_dist_enable_normal; + + phy_info->polarity_correction = + ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >> + M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ? + em_polarity_reversal_disabled : em_polarity_reversal_enabled; + + /* Check polarity status */ + ret_val = em_check_polarity(hw, &polarity); + if (ret_val) + return ret_val; + phy_info->cable_polarity = polarity; + + ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); + if (ret_val) + return ret_val; + + phy_info->mdix_mode = (em_auto_x_mode)((phy_data & M88E1000_PSSR_MDIX) >> + M88E1000_PSSR_MDIX_SHIFT); + + if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { + /* Cable Length Estimation and Local/Remote Receiver Information + * are only valid at 1000 Mbps. + */ + if (hw->phy_type != em_phy_gg82563) { + phy_info->cable_length = (em_cable_length)((phy_data & M88E1000_PSSR_CABLE_LENGTH) >> + M88E1000_PSSR_CABLE_LENGTH_SHIFT); + } else { + ret_val = em_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE, + &phy_data); + if (ret_val) + return ret_val; + + phy_info->cable_length = (em_cable_length)(phy_data & GG82563_DSPD_CABLE_LENGTH); + } + + ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); + if (ret_val) + return ret_val; + + phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >> + SR_1000T_LOCAL_RX_STATUS_SHIFT) ? + em_1000t_rx_status_ok : em_1000t_rx_status_not_ok; + phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >> + SR_1000T_REMOTE_RX_STATUS_SHIFT) ? + em_1000t_rx_status_ok : em_1000t_rx_status_not_ok; + + } + + return E1000_SUCCESS; +} + +/****************************************************************************** +* Get PHY information from various PHY registers +* +* hw - Struct containing variables accessed by shared code +* phy_info - PHY information structure +******************************************************************************/ +int32_t +em_phy_get_info(struct em_hw *hw, + struct em_phy_info *phy_info) +{ + int32_t ret_val; + uint16_t phy_data; + + DEBUGFUNC("em_phy_get_info"); + + phy_info->cable_length = em_cable_length_undefined; + phy_info->extended_10bt_distance = em_10bt_ext_dist_enable_undefined; + phy_info->cable_polarity = em_rev_polarity_undefined; + phy_info->downshift = em_downshift_undefined; + phy_info->polarity_correction = em_polarity_reversal_undefined; + phy_info->mdix_mode = em_auto_x_mode_undefined; + phy_info->local_rx = em_1000t_rx_status_undefined; + phy_info->remote_rx = em_1000t_rx_status_undefined; + + if (hw->media_type != em_media_type_copper) { + DEBUGOUT("PHY info is only valid for copper media\n"); + return -E1000_ERR_CONFIG; + } + + ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data); + if (ret_val) + return ret_val; + + ret_val = em_read_phy_reg(hw, PHY_STATUS, &phy_data); + if (ret_val) + return ret_val; + + if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) { + DEBUGOUT("PHY info is only valid if link is up\n"); + return -E1000_ERR_CONFIG; + } + + if (hw->phy_type == em_phy_igp || + hw->phy_type == em_phy_igp_3 || + hw->phy_type == em_phy_igp_2) + return em_phy_igp_get_info(hw, phy_info); + else if (hw->phy_type == em_phy_ife) + return em_phy_ife_get_info(hw, phy_info); + else + return em_phy_m88_get_info(hw, phy_info); +} + +int32_t +em_validate_mdi_setting(struct em_hw *hw) +{ + DEBUGFUNC("em_validate_mdi_settings"); + + if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) { + DEBUGOUT("Invalid MDI setting detected\n"); + hw->mdix = 1; + return -E1000_ERR_CONFIG; + } + return E1000_SUCCESS; +} + + +/****************************************************************************** + * Sets up eeprom variables in the hw struct. Must be called after mac_type + * is configured. Additionally, if this is ICH8, the flash controller GbE + * registers must be mapped, or this will crash. + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +int32_t +em_init_eeprom_params(struct em_hw *hw) +{ + struct em_eeprom_info *eeprom = &hw->eeprom; + uint32_t eecd = E1000_READ_REG(hw, EECD); + int32_t ret_val = E1000_SUCCESS; + uint16_t eeprom_size; + + DEBUGFUNC("em_init_eeprom_params"); + + switch (hw->mac_type) { + case em_82542_rev2_0: + case em_82542_rev2_1: + case em_82543: + case em_82544: + eeprom->type = em_eeprom_microwire; + eeprom->word_size = 64; + eeprom->opcode_bits = 3; + eeprom->address_bits = 6; + eeprom->delay_usec = 50; + eeprom->use_eerd = FALSE; + eeprom->use_eewr = FALSE; + break; + case em_82540: + case em_82545: + case em_82545_rev_3: + case em_82546: + case em_82546_rev_3: + eeprom->type = em_eeprom_microwire; + eeprom->opcode_bits = 3; + eeprom->delay_usec = 50; + if (eecd & E1000_EECD_SIZE) { + eeprom->word_size = 256; + eeprom->address_bits = 8; + } else { + eeprom->word_size = 64; + eeprom->address_bits = 6; + } + eeprom->use_eerd = FALSE; + eeprom->use_eewr = FALSE; + break; + case em_82541: + case em_82541_rev_2: + case em_82547: + case em_82547_rev_2: + if (eecd & E1000_EECD_TYPE) { + eeprom->type = em_eeprom_spi; + eeprom->opcode_bits = 8; + eeprom->delay_usec = 1; + if (eecd & E1000_EECD_ADDR_BITS) { + eeprom->page_size = 32; + eeprom->address_bits = 16; + } else { + eeprom->page_size = 8; + eeprom->address_bits = 8; + } + } else { + eeprom->type = em_eeprom_microwire; + eeprom->opcode_bits = 3; + eeprom->delay_usec = 50; + if (eecd & E1000_EECD_ADDR_BITS) { + eeprom->word_size = 256; + eeprom->address_bits = 8; + } else { + eeprom->word_size = 64; + eeprom->address_bits = 6; + } + } + eeprom->use_eerd = FALSE; + eeprom->use_eewr = FALSE; + break; + case em_82571: + case em_82572: + eeprom->type = em_eeprom_spi; + eeprom->opcode_bits = 8; + eeprom->delay_usec = 1; + if (eecd & E1000_EECD_ADDR_BITS) { + eeprom->page_size = 32; + eeprom->address_bits = 16; + } else { + eeprom->page_size = 8; + eeprom->address_bits = 8; + } + eeprom->use_eerd = FALSE; + eeprom->use_eewr = FALSE; + break; + case em_82573: + eeprom->type = em_eeprom_spi; + eeprom->opcode_bits = 8; + eeprom->delay_usec = 1; + if (eecd & E1000_EECD_ADDR_BITS) { + eeprom->page_size = 32; + eeprom->address_bits = 16; + } else { + eeprom->page_size = 8; + eeprom->address_bits = 8; + } + eeprom->use_eerd = TRUE; + eeprom->use_eewr = TRUE; + if (em_is_onboard_nvm_eeprom(hw) == FALSE) { + eeprom->type = em_eeprom_flash; + eeprom->word_size = 2048; + + /* Ensure that the Autonomous FLASH update bit is cleared due to + * Flash update issue on parts which use a FLASH for NVM. */ + eecd &= ~E1000_EECD_AUPDEN; + E1000_WRITE_REG(hw, EECD, eecd); + } + break; + case em_80003es2lan: + eeprom->type = em_eeprom_spi; + eeprom->opcode_bits = 8; + eeprom->delay_usec = 1; + if (eecd & E1000_EECD_ADDR_BITS) { + eeprom->page_size = 32; + eeprom->address_bits = 16; + } else { + eeprom->page_size = 8; + eeprom->address_bits = 8; + } + eeprom->use_eerd = TRUE; + eeprom->use_eewr = FALSE; + break; + case em_ich8lan: + { + int32_t i = 0; + uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_GFPREG); + + eeprom->type = em_eeprom_ich8; + eeprom->use_eerd = FALSE; + eeprom->use_eewr = FALSE; + eeprom->word_size = E1000_SHADOW_RAM_WORDS; + + /* Zero the shadow RAM structure. But don't load it from NVM + * so as to save time for driver init */ + if (hw->eeprom_shadow_ram != NULL) { + for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { + hw->eeprom_shadow_ram[i].modified = FALSE; + hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF; + } + } + + hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) * + ICH_FLASH_SECTOR_SIZE; + + hw->flash_bank_size = ((flash_size >> 16) & ICH_GFPREG_BASE_MASK) + 1; + hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK); + + hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE; + + hw->flash_bank_size /= 2 * sizeof(uint16_t); + + break; + } + default: + break; + } + + if (eeprom->type == em_eeprom_spi) { + /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to + * 32KB (incremented by powers of 2). + */ + if (hw->mac_type <= em_82547_rev_2) { + /* Set to default value for initial eeprom read. */ + eeprom->word_size = 64; + ret_val = em_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size); + if (ret_val) + return ret_val; + eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT; + /* 256B eeprom size was not supported in earlier hardware, so we + * bump eeprom_size up one to ensure that "1" (which maps to 256B) + * is never the result used in the shifting logic below. */ + if (eeprom_size) + eeprom_size++; + } else { + eeprom_size = (uint16_t)((eecd & E1000_EECD_SIZE_EX_MASK) >> + E1000_EECD_SIZE_EX_SHIFT); + } + + eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT); + } + return ret_val; +} + +/****************************************************************************** + * Raises the EEPROM's clock input. + * + * hw - Struct containing variables accessed by shared code + * eecd - EECD's current value + *****************************************************************************/ +static void +em_raise_ee_clk(struct em_hw *hw, + uint32_t *eecd) +{ + /* Raise the clock input to the EEPROM (by setting the SK bit), and then + * wait microseconds. + */ + *eecd = *eecd | E1000_EECD_SK; + E1000_WRITE_REG(hw, EECD, *eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(hw->eeprom.delay_usec); +} + +/****************************************************************************** + * Lowers the EEPROM's clock input. + * + * hw - Struct containing variables accessed by shared code + * eecd - EECD's current value + *****************************************************************************/ +static void +em_lower_ee_clk(struct em_hw *hw, + uint32_t *eecd) +{ + /* Lower the clock input to the EEPROM (by clearing the SK bit), and then + * wait 50 microseconds. + */ + *eecd = *eecd & ~E1000_EECD_SK; + E1000_WRITE_REG(hw, EECD, *eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(hw->eeprom.delay_usec); +} + +/****************************************************************************** + * Shift data bits out to the EEPROM. + * + * hw - Struct containing variables accessed by shared code + * data - data to send to the EEPROM + * count - number of bits to shift out + *****************************************************************************/ +static void +em_shift_out_ee_bits(struct em_hw *hw, + uint16_t data, + uint16_t count) +{ + struct em_eeprom_info *eeprom = &hw->eeprom; + uint32_t eecd; + uint32_t mask; + + /* We need to shift "count" bits out to the EEPROM. So, value in the + * "data" parameter will be shifted out to the EEPROM one bit at a time. + * In order to do this, "data" must be broken down into bits. + */ + mask = 0x01 << (count - 1); + eecd = E1000_READ_REG(hw, EECD); + if (eeprom->type == em_eeprom_microwire) { + eecd &= ~E1000_EECD_DO; + } else if (eeprom->type == em_eeprom_spi) { + eecd |= E1000_EECD_DO; + } + do { + /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1", + * and then raising and then lowering the clock (the SK bit controls + * the clock input to the EEPROM). A "0" is shifted out to the EEPROM + * by setting "DI" to "0" and then raising and then lowering the clock. + */ + eecd &= ~E1000_EECD_DI; + + if (data & mask) + eecd |= E1000_EECD_DI; + + E1000_WRITE_REG(hw, EECD, eecd); + E1000_WRITE_FLUSH(hw); + + usec_delay(eeprom->delay_usec); + + em_raise_ee_clk(hw, &eecd); + em_lower_ee_clk(hw, &eecd); + + mask = mask >> 1; + + } while (mask); + + /* We leave the "DI" bit set to "0" when we leave this routine. */ + eecd &= ~E1000_EECD_DI; + E1000_WRITE_REG(hw, EECD, eecd); +} + +/****************************************************************************** + * Shift data bits in from the EEPROM + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +static uint16_t +em_shift_in_ee_bits(struct em_hw *hw, + uint16_t count) +{ + uint32_t eecd; + uint32_t i; + uint16_t data; + + /* In order to read a register from the EEPROM, we need to shift 'count' + * bits in from the EEPROM. Bits are "shifted in" by raising the clock + * input to the EEPROM (setting the SK bit), and then reading the value of + * the "DO" bit. During this "shifting in" process the "DI" bit should + * always be clear. + */ + + eecd = E1000_READ_REG(hw, EECD); + + eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); + data = 0; + + for (i = 0; i < count; i++) { + data = data << 1; + em_raise_ee_clk(hw, &eecd); + + eecd = E1000_READ_REG(hw, EECD); + + eecd &= ~(E1000_EECD_DI); + if (eecd & E1000_EECD_DO) + data |= 1; + + em_lower_ee_clk(hw, &eecd); + } + + return data; +} + +/****************************************************************************** + * Prepares EEPROM for access + * + * hw - Struct containing variables accessed by shared code + * + * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This + * function should be called before issuing a command to the EEPROM. + *****************************************************************************/ +static int32_t +em_acquire_eeprom(struct em_hw *hw) +{ + struct em_eeprom_info *eeprom = &hw->eeprom; + uint32_t eecd, i=0; + + DEBUGFUNC("em_acquire_eeprom"); + + if (em_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM)) + return -E1000_ERR_SWFW_SYNC; + eecd = E1000_READ_REG(hw, EECD); + + if (hw->mac_type != em_82573) { + /* Request EEPROM Access */ + if (hw->mac_type > em_82544) { + eecd |= E1000_EECD_REQ; + E1000_WRITE_REG(hw, EECD, eecd); + eecd = E1000_READ_REG(hw, EECD); + while ((!(eecd & E1000_EECD_GNT)) && + (i < E1000_EEPROM_GRANT_ATTEMPTS)) { + i++; + usec_delay(5); + eecd = E1000_READ_REG(hw, EECD); + } + if (!(eecd & E1000_EECD_GNT)) { + eecd &= ~E1000_EECD_REQ; + E1000_WRITE_REG(hw, EECD, eecd); + DEBUGOUT("Could not acquire EEPROM grant\n"); + em_swfw_sync_release(hw, E1000_SWFW_EEP_SM); + return -E1000_ERR_EEPROM; + } + } + } + + /* Setup EEPROM for Read/Write */ + + if (eeprom->type == em_eeprom_microwire) { + /* Clear SK and DI */ + eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); + E1000_WRITE_REG(hw, EECD, eecd); + + /* Set CS */ + eecd |= E1000_EECD_CS; + E1000_WRITE_REG(hw, EECD, eecd); + } else if (eeprom->type == em_eeprom_spi) { + /* Clear SK and CS */ + eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); + E1000_WRITE_REG(hw, EECD, eecd); + usec_delay(1); + } + + return E1000_SUCCESS; +} + +/****************************************************************************** + * Returns EEPROM to a "standby" state + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +static void +em_standby_eeprom(struct em_hw *hw) +{ + struct em_eeprom_info *eeprom = &hw->eeprom; + uint32_t eecd; + + eecd = E1000_READ_REG(hw, EECD); + + if (eeprom->type == em_eeprom_microwire) { + eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); + E1000_WRITE_REG(hw, EECD, eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(eeprom->delay_usec); + + /* Clock high */ + eecd |= E1000_EECD_SK; + E1000_WRITE_REG(hw, EECD, eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(eeprom->delay_usec); + + /* Select EEPROM */ + eecd |= E1000_EECD_CS; + E1000_WRITE_REG(hw, EECD, eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(eeprom->delay_usec); + + /* Clock low */ + eecd &= ~E1000_EECD_SK; + E1000_WRITE_REG(hw, EECD, eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(eeprom->delay_usec); + } else if (eeprom->type == em_eeprom_spi) { + /* Toggle CS to flush commands */ + eecd |= E1000_EECD_CS; + E1000_WRITE_REG(hw, EECD, eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(eeprom->delay_usec); + eecd &= ~E1000_EECD_CS; + E1000_WRITE_REG(hw, EECD, eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(eeprom->delay_usec); + } +} + +/****************************************************************************** + * Terminates a command by inverting the EEPROM's chip select pin + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +static void +em_release_eeprom(struct em_hw *hw) +{ + uint32_t eecd; + + DEBUGFUNC("em_release_eeprom"); + + eecd = E1000_READ_REG(hw, EECD); + + if (hw->eeprom.type == em_eeprom_spi) { + eecd |= E1000_EECD_CS; /* Pull CS high */ + eecd &= ~E1000_EECD_SK; /* Lower SCK */ + + E1000_WRITE_REG(hw, EECD, eecd); + + usec_delay(hw->eeprom.delay_usec); + } else if (hw->eeprom.type == em_eeprom_microwire) { + /* cleanup eeprom */ + + /* CS on Microwire is active-high */ + eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); + + E1000_WRITE_REG(hw, EECD, eecd); + + /* Rising edge of clock */ + eecd |= E1000_EECD_SK; + E1000_WRITE_REG(hw, EECD, eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(hw->eeprom.delay_usec); + + /* Falling edge of clock */ + eecd &= ~E1000_EECD_SK; + E1000_WRITE_REG(hw, EECD, eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(hw->eeprom.delay_usec); + } + + /* Stop requesting EEPROM access */ + if (hw->mac_type > em_82544) { + eecd &= ~E1000_EECD_REQ; + E1000_WRITE_REG(hw, EECD, eecd); + } + + em_swfw_sync_release(hw, E1000_SWFW_EEP_SM); +} + +/****************************************************************************** + * Reads a 16 bit word from the EEPROM. + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +STATIC int32_t +em_spi_eeprom_ready(struct em_hw *hw) +{ + uint16_t retry_count = 0; + uint8_t spi_stat_reg; + + DEBUGFUNC("em_spi_eeprom_ready"); + + /* Read "Status Register" repeatedly until the LSB is cleared. The + * EEPROM will signal that the command has been completed by clearing + * bit 0 of the internal status register. If it's not cleared within + * 5 milliseconds, then error out. + */ + retry_count = 0; + do { + em_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI, + hw->eeprom.opcode_bits); + spi_stat_reg = (uint8_t)em_shift_in_ee_bits(hw, 8); + if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI)) + break; + + usec_delay(5); + retry_count += 5; + + em_standby_eeprom(hw); + } while (retry_count < EEPROM_MAX_RETRY_SPI); + + /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and + * only 0-5mSec on 5V devices) + */ + if (retry_count >= EEPROM_MAX_RETRY_SPI) { + DEBUGOUT("SPI EEPROM Status error\n"); + return -E1000_ERR_EEPROM; + } + + return E1000_SUCCESS; +} + +/****************************************************************************** + * Reads a 16 bit word from the EEPROM. + * + * hw - Struct containing variables accessed by shared code + * offset - offset of word in the EEPROM to read + * data - word read from the EEPROM + * words - number of words to read + *****************************************************************************/ +int32_t +em_read_eeprom(struct em_hw *hw, + uint16_t offset, + uint16_t words, + uint16_t *data) +{ + struct em_eeprom_info *eeprom = &hw->eeprom; + uint32_t i = 0; + + DEBUGFUNC("em_read_eeprom"); + + /* If eeprom is not yet detected, do so now */ + if (eeprom->word_size == 0) + em_init_eeprom_params(hw); + + /* A check for invalid values: offset too large, too many words, and not + * enough words. + */ + if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) || + (words == 0)) { + DEBUGOUT2("\"words\" parameter out of bounds. Words = %d, size = %d\n", offset, eeprom->word_size); + return -E1000_ERR_EEPROM; + } + + /* EEPROM's that don't use EERD to read require us to bit-bang the SPI + * directly. In this case, we need to acquire the EEPROM so that + * FW or other port software does not interrupt. + */ + if (em_is_onboard_nvm_eeprom(hw) == TRUE && + hw->eeprom.use_eerd == FALSE) { + /* Prepare the EEPROM for bit-bang reading */ + if (em_acquire_eeprom(hw) != E1000_SUCCESS) + return -E1000_ERR_EEPROM; + } + + /* Eerd register EEPROM access requires no eeprom aquire/release */ + if (eeprom->use_eerd == TRUE) + return em_read_eeprom_eerd(hw, offset, words, data); + + /* ICH EEPROM access is done via the ICH flash controller */ + if (eeprom->type == em_eeprom_ich8) + return em_read_eeprom_ich8(hw, offset, words, data); + + /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have + * acquired the EEPROM at this point, so any returns should relase it */ + if (eeprom->type == em_eeprom_spi) { + uint16_t word_in; + uint8_t read_opcode = EEPROM_READ_OPCODE_SPI; + + if (em_spi_eeprom_ready(hw)) { + em_release_eeprom(hw); + return -E1000_ERR_EEPROM; + } + + em_standby_eeprom(hw); + + /* Some SPI eeproms use the 8th address bit embedded in the opcode */ + if ((eeprom->address_bits == 8) && (offset >= 128)) + read_opcode |= EEPROM_A8_OPCODE_SPI; + + /* Send the READ command (opcode + addr) */ + em_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits); + em_shift_out_ee_bits(hw, (uint16_t)(offset*2), eeprom->address_bits); + + /* Read the data. The address of the eeprom internally increments with + * each byte (spi) being read, saving on the overhead of eeprom setup + * and tear-down. The address counter will roll over if reading beyond + * the size of the eeprom, thus allowing the entire memory to be read + * starting from any offset. */ + for (i = 0; i < words; i++) { + word_in = em_shift_in_ee_bits(hw, 16); + data[i] = (word_in >> 8) | (word_in << 8); + } + } else if (eeprom->type == em_eeprom_microwire) { + for (i = 0; i < words; i++) { + /* Send the READ command (opcode + addr) */ + em_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE, + eeprom->opcode_bits); + em_shift_out_ee_bits(hw, (uint16_t)(offset + i), + eeprom->address_bits); + + /* Read the data. For microwire, each word requires the overhead + * of eeprom setup and tear-down. */ + data[i] = em_shift_in_ee_bits(hw, 16); + em_standby_eeprom(hw); + } + } + + /* End this read operation */ + em_release_eeprom(hw); + + return E1000_SUCCESS; +} + +/****************************************************************************** + * Reads a 16 bit word from the EEPROM using the EERD register. + * + * hw - Struct containing variables accessed by shared code + * offset - offset of word in the EEPROM to read + * data - word read from the EEPROM + * words - number of words to read + *****************************************************************************/ +STATIC int32_t +em_read_eeprom_eerd(struct em_hw *hw, + uint16_t offset, + uint16_t words, + uint16_t *data) +{ + uint32_t i, eerd = 0; + int32_t error = 0; + + for (i = 0; i < words; i++) { + eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) + + E1000_EEPROM_RW_REG_START; + + E1000_WRITE_REG(hw, EERD, eerd); + error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ); + + if (error) { + break; + } + data[i] = (E1000_READ_REG(hw, EERD) >> E1000_EEPROM_RW_REG_DATA); + + } + + return error; +} + +/****************************************************************************** + * Writes a 16 bit word from the EEPROM using the EEWR register. + * + * hw - Struct containing variables accessed by shared code + * offset - offset of word in the EEPROM to read + * data - word read from the EEPROM + * words - number of words to read + *****************************************************************************/ +STATIC int32_t +em_write_eeprom_eewr(struct em_hw *hw, + uint16_t offset, + uint16_t words, + uint16_t *data) +{ + uint32_t register_value = 0; + uint32_t i = 0; + int32_t error = 0; + + if (em_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM)) + return -E1000_ERR_SWFW_SYNC; + + for (i = 0; i < words; i++) { + register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) | + ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) | + E1000_EEPROM_RW_REG_START; + + error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE); + if (error) { + break; + } + + E1000_WRITE_REG(hw, EEWR, register_value); + + error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE); + + if (error) { + break; + } + } + + em_swfw_sync_release(hw, E1000_SWFW_EEP_SM); + return error; +} + +/****************************************************************************** + * Polls the status bit (bit 1) of the EERD to determine when the read is done. + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +STATIC int32_t +em_poll_eerd_eewr_done(struct em_hw *hw, int eerd) +{ + uint32_t attempts = 100000; + uint32_t i, reg = 0; + int32_t done = E1000_ERR_EEPROM; + + for (i = 0; i < attempts; i++) { + if (eerd == E1000_EEPROM_POLL_READ) + reg = E1000_READ_REG(hw, EERD); + else + reg = E1000_READ_REG(hw, EEWR); + + if (reg & E1000_EEPROM_RW_REG_DONE) { + done = E1000_SUCCESS; + break; + } + usec_delay(5); + } + + return done; +} + +/*************************************************************************** +* Description: Determines if the onboard NVM is FLASH or EEPROM. +* +* hw - Struct containing variables accessed by shared code +****************************************************************************/ +STATIC boolean_t +em_is_onboard_nvm_eeprom(struct em_hw *hw) +{ + uint32_t eecd = 0; + + DEBUGFUNC("em_is_onboard_nvm_eeprom"); + + if (hw->mac_type == em_ich8lan) + return FALSE; + + if (hw->mac_type == em_82573) { + eecd = E1000_READ_REG(hw, EECD); + + /* Isolate bits 15 & 16 */ + eecd = ((eecd >> 15) & 0x03); + + /* If both bits are set, device is Flash type */ + if (eecd == 0x03) { + return FALSE; + } + } + return TRUE; +} + +/****************************************************************************** + * Verifies that the EEPROM has a valid checksum + * + * hw - Struct containing variables accessed by shared code + * + * Reads the first 64 16 bit words of the EEPROM and sums the values read. + * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is + * valid. + *****************************************************************************/ +int32_t +em_validate_eeprom_checksum(struct em_hw *hw) +{ + uint16_t checksum = 0; + uint16_t i, eeprom_data; + + DEBUGFUNC("em_validate_eeprom_checksum"); + + if ((hw->mac_type == em_82573) && + (em_is_onboard_nvm_eeprom(hw) == FALSE)) { + /* Check bit 4 of word 10h. If it is 0, firmware is done updating + * 10h-12h. Checksum may need to be fixed. */ + em_read_eeprom(hw, 0x10, 1, &eeprom_data); + if ((eeprom_data & 0x10) == 0) { + /* Read 0x23 and check bit 15. This bit is a 1 when the checksum + * has already been fixed. If the checksum is still wrong and this + * bit is a 1, we need to return bad checksum. Otherwise, we need + * to set this bit to a 1 and update the checksum. */ + em_read_eeprom(hw, 0x23, 1, &eeprom_data); + if ((eeprom_data & 0x8000) == 0) { + eeprom_data |= 0x8000; + em_write_eeprom(hw, 0x23, 1, &eeprom_data); + em_update_eeprom_checksum(hw); + } + } + } + + if (hw->mac_type == em_ich8lan) { + /* Drivers must allocate the shadow ram structure for the + * EEPROM checksum to be updated. Otherwise, this bit as well + * as the checksum must both be set correctly for this + * validation to pass. + */ + em_read_eeprom(hw, 0x19, 1, &eeprom_data); + if ((eeprom_data & 0x40) == 0) { + eeprom_data |= 0x40; + em_write_eeprom(hw, 0x19, 1, &eeprom_data); + em_update_eeprom_checksum(hw); + } + } + + for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { + if (em_read_eeprom(hw, i, 1, &eeprom_data) < 0) { + DEBUGOUT("EEPROM Read Error\n"); + return -E1000_ERR_EEPROM; + } + checksum += eeprom_data; + } + + if (checksum == (uint16_t) EEPROM_SUM) + return E1000_SUCCESS; + else { + DEBUGOUT("EEPROM Checksum Invalid\n"); + return -E1000_ERR_EEPROM; + } +} + +/****************************************************************************** + * Calculates the EEPROM checksum and writes it to the EEPROM + * + * hw - Struct containing variables accessed by shared code + * + * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA. + * Writes the difference to word offset 63 of the EEPROM. + *****************************************************************************/ +int32_t +em_update_eeprom_checksum(struct em_hw *hw) +{ + uint32_t ctrl_ext; + uint16_t checksum = 0; + uint16_t i, eeprom_data; + + DEBUGFUNC("em_update_eeprom_checksum"); + + for (i = 0; i < EEPROM_CHECKSUM_REG; i++) { + if (em_read_eeprom(hw, i, 1, &eeprom_data) < 0) { + DEBUGOUT("EEPROM Read Error\n"); + return -E1000_ERR_EEPROM; + } + checksum += eeprom_data; + } + checksum = (uint16_t) EEPROM_SUM - checksum; + if (em_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) { + DEBUGOUT("EEPROM Write Error\n"); + return -E1000_ERR_EEPROM; + } else if (hw->eeprom.type == em_eeprom_flash) { + em_commit_shadow_ram(hw); + } else if (hw->eeprom.type == em_eeprom_ich8) { + em_commit_shadow_ram(hw); + /* Reload the EEPROM, or else modifications will not appear + * until after next adapter reset. */ + ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); + ctrl_ext |= E1000_CTRL_EXT_EE_RST; + E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); + msec_delay(10); + } + return E1000_SUCCESS; +} + +/****************************************************************************** + * Parent function for writing words to the different EEPROM types. + * + * hw - Struct containing variables accessed by shared code + * offset - offset within the EEPROM to be written to + * words - number of words to write + * data - 16 bit word to be written to the EEPROM + * + * If em_update_eeprom_checksum is not called after this function, the + * EEPROM will most likely contain an invalid checksum. + *****************************************************************************/ +int32_t +em_write_eeprom(struct em_hw *hw, + uint16_t offset, + uint16_t words, + uint16_t *data) +{ + struct em_eeprom_info *eeprom = &hw->eeprom; + int32_t status = 0; + + DEBUGFUNC("em_write_eeprom"); + + /* If eeprom is not yet detected, do so now */ + if (eeprom->word_size == 0) + em_init_eeprom_params(hw); + + /* A check for invalid values: offset too large, too many words, and not + * enough words. + */ + if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) || + (words == 0)) { + DEBUGOUT("\"words\" parameter out of bounds\n"); + return -E1000_ERR_EEPROM; + } + + /* 82573 writes only through eewr */ + if (eeprom->use_eewr == TRUE) + return em_write_eeprom_eewr(hw, offset, words, data); + + if (eeprom->type == em_eeprom_ich8) + return em_write_eeprom_ich8(hw, offset, words, data); + + /* Prepare the EEPROM for writing */ + if (em_acquire_eeprom(hw) != E1000_SUCCESS) + return -E1000_ERR_EEPROM; + + if (eeprom->type == em_eeprom_microwire) { + status = em_write_eeprom_microwire(hw, offset, words, data); + } else { + status = em_write_eeprom_spi(hw, offset, words, data); + msec_delay(10); + } + + /* Done with writing */ + em_release_eeprom(hw); + + return status; +} + +/****************************************************************************** + * Writes a 16 bit word to a given offset in an SPI EEPROM. + * + * hw - Struct containing variables accessed by shared code + * offset - offset within the EEPROM to be written to + * words - number of words to write + * data - pointer to array of 8 bit words to be written to the EEPROM + * + *****************************************************************************/ +STATIC int32_t +em_write_eeprom_spi(struct em_hw *hw, + uint16_t offset, + uint16_t words, + uint16_t *data) +{ + struct em_eeprom_info *eeprom = &hw->eeprom; + uint16_t widx = 0; + + DEBUGFUNC("em_write_eeprom_spi"); + + while (widx < words) { + uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI; + + if (em_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM; + + em_standby_eeprom(hw); + + /* Send the WRITE ENABLE command (8 bit opcode ) */ + em_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI, + eeprom->opcode_bits); + + em_standby_eeprom(hw); + + /* Some SPI eeproms use the 8th address bit embedded in the opcode */ + if ((eeprom->address_bits == 8) && (offset >= 128)) + write_opcode |= EEPROM_A8_OPCODE_SPI; + + /* Send the Write command (8-bit opcode + addr) */ + em_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits); + + em_shift_out_ee_bits(hw, (uint16_t)((offset + widx)*2), + eeprom->address_bits); + + /* Send the data */ + + /* Loop to allow for up to whole page write (32 bytes) of eeprom */ + while (widx < words) { + uint16_t word_out = data[widx]; + word_out = (word_out >> 8) | (word_out << 8); + em_shift_out_ee_bits(hw, word_out, 16); + widx++; + + /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE + * operation, while the smaller eeproms are capable of an 8-byte + * PAGE WRITE operation. Break the inner loop to pass new address + */ + if ((((offset + widx)*2) % eeprom->page_size) == 0) { + em_standby_eeprom(hw); + break; + } + } + } + + return E1000_SUCCESS; +} + +/****************************************************************************** + * Writes a 16 bit word to a given offset in a Microwire EEPROM. + * + * hw - Struct containing variables accessed by shared code + * offset - offset within the EEPROM to be written to + * words - number of words to write + * data - pointer to array of 16 bit words to be written to the EEPROM + * + *****************************************************************************/ +STATIC int32_t +em_write_eeprom_microwire(struct em_hw *hw, + uint16_t offset, + uint16_t words, + uint16_t *data) +{ + struct em_eeprom_info *eeprom = &hw->eeprom; + uint32_t eecd; + uint16_t words_written = 0; + uint16_t i = 0; + + DEBUGFUNC("em_write_eeprom_microwire"); + + /* Send the write enable command to the EEPROM (3-bit opcode plus + * 6/8-bit dummy address beginning with 11). It's less work to include + * the 11 of the dummy address as part of the opcode than it is to shift + * it over the correct number of bits for the address. This puts the + * EEPROM into write/erase mode. + */ + em_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE, + (uint16_t)(eeprom->opcode_bits + 2)); + + em_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2)); + + /* Prepare the EEPROM */ + em_standby_eeprom(hw); + + while (words_written < words) { + /* Send the Write command (3-bit opcode + addr) */ + em_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE, + eeprom->opcode_bits); + + em_shift_out_ee_bits(hw, (uint16_t)(offset + words_written), + eeprom->address_bits); + + /* Send the data */ + em_shift_out_ee_bits(hw, data[words_written], 16); + + /* Toggle the CS line. This in effect tells the EEPROM to execute + * the previous command. + */ + em_standby_eeprom(hw); + + /* Read DO repeatedly until it is high (equal to '1'). The EEPROM will + * signal that the command has been completed by raising the DO signal. + * If DO does not go high in 10 milliseconds, then error out. + */ + for (i = 0; i < 200; i++) { + eecd = E1000_READ_REG(hw, EECD); + if (eecd & E1000_EECD_DO) break; + usec_delay(50); + } + if (i == 200) { + DEBUGOUT("EEPROM Write did not complete\n"); + return -E1000_ERR_EEPROM; + } + + /* Recover from write */ + em_standby_eeprom(hw); + + words_written++; + } + + /* Send the write disable command to the EEPROM (3-bit opcode plus + * 6/8-bit dummy address beginning with 10). It's less work to include + * the 10 of the dummy address as part of the opcode than it is to shift + * it over the correct number of bits for the address. This takes the + * EEPROM out of write/erase mode. + */ + em_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE, + (uint16_t)(eeprom->opcode_bits + 2)); + + em_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2)); + + return E1000_SUCCESS; +} + +/****************************************************************************** + * Flushes the cached eeprom to NVM. This is done by saving the modified values + * in the eeprom cache and the non modified values in the currently active bank + * to the new bank. + * + * hw - Struct containing variables accessed by shared code + * offset - offset of word in the EEPROM to read + * data - word read from the EEPROM + * words - number of words to read + *****************************************************************************/ +STATIC int32_t +em_commit_shadow_ram(struct em_hw *hw) +{ + uint32_t attempts = 100000; + uint32_t eecd = 0; + uint32_t flop = 0; + uint32_t i = 0; + int32_t error = E1000_SUCCESS; + uint32_t old_bank_offset = 0; + uint32_t new_bank_offset = 0; + uint8_t low_byte = 0; + uint8_t high_byte = 0; + boolean_t sector_write_failed = FALSE; + + if (hw->mac_type == em_82573) { + /* The flop register will be used to determine if flash type is STM */ + flop = E1000_READ_REG(hw, FLOP); + for (i=0; i < attempts; i++) { + eecd = E1000_READ_REG(hw, EECD); + if ((eecd & E1000_EECD_FLUPD) == 0) { + break; + } + usec_delay(5); + } + + if (i == attempts) { + return -E1000_ERR_EEPROM; + } + + /* If STM opcode located in bits 15:8 of flop, reset firmware */ + if ((flop & 0xFF00) == E1000_STM_OPCODE) { + E1000_WRITE_REG(hw, HICR, E1000_HICR_FW_RESET); + } + + /* Perform the flash update */ + E1000_WRITE_REG(hw, EECD, eecd | E1000_EECD_FLUPD); + + for (i=0; i < attempts; i++) { + eecd = E1000_READ_REG(hw, EECD); + if ((eecd & E1000_EECD_FLUPD) == 0) { + break; + } + usec_delay(5); + } + + if (i == attempts) { + return -E1000_ERR_EEPROM; + } + } + + if (hw->mac_type == em_ich8lan && hw->eeprom_shadow_ram != NULL) { + /* We're writing to the opposite bank so if we're on bank 1, + * write to bank 0 etc. We also need to erase the segment that + * is going to be written */ + if (!(E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL)) { + new_bank_offset = hw->flash_bank_size * 2; + old_bank_offset = 0; + em_erase_ich8_4k_segment(hw, 1); + } else { + old_bank_offset = hw->flash_bank_size * 2; + new_bank_offset = 0; + em_erase_ich8_4k_segment(hw, 0); + } + + sector_write_failed = FALSE; + /* Loop for every byte in the shadow RAM, + * which is in units of words. */ + for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { + /* Determine whether to write the value stored + * in the other NVM bank or a modified value stored + * in the shadow RAM */ + if (hw->eeprom_shadow_ram[i].modified == TRUE) { + low_byte = (uint8_t)hw->eeprom_shadow_ram[i].eeprom_word; + usec_delay(100); + error = em_verify_write_ich8_byte(hw, + (i << 1) + new_bank_offset, low_byte); + + if (error != E1000_SUCCESS) + sector_write_failed = TRUE; + else { + high_byte = + (uint8_t)(hw->eeprom_shadow_ram[i].eeprom_word >> 8); + usec_delay(100); + } + } else { + em_read_ich8_byte(hw, (i << 1) + old_bank_offset, + &low_byte); + usec_delay(100); + error = em_verify_write_ich8_byte(hw, + (i << 1) + new_bank_offset, low_byte); + + if (error != E1000_SUCCESS) + sector_write_failed = TRUE; + else { + em_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1, + &high_byte); + usec_delay(100); + } + } + + /* If the write of the low byte was successful, go ahread and + * write the high byte while checking to make sure that if it + * is the signature byte, then it is handled properly */ + if (sector_write_failed == FALSE) { + /* If the word is 0x13, then make sure the signature bits + * (15:14) are 11b until the commit has completed. + * This will allow us to write 10b which indicates the + * signature is valid. We want to do this after the write + * has completed so that we don't mark the segment valid + * while the write is still in progress */ + if (i == E1000_ICH_NVM_SIG_WORD) + high_byte = E1000_ICH_NVM_SIG_MASK | high_byte; + + error = em_verify_write_ich8_byte(hw, + (i << 1) + new_bank_offset + 1, high_byte); + if (error != E1000_SUCCESS) + sector_write_failed = TRUE; + + } else { + /* If the write failed then break from the loop and + * return an error */ + break; + } + } + + /* Don't bother writing the segment valid bits if sector + * programming failed. */ + if (sector_write_failed == FALSE) { + /* Finally validate the new segment by setting bit 15:14 + * to 10b in word 0x13 , this can be done without an + * erase as well since these bits are 11 to start with + * and we need to change bit 14 to 0b */ + em_read_ich8_byte(hw, + E1000_ICH_NVM_SIG_WORD * 2 + 1 + new_bank_offset, + &high_byte); + high_byte &= 0xBF; + error = em_verify_write_ich8_byte(hw, + E1000_ICH_NVM_SIG_WORD * 2 + 1 + new_bank_offset, high_byte); + /* And invalidate the previously valid segment by setting + * its signature word (0x13) high_byte to 0b. This can be + * done without an erase because flash erase sets all bits + * to 1's. We can write 1's to 0's without an erase */ + if (error == E1000_SUCCESS) { + error = em_verify_write_ich8_byte(hw, + E1000_ICH_NVM_SIG_WORD * 2 + 1 + old_bank_offset, 0); + } + + /* Clear the now not used entry in the cache */ + for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { + hw->eeprom_shadow_ram[i].modified = FALSE; + hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF; + } + } + } + + return error; +} + +/****************************************************************************** + * Reads the adapter's part number from the EEPROM + * + * hw - Struct containing variables accessed by shared code + * part_num - Adapter's part number + *****************************************************************************/ +int32_t +em_read_part_num(struct em_hw *hw, + uint32_t *part_num) +{ + uint16_t offset = EEPROM_PBA_BYTE_1; + uint16_t eeprom_data; + + DEBUGFUNC("em_read_part_num"); + + /* Get word 0 from EEPROM */ + if (em_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { + DEBUGOUT("EEPROM Read Error\n"); + return -E1000_ERR_EEPROM; + } + /* Save word 0 in upper half of part_num */ + *part_num = (uint32_t) (eeprom_data << 16); + + /* Get word 1 from EEPROM */ + if (em_read_eeprom(hw, ++offset, 1, &eeprom_data) < 0) { + DEBUGOUT("EEPROM Read Error\n"); + return -E1000_ERR_EEPROM; + } + /* Save word 1 in lower half of part_num */ + *part_num |= eeprom_data; + + return E1000_SUCCESS; +} + +/****************************************************************************** + * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the + * second function of dual function devices + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +int32_t +em_read_mac_addr(struct em_hw * hw) +{ + uint16_t offset; + uint16_t eeprom_data, i; + + DEBUGFUNC("em_read_mac_addr"); + + for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) { + offset = i >> 1; + if (em_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { + DEBUGOUT("EEPROM Read Error\n"); + return -E1000_ERR_EEPROM; + } + hw->perm_mac_addr[i] = (uint8_t) (eeprom_data & 0x00FF); + hw->perm_mac_addr[i+1] = (uint8_t) (eeprom_data >> 8); + } + + switch (hw->mac_type) { + default: + break; + case em_82546: + case em_82546_rev_3: + case em_82571: + case em_80003es2lan: + if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) + hw->perm_mac_addr[5] ^= 0x01; + break; + } + + for (i = 0; i < NODE_ADDRESS_SIZE; i++) + hw->mac_addr[i] = hw->perm_mac_addr[i]; + return E1000_SUCCESS; +} + +/****************************************************************************** + * Initializes receive address filters. + * + * hw - Struct containing variables accessed by shared code + * + * Places the MAC address in receive address register 0 and clears the rest + * of the receive addresss registers. Clears the multicast table. Assumes + * the receiver is in reset when the routine is called. + *****************************************************************************/ +STATIC void +em_init_rx_addrs(struct em_hw *hw) +{ + uint32_t i; + uint32_t rar_num; + + DEBUGFUNC("em_init_rx_addrs"); + + /* Setup the receive address. */ + DEBUGOUT("Programming MAC Address into RAR[0]\n"); + + em_rar_set(hw, hw->mac_addr, 0); + + rar_num = E1000_RAR_ENTRIES; + + /* Reserve a spot for the Locally Administered Address to work around + * an 82571 issue in which a reset on one port will reload the MAC on + * the other port. */ + if ((hw->mac_type == em_82571) && (hw->laa_is_present == TRUE)) + rar_num -= 1; + if (hw->mac_type == em_ich8lan) + rar_num = E1000_RAR_ENTRIES_ICH8LAN; + + /* Zero out the other 15 receive addresses. */ + DEBUGOUT("Clearing RAR[1-15]\n"); + for (i = 1; i < rar_num; i++) { + E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); + E1000_WRITE_FLUSH(hw); + E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); + E1000_WRITE_FLUSH(hw); + } +} + +/****************************************************************************** + * Updates the MAC's list of multicast addresses. + * + * hw - Struct containing variables accessed by shared code + * mc_addr_list - the list of new multicast addresses + * mc_addr_count - number of addresses + * pad - number of bytes between addresses in the list + * rar_used_count - offset where to start adding mc addresses into the RAR's + * + * The given list replaces any existing list. Clears the last 15 receive + * address registers and the multicast table. Uses receive address registers + * for the first 15 multicast addresses, and hashes the rest into the + * multicast table. + *****************************************************************************/ +void +em_mc_addr_list_update(struct em_hw *hw, + uint8_t *mc_addr_list, + uint32_t mc_addr_count, + uint32_t pad, + uint32_t rar_used_count) +{ + uint32_t hash_value; + uint32_t i; + uint32_t num_rar_entry; + uint32_t num_mta_entry; + + DEBUGFUNC("em_mc_addr_list_update"); + + /* Set the new number of MC addresses that we are being requested to use. */ + hw->num_mc_addrs = mc_addr_count; + + /* Clear RAR[1-15] */ + DEBUGOUT(" Clearing RAR[1-15]\n"); + num_rar_entry = E1000_RAR_ENTRIES; + if (hw->mac_type == em_ich8lan) + num_rar_entry = E1000_RAR_ENTRIES_ICH8LAN; + + /* Reserve a spot for the Locally Administered Address to work around + * an 82571 issue in which a reset on one port will reload the MAC on + * the other port. */ + if ((hw->mac_type == em_82571) && (hw->laa_is_present == TRUE)) + num_rar_entry -= 1; + + for (i = rar_used_count; i < num_rar_entry; i++) { + E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); + E1000_WRITE_FLUSH(hw); + E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); + E1000_WRITE_FLUSH(hw); + } + + /* Clear the MTA */ + DEBUGOUT(" Clearing MTA\n"); + num_mta_entry = E1000_NUM_MTA_REGISTERS; + if (hw->mac_type == em_ich8lan) + num_mta_entry = E1000_NUM_MTA_REGISTERS_ICH8LAN; + + for (i = 0; i < num_mta_entry; i++) { + E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); + E1000_WRITE_FLUSH(hw); + } + + /* Add the new addresses */ + for (i = 0; i < mc_addr_count; i++) { + DEBUGOUT(" Adding the multicast addresses:\n"); + DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i, + mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad)], + mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 1], + mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 2], + mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 3], + mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 4], + mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 5]); + + hash_value = em_hash_mc_addr(hw, + mc_addr_list + + (i * (ETH_LENGTH_OF_ADDRESS + pad))); + + DEBUGOUT1(" Hash value = 0x%03X\n", hash_value); + + /* Place this multicast address in the RAR if there is room, * + * else put it in the MTA + */ + if (rar_used_count < num_rar_entry) { + em_rar_set(hw, + mc_addr_list + (i * (ETH_LENGTH_OF_ADDRESS + pad)), + rar_used_count); + rar_used_count++; + } else { + em_mta_set(hw, hash_value); + } + } + DEBUGOUT("MC Update Complete\n"); +} + +/****************************************************************************** + * Hashes an address to determine its location in the multicast table + * + * hw - Struct containing variables accessed by shared code + * mc_addr - the multicast address to hash + *****************************************************************************/ +uint32_t +em_hash_mc_addr(struct em_hw *hw, + uint8_t *mc_addr) +{ + uint32_t hash_value = 0; + + /* The portion of the address that is used for the hash table is + * determined by the mc_filter_type setting. + */ + switch (hw->mc_filter_type) { + /* [0] [1] [2] [3] [4] [5] + * 01 AA 00 12 34 56 + * LSB MSB + */ + case 0: + if (hw->mac_type == em_ich8lan) { + /* [47:38] i.e. 0x158 for above example address */ + hash_value = ((mc_addr[4] >> 6) | (((uint16_t) mc_addr[5]) << 2)); + } else { + /* [47:36] i.e. 0x563 for above example address */ + hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4)); + } + break; + case 1: + if (hw->mac_type == em_ich8lan) { + /* [46:37] i.e. 0x2B1 for above example address */ + hash_value = ((mc_addr[4] >> 5) | (((uint16_t) mc_addr[5]) << 3)); + } else { + /* [46:35] i.e. 0xAC6 for above example address */ + hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5)); + } + break; + case 2: + if (hw->mac_type == em_ich8lan) { + /*[45:36] i.e. 0x163 for above example address */ + hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4)); + } else { + /* [45:34] i.e. 0x5D8 for above example address */ + hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6)); + } + break; + case 3: + if (hw->mac_type == em_ich8lan) { + /* [43:34] i.e. 0x18D for above example address */ + hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6)); + } else { + /* [43:32] i.e. 0x634 for above example address */ + hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8)); + } + break; + } + + hash_value &= 0xFFF; + if (hw->mac_type == em_ich8lan) + hash_value &= 0x3FF; + + return hash_value; +} + +/****************************************************************************** + * Sets the bit in the multicast table corresponding to the hash value. + * + * hw - Struct containing variables accessed by shared code + * hash_value - Multicast address hash value + *****************************************************************************/ +void +em_mta_set(struct em_hw *hw, + uint32_t hash_value) +{ + uint32_t hash_bit, hash_reg; + uint32_t mta; + uint32_t temp; + + /* The MTA is a register array of 128 32-bit registers. + * It is treated like an array of 4096 bits. We want to set + * bit BitArray[hash_value]. So we figure out what register + * the bit is in, read it, OR in the new bit, then write + * back the new value. The register is determined by the + * upper 7 bits of the hash value and the bit within that + * register are determined by the lower 5 bits of the value. + */ + hash_reg = (hash_value >> 5) & 0x7F; + if (hw->mac_type == em_ich8lan) + hash_reg &= 0x1F; + + hash_bit = hash_value & 0x1F; + + mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg); + + mta |= (1 << hash_bit); + + /* If we are on an 82544 and we are trying to write an odd offset + * in the MTA, save off the previous entry before writing and + * restore the old value after writing. + */ + if ((hw->mac_type == em_82544) && ((hash_reg & 0x1) == 1)) { + temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1)); + E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); + E1000_WRITE_FLUSH(hw); + E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp); + E1000_WRITE_FLUSH(hw); + } else { + E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); + E1000_WRITE_FLUSH(hw); + } +} + +/****************************************************************************** + * Puts an ethernet address into a receive address register. + * + * hw - Struct containing variables accessed by shared code + * addr - Address to put into receive address register + * index - Receive address register to write + *****************************************************************************/ +void +em_rar_set(struct em_hw *hw, + uint8_t *addr, + uint32_t index) +{ + uint32_t rar_low, rar_high; + + /* HW expects these in little endian so we reverse the byte order + * from network order (big endian) to little endian + */ + rar_low = ((uint32_t) addr[0] | + ((uint32_t) addr[1] << 8) | + ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24)); + rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8)); + + /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx + * unit hang. + * + * Description: + * If there are any Rx frames queued up or otherwise present in the HW + * before RSS is enabled, and then we enable RSS, the HW Rx unit will + * hang. To work around this issue, we have to disable receives and + * flush out all Rx frames before we enable RSS. To do so, we modify we + * redirect all Rx traffic to manageability and then reset the HW. + * This flushes away Rx frames, and (since the redirections to + * manageability persists across resets) keeps new ones from coming in + * while we work. Then, we clear the Address Valid AV bit for all MAC + * addresses and undo the re-direction to manageability. + * Now, frames are coming in again, but the MAC won't accept them, so + * far so good. We now proceed to initialize RSS (if necessary) and + * configure the Rx unit. Last, we re-enable the AV bits and continue + * on our merry way. + */ + switch (hw->mac_type) { + case em_82571: + case em_82572: + case em_80003es2lan: + if (hw->leave_av_bit_off == TRUE) + break; + default: + /* Indicate to hardware the Address is Valid. */ + rar_high |= E1000_RAH_AV; + break; + } + + E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low); + E1000_WRITE_FLUSH(hw); + E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high); + E1000_WRITE_FLUSH(hw); +} + +/****************************************************************************** + * Writes a value to the specified offset in the VLAN filter table. + * + * hw - Struct containing variables accessed by shared code + * offset - Offset in VLAN filer table to write + * value - Value to write into VLAN filter table + *****************************************************************************/ +void +em_write_vfta(struct em_hw *hw, + uint32_t offset, + uint32_t value) +{ + uint32_t temp; + + if (hw->mac_type == em_ich8lan) + return; + + if ((hw->mac_type == em_82544) && ((offset & 0x1) == 1)) { + temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1)); + E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); + E1000_WRITE_FLUSH(hw); + E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp); + E1000_WRITE_FLUSH(hw); + } else { + E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); + E1000_WRITE_FLUSH(hw); + } +} + +/****************************************************************************** + * Clears the VLAN filer table + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +STATIC void +em_clear_vfta(struct em_hw *hw) +{ + uint32_t offset; + uint32_t vfta_value = 0; + uint32_t vfta_offset = 0; + uint32_t vfta_bit_in_reg = 0; + + if (hw->mac_type == em_ich8lan) + return; + + if (hw->mac_type == em_82573) { + if (hw->mng_cookie.vlan_id != 0) { + /* The VFTA is a 4096b bit-field, each identifying a single VLAN + * ID. The following operations determine which 32b entry + * (i.e. offset) into the array we want to set the VLAN ID + * (i.e. bit) of the manageability unit. */ + vfta_offset = (hw->mng_cookie.vlan_id >> + E1000_VFTA_ENTRY_SHIFT) & + E1000_VFTA_ENTRY_MASK; + vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id & + E1000_VFTA_ENTRY_BIT_SHIFT_MASK); + } + } + for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { + /* If the offset we want to clear is the same offset of the + * manageability VLAN ID, then clear all bits except that of the + * manageability unit */ + vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; + E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value); + E1000_WRITE_FLUSH(hw); + } +} + +STATIC int32_t +em_id_led_init(struct em_hw * hw) +{ + uint32_t ledctl; + const uint32_t ledctl_mask = 0x000000FF; + const uint32_t ledctl_on = E1000_LEDCTL_MODE_LED_ON; + const uint32_t ledctl_off = E1000_LEDCTL_MODE_LED_OFF; + uint16_t eeprom_data, i, temp; + const uint16_t led_mask = 0x0F; + + DEBUGFUNC("em_id_led_init"); + + if (hw->mac_type < em_82540) { + /* Nothing to do */ + return E1000_SUCCESS; + } + + ledctl = E1000_READ_REG(hw, LEDCTL); + hw->ledctl_default = ledctl; + hw->ledctl_mode1 = hw->ledctl_default; + hw->ledctl_mode2 = hw->ledctl_default; + + if (em_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) { + DEBUGOUT("EEPROM Read Error\n"); + return -E1000_ERR_EEPROM; + } + + if ((hw->mac_type == em_82573) && + (eeprom_data == ID_LED_RESERVED_82573)) + eeprom_data = ID_LED_DEFAULT_82573; + else if ((eeprom_data == ID_LED_RESERVED_0000) || + (eeprom_data == ID_LED_RESERVED_FFFF)) { + if (hw->mac_type == em_ich8lan) + eeprom_data = ID_LED_DEFAULT_ICH8LAN; + else + eeprom_data = ID_LED_DEFAULT; + } + + for (i = 0; i < 4; i++) { + temp = (eeprom_data >> (i << 2)) & led_mask; + switch (temp) { + case ID_LED_ON1_DEF2: + case ID_LED_ON1_ON2: + case ID_LED_ON1_OFF2: + hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); + hw->ledctl_mode1 |= ledctl_on << (i << 3); + break; + case ID_LED_OFF1_DEF2: + case ID_LED_OFF1_ON2: + case ID_LED_OFF1_OFF2: + hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); + hw->ledctl_mode1 |= ledctl_off << (i << 3); + break; + default: + /* Do nothing */ + break; + } + switch (temp) { + case ID_LED_DEF1_ON2: + case ID_LED_ON1_ON2: + case ID_LED_OFF1_ON2: + hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); + hw->ledctl_mode2 |= ledctl_on << (i << 3); + break; + case ID_LED_DEF1_OFF2: + case ID_LED_ON1_OFF2: + case ID_LED_OFF1_OFF2: + hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); + hw->ledctl_mode2 |= ledctl_off << (i << 3); + break; + default: + /* Do nothing */ + break; + } + } + return E1000_SUCCESS; +} + +/****************************************************************************** + * Prepares SW controlable LED for use and saves the current state of the LED. + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +int32_t +em_setup_led(struct em_hw *hw) +{ + uint32_t ledctl; + int32_t ret_val = E1000_SUCCESS; + + DEBUGFUNC("em_setup_led"); + + switch (hw->mac_type) { + case em_82542_rev2_0: + case em_82542_rev2_1: + case em_82543: + case em_82544: + /* No setup necessary */ + break; + case em_82541: + case em_82547: + case em_82541_rev_2: + case em_82547_rev_2: + /* Turn off PHY Smart Power Down (if enabled) */ + ret_val = em_read_phy_reg(hw, IGP01E1000_GMII_FIFO, + &hw->phy_spd_default); + if (ret_val) + return ret_val; + ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO, + (uint16_t)(hw->phy_spd_default & + ~IGP01E1000_GMII_SPD)); + if (ret_val) + return ret_val; + /* Fall Through */ + default: + if (hw->media_type == em_media_type_fiber) { + ledctl = E1000_READ_REG(hw, LEDCTL); + /* Save current LEDCTL settings */ + hw->ledctl_default = ledctl; + /* Turn off LED0 */ + ledctl &= ~(E1000_LEDCTL_LED0_IVRT | + E1000_LEDCTL_LED0_BLINK | + E1000_LEDCTL_LED0_MODE_MASK); + ledctl |= (E1000_LEDCTL_MODE_LED_OFF << + E1000_LEDCTL_LED0_MODE_SHIFT); + E1000_WRITE_REG(hw, LEDCTL, ledctl); + } else if (hw->media_type == em_media_type_copper) + E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1); + break; + } + + return E1000_SUCCESS; +} + + +/****************************************************************************** + * Used on 82571 and later Si that has LED blink bits. + * Callers must use their own timer and should have already called + * em_id_led_init() + * Call em_cleanup led() to stop blinking + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +int32_t +em_blink_led_start(struct em_hw *hw) +{ + int16_t i; + uint32_t ledctl_blink = 0; + + DEBUGFUNC("em_id_led_blink_on"); + + if (hw->mac_type < em_82571) { + /* Nothing to do */ + return E1000_SUCCESS; + } + if (hw->media_type == em_media_type_fiber) { + /* always blink LED0 for PCI-E fiber */ + ledctl_blink = E1000_LEDCTL_LED0_BLINK | + (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); + } else { + /* set the blink bit for each LED that's "on" (0x0E) in ledctl_mode2 */ + ledctl_blink = hw->ledctl_mode2; + for (i=0; i < 4; i++) + if (((hw->ledctl_mode2 >> (i * 8)) & 0xFF) == + E1000_LEDCTL_MODE_LED_ON) + ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << (i * 8)); + } + + E1000_WRITE_REG(hw, LEDCTL, ledctl_blink); + + return E1000_SUCCESS; +} + +/****************************************************************************** + * Restores the saved state of the SW controlable LED. + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +int32_t +em_cleanup_led(struct em_hw *hw) +{ + int32_t ret_val = E1000_SUCCESS; + + DEBUGFUNC("em_cleanup_led"); + + switch (hw->mac_type) { + case em_82542_rev2_0: + case em_82542_rev2_1: + case em_82543: + case em_82544: + /* No cleanup necessary */ + break; + case em_82541: + case em_82547: + case em_82541_rev_2: + case em_82547_rev_2: + /* Turn on PHY Smart Power Down (if previously enabled) */ + ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO, + hw->phy_spd_default); + if (ret_val) + return ret_val; + /* Fall Through */ + default: + if (hw->phy_type == em_phy_ife) { + em_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); + break; + } + /* Restore LEDCTL settings */ + E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default); + break; + } + + return E1000_SUCCESS; +} + +/****************************************************************************** + * Turns on the software controllable LED + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +int32_t +em_led_on(struct em_hw *hw) +{ + uint32_t ctrl = E1000_READ_REG(hw, CTRL); + + DEBUGFUNC("em_led_on"); + + switch (hw->mac_type) { + case em_82542_rev2_0: + case em_82542_rev2_1: + case em_82543: + /* Set SW Defineable Pin 0 to turn on the LED */ + ctrl |= E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + break; + case em_82544: + if (hw->media_type == em_media_type_fiber) { + /* Set SW Defineable Pin 0 to turn on the LED */ + ctrl |= E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + } else { + /* Clear SW Defineable Pin 0 to turn on the LED */ + ctrl &= ~E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + } + break; + default: + if (hw->media_type == em_media_type_fiber) { + /* Clear SW Defineable Pin 0 to turn on the LED */ + ctrl &= ~E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + } else if (hw->phy_type == em_phy_ife) { + em_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, + (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); + } else if (hw->media_type == em_media_type_copper) { + E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2); + return E1000_SUCCESS; + } + break; + } + + E1000_WRITE_REG(hw, CTRL, ctrl); + + return E1000_SUCCESS; +} + +/****************************************************************************** + * Turns off the software controllable LED + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +int32_t +em_led_off(struct em_hw *hw) +{ + uint32_t ctrl = E1000_READ_REG(hw, CTRL); + + DEBUGFUNC("em_led_off"); + + switch (hw->mac_type) { + case em_82542_rev2_0: + case em_82542_rev2_1: + case em_82543: + /* Clear SW Defineable Pin 0 to turn off the LED */ + ctrl &= ~E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + break; + case em_82544: + if (hw->media_type == em_media_type_fiber) { + /* Clear SW Defineable Pin 0 to turn off the LED */ + ctrl &= ~E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + } else { + /* Set SW Defineable Pin 0 to turn off the LED */ + ctrl |= E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + } + break; + default: + if (hw->media_type == em_media_type_fiber) { + /* Set SW Defineable Pin 0 to turn off the LED */ + ctrl |= E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + } else if (hw->phy_type == em_phy_ife) { + em_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, + (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF)); + } else if (hw->media_type == em_media_type_copper) { + E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1); + return E1000_SUCCESS; + } + break; + } + + E1000_WRITE_REG(hw, CTRL, ctrl); + + return E1000_SUCCESS; +} + +/****************************************************************************** + * Clears all hardware statistics counters. + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +void +em_clear_hw_cntrs(struct em_hw *hw) +{ + volatile uint32_t temp; + + temp = E1000_READ_REG(hw, CRCERRS); + temp = E1000_READ_REG(hw, SYMERRS); + temp = E1000_READ_REG(hw, MPC); + temp = E1000_READ_REG(hw, SCC); + temp = E1000_READ_REG(hw, ECOL); + temp = E1000_READ_REG(hw, MCC); + temp = E1000_READ_REG(hw, LATECOL); + temp = E1000_READ_REG(hw, COLC); + temp = E1000_READ_REG(hw, DC); + temp = E1000_READ_REG(hw, SEC); + temp = E1000_READ_REG(hw, RLEC); + temp = E1000_READ_REG(hw, XONRXC); + temp = E1000_READ_REG(hw, XONTXC); + temp = E1000_READ_REG(hw, XOFFRXC); + temp = E1000_READ_REG(hw, XOFFTXC); + temp = E1000_READ_REG(hw, FCRUC); + + if (hw->mac_type != em_ich8lan) { + temp = E1000_READ_REG(hw, PRC64); + temp = E1000_READ_REG(hw, PRC127); + temp = E1000_READ_REG(hw, PRC255); + temp = E1000_READ_REG(hw, PRC511); + temp = E1000_READ_REG(hw, PRC1023); + temp = E1000_READ_REG(hw, PRC1522); + } + + temp = E1000_READ_REG(hw, GPRC); + temp = E1000_READ_REG(hw, BPRC); + temp = E1000_READ_REG(hw, MPRC); + temp = E1000_READ_REG(hw, GPTC); + temp = E1000_READ_REG(hw, GORCL); + temp = E1000_READ_REG(hw, GORCH); + temp = E1000_READ_REG(hw, GOTCL); + temp = E1000_READ_REG(hw, GOTCH); + temp = E1000_READ_REG(hw, RNBC); + temp = E1000_READ_REG(hw, RUC); + temp = E1000_READ_REG(hw, RFC); + temp = E1000_READ_REG(hw, ROC); + temp = E1000_READ_REG(hw, RJC); + temp = E1000_READ_REG(hw, TORL); + temp = E1000_READ_REG(hw, TORH); + temp = E1000_READ_REG(hw, TOTL); + temp = E1000_READ_REG(hw, TOTH); + temp = E1000_READ_REG(hw, TPR); + temp = E1000_READ_REG(hw, TPT); + + if (hw->mac_type != em_ich8lan) { + temp = E1000_READ_REG(hw, PTC64); + temp = E1000_READ_REG(hw, PTC127); + temp = E1000_READ_REG(hw, PTC255); + temp = E1000_READ_REG(hw, PTC511); + temp = E1000_READ_REG(hw, PTC1023); + temp = E1000_READ_REG(hw, PTC1522); + } + + temp = E1000_READ_REG(hw, MPTC); + temp = E1000_READ_REG(hw, BPTC); + + if (hw->mac_type < em_82543) return; + + temp = E1000_READ_REG(hw, ALGNERRC); + temp = E1000_READ_REG(hw, RXERRC); + temp = E1000_READ_REG(hw, TNCRS); + temp = E1000_READ_REG(hw, CEXTERR); + temp = E1000_READ_REG(hw, TSCTC); + temp = E1000_READ_REG(hw, TSCTFC); + + if (hw->mac_type <= em_82544) return; + + temp = E1000_READ_REG(hw, MGTPRC); + temp = E1000_READ_REG(hw, MGTPDC); + temp = E1000_READ_REG(hw, MGTPTC); + + if (hw->mac_type <= em_82547_rev_2) return; + + temp = E1000_READ_REG(hw, IAC); + temp = E1000_READ_REG(hw, ICRXOC); + + if (hw->mac_type == em_ich8lan) return; + + temp = E1000_READ_REG(hw, ICRXPTC); + temp = E1000_READ_REG(hw, ICRXATC); + temp = E1000_READ_REG(hw, ICTXPTC); + temp = E1000_READ_REG(hw, ICTXATC); + temp = E1000_READ_REG(hw, ICTXQEC); + temp = E1000_READ_REG(hw, ICTXQMTC); + temp = E1000_READ_REG(hw, ICRXDMTC); + +} + +/****************************************************************************** + * Resets Adaptive IFS to its default state. + * + * hw - Struct containing variables accessed by shared code + * + * Call this after em_init_hw. You may override the IFS defaults by setting + * hw->ifs_params_forced to TRUE. However, you must initialize hw-> + * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio + * before calling this function. + *****************************************************************************/ +void +em_reset_adaptive(struct em_hw *hw) +{ + DEBUGFUNC("em_reset_adaptive"); + + if (hw->adaptive_ifs) { + if (!hw->ifs_params_forced) { + hw->current_ifs_val = 0; + hw->ifs_min_val = IFS_MIN; + hw->ifs_max_val = IFS_MAX; + hw->ifs_step_size = IFS_STEP; + hw->ifs_ratio = IFS_RATIO; + } + hw->in_ifs_mode = FALSE; + E1000_WRITE_REG(hw, AIT, 0); + } else { + DEBUGOUT("Not in Adaptive IFS mode!\n"); + } +} + +/****************************************************************************** + * Called during the callback/watchdog routine to update IFS value based on + * the ratio of transmits to collisions. + * + * hw - Struct containing variables accessed by shared code + * tx_packets - Number of transmits since last callback + * total_collisions - Number of collisions since last callback + *****************************************************************************/ +void +em_update_adaptive(struct em_hw *hw) +{ + DEBUGFUNC("em_update_adaptive"); + + if (hw->adaptive_ifs) { + if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) { + if (hw->tx_packet_delta > MIN_NUM_XMITS) { + hw->in_ifs_mode = TRUE; + if (hw->current_ifs_val < hw->ifs_max_val) { + if (hw->current_ifs_val == 0) + hw->current_ifs_val = hw->ifs_min_val; + else + hw->current_ifs_val += hw->ifs_step_size; + E1000_WRITE_REG(hw, AIT, hw->current_ifs_val); + } + } + } else { + if (hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) { + hw->current_ifs_val = 0; + hw->in_ifs_mode = FALSE; + E1000_WRITE_REG(hw, AIT, 0); + } + } + } else { + DEBUGOUT("Not in Adaptive IFS mode!\n"); + } +} + +/****************************************************************************** + * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT + * + * hw - Struct containing variables accessed by shared code + * frame_len - The length of the frame in question + * mac_addr - The Ethernet destination address of the frame in question + *****************************************************************************/ +void +em_tbi_adjust_stats(struct em_hw *hw, + struct em_hw_stats *stats, + uint32_t frame_len, + uint8_t *mac_addr) +{ + uint64_t carry_bit; + + /* First adjust the frame length. */ + frame_len--; + /* We need to adjust the statistics counters, since the hardware + * counters overcount this packet as a CRC error and undercount + * the packet as a good packet + */ + /* This packet should not be counted as a CRC error. */ + stats->crcerrs--; + /* This packet does count as a Good Packet Received. */ + stats->gprc++; + + /* Adjust the Good Octets received counters */ + carry_bit = 0x80000000 & stats->gorcl; + stats->gorcl += frame_len; + /* If the high bit of Gorcl (the low 32 bits of the Good Octets + * Received Count) was one before the addition, + * AND it is zero after, then we lost the carry out, + * need to add one to Gorch (Good Octets Received Count High). + * This could be simplified if all environments supported + * 64-bit integers. + */ + if (carry_bit && ((stats->gorcl & 0x80000000) == 0)) + stats->gorch++; + /* Is this a broadcast or multicast? Check broadcast first, + * since the test for a multicast frame will test positive on + * a broadcast frame. + */ + if ((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff)) + /* Broadcast packet */ + stats->bprc++; + else if (*mac_addr & 0x01) + /* Multicast packet */ + stats->mprc++; + + if (frame_len == hw->max_frame_size) { + /* In this case, the hardware has overcounted the number of + * oversize frames. + */ + if (stats->roc > 0) + stats->roc--; + } + + /* Adjust the bin counters when the extra byte put the frame in the + * wrong bin. Remember that the frame_len was adjusted above. + */ + if (frame_len == 64) { + stats->prc64++; + stats->prc127--; + } else if (frame_len == 127) { + stats->prc127++; + stats->prc255--; + } else if (frame_len == 255) { + stats->prc255++; + stats->prc511--; + } else if (frame_len == 511) { + stats->prc511++; + stats->prc1023--; + } else if (frame_len == 1023) { + stats->prc1023++; + stats->prc1522--; + } else if (frame_len == 1522) { + stats->prc1522++; + } +} + +/****************************************************************************** + * Gets the current PCI bus type, speed, and width of the hardware + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +void +em_get_bus_info(struct em_hw *hw) +{ + int32_t ret_val; + uint16_t pci_ex_link_status; + uint32_t status; + + switch (hw->mac_type) { + case em_82542_rev2_0: + case em_82542_rev2_1: + hw->bus_type = em_bus_type_unknown; + hw->bus_speed = em_bus_speed_unknown; + hw->bus_width = em_bus_width_unknown; + break; + case em_82571: + case em_82572: + case em_82573: + case em_80003es2lan: + hw->bus_type = em_bus_type_pci_express; + hw->bus_speed = em_bus_speed_2500; + ret_val = em_read_pcie_cap_reg(hw, + PCI_EX_LINK_STATUS, + &pci_ex_link_status); + if (ret_val) + hw->bus_width = em_bus_width_unknown; + else + hw->bus_width = (pci_ex_link_status & PCI_EX_LINK_WIDTH_MASK) >> + PCI_EX_LINK_WIDTH_SHIFT; + break; + case em_ich8lan: + hw->bus_type = em_bus_type_pci_express; + hw->bus_speed = em_bus_speed_2500; + hw->bus_width = em_bus_width_pciex_1; + break; + default: + status = E1000_READ_REG(hw, STATUS); + hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ? + em_bus_type_pcix : em_bus_type_pci; + + if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) { + hw->bus_speed = (hw->bus_type == em_bus_type_pci) ? + em_bus_speed_66 : em_bus_speed_120; + } else if (hw->bus_type == em_bus_type_pci) { + hw->bus_speed = (status & E1000_STATUS_PCI66) ? + em_bus_speed_66 : em_bus_speed_33; + } else { + switch (status & E1000_STATUS_PCIX_SPEED) { + case E1000_STATUS_PCIX_SPEED_66: + hw->bus_speed = em_bus_speed_66; + break; + case E1000_STATUS_PCIX_SPEED_100: + hw->bus_speed = em_bus_speed_100; + break; + case E1000_STATUS_PCIX_SPEED_133: + hw->bus_speed = em_bus_speed_133; + break; + default: + hw->bus_speed = em_bus_speed_reserved; + break; + } + } + hw->bus_width = (status & E1000_STATUS_BUS64) ? + em_bus_width_64 : em_bus_width_32; + break; + } +} + +/****************************************************************************** + * Writes a value to one of the devices registers using port I/O (as opposed to + * memory mapped I/O). Only 82544 and newer devices support port I/O. + * + * hw - Struct containing variables accessed by shared code + * offset - offset to write to + * value - value to write + *****************************************************************************/ +STATIC void +em_write_reg_io(struct em_hw *hw, + uint32_t offset, + uint32_t value) +{ + unsigned long io_addr = hw->io_base; + unsigned long io_data = hw->io_base + 4; + + em_io_write(hw, io_addr, offset); + em_io_write(hw, io_data, value); +} + +/****************************************************************************** + * Estimates the cable length. + * + * hw - Struct containing variables accessed by shared code + * min_length - The estimated minimum length + * max_length - The estimated maximum length + * + * returns: - E1000_ERR_XXX + * E1000_SUCCESS + * + * This function always returns a ranged length (minimum & maximum). + * So for M88 phy's, this function interprets the one value returned from the + * register to the minimum and maximum range. + * For IGP phy's, the function calculates the range by the AGC registers. + *****************************************************************************/ +STATIC int32_t +em_get_cable_length(struct em_hw *hw, + uint16_t *min_length, + uint16_t *max_length) +{ + int32_t ret_val; + uint16_t agc_value = 0; + uint16_t i, phy_data; + uint16_t cable_length; + + DEBUGFUNC("em_get_cable_length"); + + *min_length = *max_length = 0; + + /* Use old method for Phy older than IGP */ + if (hw->phy_type == em_phy_m88) { + + ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, + &phy_data); + if (ret_val) + return ret_val; + cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> + M88E1000_PSSR_CABLE_LENGTH_SHIFT; + + /* Convert the enum value to ranged values */ + switch (cable_length) { + case em_cable_length_50: + *min_length = 0; + *max_length = em_igp_cable_length_50; + break; + case em_cable_length_50_80: + *min_length = em_igp_cable_length_50; + *max_length = em_igp_cable_length_80; + break; + case em_cable_length_80_110: + *min_length = em_igp_cable_length_80; + *max_length = em_igp_cable_length_110; + break; + case em_cable_length_110_140: + *min_length = em_igp_cable_length_110; + *max_length = em_igp_cable_length_140; + break; + case em_cable_length_140: + *min_length = em_igp_cable_length_140; + *max_length = em_igp_cable_length_170; + break; + default: + return -E1000_ERR_PHY; + break; + } + } else if (hw->phy_type == em_phy_gg82563) { + ret_val = em_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE, + &phy_data); + if (ret_val) + return ret_val; + cable_length = phy_data & GG82563_DSPD_CABLE_LENGTH; + + switch (cable_length) { + case em_gg_cable_length_60: + *min_length = 0; + *max_length = em_igp_cable_length_60; + break; + case em_gg_cable_length_60_115: + *min_length = em_igp_cable_length_60; + *max_length = em_igp_cable_length_115; + break; + case em_gg_cable_length_115_150: + *min_length = em_igp_cable_length_115; + *max_length = em_igp_cable_length_150; + break; + case em_gg_cable_length_150: + *min_length = em_igp_cable_length_150; + *max_length = em_igp_cable_length_180; + break; + default: + return -E1000_ERR_PHY; + break; + } + } else if (hw->phy_type == em_phy_igp) { /* For IGP PHY */ + uint16_t cur_agc_value; + uint16_t min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE; + uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = + {IGP01E1000_PHY_AGC_A, + IGP01E1000_PHY_AGC_B, + IGP01E1000_PHY_AGC_C, + IGP01E1000_PHY_AGC_D}; + /* Read the AGC registers for all channels */ + for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { + + ret_val = em_read_phy_reg(hw, agc_reg_array[i], &phy_data); + if (ret_val) + return ret_val; + + cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT; + + /* Value bound check. */ + if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) || + (cur_agc_value == 0)) + return -E1000_ERR_PHY; + + agc_value += cur_agc_value; + + /* Update minimal AGC value. */ + if (min_agc_value > cur_agc_value) + min_agc_value = cur_agc_value; + } + + /* Remove the minimal AGC result for length < 50m */ + if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * em_igp_cable_length_50) { + agc_value -= min_agc_value; + + /* Get the average length of the remaining 3 channels */ + agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1); + } else { + /* Get the average length of all the 4 channels. */ + agc_value /= IGP01E1000_PHY_CHANNEL_NUM; + } + + /* Set the range of the calculated length. */ + *min_length = ((em_igp_cable_length_table[agc_value] - + IGP01E1000_AGC_RANGE) > 0) ? + (em_igp_cable_length_table[agc_value] - + IGP01E1000_AGC_RANGE) : 0; + *max_length = em_igp_cable_length_table[agc_value] + + IGP01E1000_AGC_RANGE; + } else if (hw->phy_type == em_phy_igp_2 || + hw->phy_type == em_phy_igp_3) { + uint16_t cur_agc_index, max_agc_index = 0; + uint16_t min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE - 1; + uint16_t agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = + {IGP02E1000_PHY_AGC_A, + IGP02E1000_PHY_AGC_B, + IGP02E1000_PHY_AGC_C, + IGP02E1000_PHY_AGC_D}; + /* Read the AGC registers for all channels */ + for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { + ret_val = em_read_phy_reg(hw, agc_reg_array[i], &phy_data); + if (ret_val) + return ret_val; + + /* Getting bits 15:9, which represent the combination of course and + * fine gain values. The result is a number that can be put into + * the lookup table to obtain the approximate cable length. */ + cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & + IGP02E1000_AGC_LENGTH_MASK; + + /* Array index bound check. */ + if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE) || + (cur_agc_index == 0)) + return -E1000_ERR_PHY; + + /* Remove min & max AGC values from calculation. */ + if (em_igp_2_cable_length_table[min_agc_index] > + em_igp_2_cable_length_table[cur_agc_index]) + min_agc_index = cur_agc_index; + if (em_igp_2_cable_length_table[max_agc_index] < + em_igp_2_cable_length_table[cur_agc_index]) + max_agc_index = cur_agc_index; + + agc_value += em_igp_2_cable_length_table[cur_agc_index]; + } + + agc_value -= (em_igp_2_cable_length_table[min_agc_index] + + em_igp_2_cable_length_table[max_agc_index]); + agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); + + /* Calculate cable length with the error range of +/- 10 meters. */ + *min_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ? + (agc_value - IGP02E1000_AGC_RANGE) : 0; + *max_length = agc_value + IGP02E1000_AGC_RANGE; + } + + return E1000_SUCCESS; +} + +/****************************************************************************** + * Check the cable polarity + * + * hw - Struct containing variables accessed by shared code + * polarity - output parameter : 0 - Polarity is not reversed + * 1 - Polarity is reversed. + * + * returns: - E1000_ERR_XXX + * E1000_SUCCESS + * + * For phy's older then IGP, this function simply reads the polarity bit in the + * Phy Status register. For IGP phy's, this bit is valid only if link speed is + * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will + * return 0. If the link speed is 1000 Mbps the polarity status is in the + * IGP01E1000_PHY_PCS_INIT_REG. + *****************************************************************************/ +STATIC int32_t +em_check_polarity(struct em_hw *hw, + em_rev_polarity *polarity) +{ + int32_t ret_val; + uint16_t phy_data; + + DEBUGFUNC("em_check_polarity"); + + if ((hw->phy_type == em_phy_m88) || + (hw->phy_type == em_phy_gg82563)) { + /* return the Polarity bit in the Status register. */ + ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, + &phy_data); + if (ret_val) + return ret_val; + *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >> + M88E1000_PSSR_REV_POLARITY_SHIFT) ? + em_rev_polarity_reversed : em_rev_polarity_normal; + + } else if (hw->phy_type == em_phy_igp || + hw->phy_type == em_phy_igp_3 || + hw->phy_type == em_phy_igp_2) { + /* Read the Status register to check the speed */ + ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, + &phy_data); + if (ret_val) + return ret_val; + + /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to + * find the polarity status */ + if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == + IGP01E1000_PSSR_SPEED_1000MBPS) { + + /* Read the GIG initialization PCS register (0x00B4) */ + ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG, + &phy_data); + if (ret_val) + return ret_val; + + /* Check the polarity bits */ + *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ? + em_rev_polarity_reversed : em_rev_polarity_normal; + } else { + /* For 10 Mbps, read the polarity bit in the status register. (for + * 100 Mbps this bit is always 0) */ + *polarity = (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ? + em_rev_polarity_reversed : em_rev_polarity_normal; + } + } else if (hw->phy_type == em_phy_ife) { + ret_val = em_read_phy_reg(hw, IFE_PHY_EXTENDED_STATUS_CONTROL, + &phy_data); + if (ret_val) + return ret_val; + *polarity = ((phy_data & IFE_PESC_POLARITY_REVERSED) >> + IFE_PESC_POLARITY_REVERSED_SHIFT) ? + em_rev_polarity_reversed : em_rev_polarity_normal; + } + return E1000_SUCCESS; +} + +/****************************************************************************** + * Check if Downshift occured + * + * hw - Struct containing variables accessed by shared code + * downshift - output parameter : 0 - No Downshift ocured. + * 1 - Downshift ocured. + * + * returns: - E1000_ERR_XXX + * E1000_SUCCESS + * + * For phy's older then IGP, this function reads the Downshift bit in the Phy + * Specific Status register. For IGP phy's, it reads the Downgrade bit in the + * Link Health register. In IGP this bit is latched high, so the driver must + * read it immediately after link is established. + *****************************************************************************/ +STATIC int32_t +em_check_downshift(struct em_hw *hw) +{ + int32_t ret_val; + uint16_t phy_data; + + DEBUGFUNC("em_check_downshift"); + + if (hw->phy_type == em_phy_igp || + hw->phy_type == em_phy_igp_3 || + hw->phy_type == em_phy_igp_2) { + ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, + &phy_data); + if (ret_val) + return ret_val; + + hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0; + } else if ((hw->phy_type == em_phy_m88) || + (hw->phy_type == em_phy_gg82563)) { + ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, + &phy_data); + if (ret_val) + return ret_val; + + hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >> + M88E1000_PSSR_DOWNSHIFT_SHIFT; + } else if (hw->phy_type == em_phy_ife) { + /* em_phy_ife supports 10/100 speed only */ + hw->speed_downgraded = FALSE; + } + + return E1000_SUCCESS; +} + +/***************************************************************************** + * + * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a + * gigabit link is achieved to improve link quality. + * + * hw: Struct containing variables accessed by shared code + * + * returns: - E1000_ERR_PHY if fail to read/write the PHY + * E1000_SUCCESS at any other case. + * + ****************************************************************************/ + +STATIC int32_t +em_config_dsp_after_link_change(struct em_hw *hw, + boolean_t link_up) +{ + int32_t ret_val; + uint16_t phy_data, phy_saved_data, speed, duplex, i; + uint16_t dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = + {IGP01E1000_PHY_AGC_PARAM_A, + IGP01E1000_PHY_AGC_PARAM_B, + IGP01E1000_PHY_AGC_PARAM_C, + IGP01E1000_PHY_AGC_PARAM_D}; + uint16_t min_length, max_length; + + DEBUGFUNC("em_config_dsp_after_link_change"); + + if (hw->phy_type != em_phy_igp) + return E1000_SUCCESS; + + if (link_up) { + ret_val = em_get_speed_and_duplex(hw, &speed, &duplex); + if (ret_val) { + DEBUGOUT("Error getting link speed and duplex\n"); + return ret_val; + } + + if (speed == SPEED_1000) { + + ret_val = em_get_cable_length(hw, &min_length, &max_length); + if (ret_val) + return ret_val; + + if ((hw->dsp_config_state == em_dsp_config_enabled) && + min_length >= em_igp_cable_length_50) { + + for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { + ret_val = em_read_phy_reg(hw, dsp_reg_array[i], + &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; + + ret_val = em_write_phy_reg(hw, dsp_reg_array[i], + phy_data); + if (ret_val) + return ret_val; + } + hw->dsp_config_state = em_dsp_config_activated; + } + + if ((hw->ffe_config_state == em_ffe_config_enabled) && + (min_length < em_igp_cable_length_50)) { + + uint16_t ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20; + uint32_t idle_errs = 0; + + /* clear previous idle error counts */ + ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS, + &phy_data); + if (ret_val) + return ret_val; + + for (i = 0; i < ffe_idle_err_timeout; i++) { + usec_delay(1000); + ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS, + &phy_data); + if (ret_val) + return ret_val; + + idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT); + if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) { + hw->ffe_config_state = em_ffe_config_active; + + ret_val = em_write_phy_reg(hw, + IGP01E1000_PHY_DSP_FFE, + IGP01E1000_PHY_DSP_FFE_CM_CP); + if (ret_val) + return ret_val; + break; + } + + if (idle_errs) + ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100; + } + } + } + } else { + if (hw->dsp_config_state == em_dsp_config_activated) { + /* Save off the current value of register 0x2F5B to be restored at + * the end of the routines. */ + ret_val = em_read_phy_reg(hw, 0x2F5B, &phy_saved_data); + + if (ret_val) + return ret_val; + + /* Disable the PHY transmitter */ + ret_val = em_write_phy_reg(hw, 0x2F5B, 0x0003); + + if (ret_val) + return ret_val; + + msec_delay_irq(20); + + ret_val = em_write_phy_reg(hw, 0x0000, + IGP01E1000_IEEE_FORCE_GIGA); + if (ret_val) + return ret_val; + for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { + ret_val = em_read_phy_reg(hw, dsp_reg_array[i], &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; + phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS; + + ret_val = em_write_phy_reg(hw,dsp_reg_array[i], phy_data); + if (ret_val) + return ret_val; + } + + ret_val = em_write_phy_reg(hw, 0x0000, + IGP01E1000_IEEE_RESTART_AUTONEG); + if (ret_val) + return ret_val; + + msec_delay_irq(20); + + /* Now enable the transmitter */ + ret_val = em_write_phy_reg(hw, 0x2F5B, phy_saved_data); + + if (ret_val) + return ret_val; + + hw->dsp_config_state = em_dsp_config_enabled; + } + + if (hw->ffe_config_state == em_ffe_config_active) { + /* Save off the current value of register 0x2F5B to be restored at + * the end of the routines. */ + ret_val = em_read_phy_reg(hw, 0x2F5B, &phy_saved_data); + + if (ret_val) + return ret_val; + + /* Disable the PHY transmitter */ + ret_val = em_write_phy_reg(hw, 0x2F5B, 0x0003); + + if (ret_val) + return ret_val; + + msec_delay_irq(20); + + ret_val = em_write_phy_reg(hw, 0x0000, + IGP01E1000_IEEE_FORCE_GIGA); + if (ret_val) + return ret_val; + ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE, + IGP01E1000_PHY_DSP_FFE_DEFAULT); + if (ret_val) + return ret_val; + + ret_val = em_write_phy_reg(hw, 0x0000, + IGP01E1000_IEEE_RESTART_AUTONEG); + if (ret_val) + return ret_val; + + msec_delay_irq(20); + + /* Now enable the transmitter */ + ret_val = em_write_phy_reg(hw, 0x2F5B, phy_saved_data); + + if (ret_val) + return ret_val; + + hw->ffe_config_state = em_ffe_config_enabled; + } + } + return E1000_SUCCESS; +} + +/***************************************************************************** + * Set PHY to class A mode + * Assumes the following operations will follow to enable the new class mode. + * 1. Do a PHY soft reset + * 2. Restart auto-negotiation or force link. + * + * hw - Struct containing variables accessed by shared code + ****************************************************************************/ +static int32_t +em_set_phy_mode(struct em_hw *hw) +{ + int32_t ret_val; + uint16_t eeprom_data; + + DEBUGFUNC("em_set_phy_mode"); + + if ((hw->mac_type == em_82545_rev_3) && + (hw->media_type == em_media_type_copper)) { + ret_val = em_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data); + if (ret_val) { + return ret_val; + } + + if ((eeprom_data != EEPROM_RESERVED_WORD) && + (eeprom_data & EEPROM_PHY_CLASS_A)) { + ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B); + if (ret_val) + return ret_val; + ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104); + if (ret_val) + return ret_val; + + hw->phy_reset_disable = FALSE; + } + } + + return E1000_SUCCESS; +} + +/***************************************************************************** + * + * This function sets the lplu state according to the active flag. When + * activating lplu this function also disables smart speed and vise versa. + * lplu will not be activated unless the device autonegotiation advertisment + * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. + * hw: Struct containing variables accessed by shared code + * active - true to enable lplu false to disable lplu. + * + * returns: - E1000_ERR_PHY if fail to read/write the PHY + * E1000_SUCCESS at any other case. + * + ****************************************************************************/ + +STATIC int32_t +em_set_d3_lplu_state(struct em_hw *hw, + boolean_t active) +{ + uint32_t phy_ctrl = 0; + int32_t ret_val; + uint16_t phy_data; + DEBUGFUNC("em_set_d3_lplu_state"); + + if (hw->phy_type != em_phy_igp && hw->phy_type != em_phy_igp_2 + && hw->phy_type != em_phy_igp_3) + return E1000_SUCCESS; + + /* During driver activity LPLU should not be used or it will attain link + * from the lowest speeds starting from 10Mbps. The capability is used for + * Dx transitions and states */ + if (hw->mac_type == em_82541_rev_2 || hw->mac_type == em_82547_rev_2) { + ret_val = em_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data); + if (ret_val) + return ret_val; + } else if (hw->mac_type == em_ich8lan) { + /* MAC writes into PHY register based on the state transition + * and start auto-negotiation. SW driver can overwrite the settings + * in CSR PHY power control E1000_PHY_CTRL register. */ + phy_ctrl = E1000_READ_REG(hw, PHY_CTRL); + } else { + ret_val = em_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); + if (ret_val) + return ret_val; + } + + if (!active) { + if (hw->mac_type == em_82541_rev_2 || + hw->mac_type == em_82547_rev_2) { + phy_data &= ~IGP01E1000_GMII_FLEX_SPD; + ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); + if (ret_val) + return ret_val; + } else { + if (hw->mac_type == em_ich8lan) { + phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; + E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); + } else { + phy_data &= ~IGP02E1000_PM_D3_LPLU; + ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, + phy_data); + if (ret_val) + return ret_val; + } + } + + /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during + * Dx states where the power conservation is most important. During + * driver activity we should enable SmartSpeed, so performance is + * maintained. */ + if (hw->smart_speed == em_smart_speed_on) { + ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + &phy_data); + if (ret_val) + return ret_val; + + phy_data |= IGP01E1000_PSCFR_SMART_SPEED; + ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + phy_data); + if (ret_val) + return ret_val; + } else if (hw->smart_speed == em_smart_speed_off) { + ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + phy_data); + if (ret_val) + return ret_val; + } + + } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) || + (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) || + (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) { + + if (hw->mac_type == em_82541_rev_2 || + hw->mac_type == em_82547_rev_2) { + phy_data |= IGP01E1000_GMII_FLEX_SPD; + ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); + if (ret_val) + return ret_val; + } else { + if (hw->mac_type == em_ich8lan) { + phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; + E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); + } else { + phy_data |= IGP02E1000_PM_D3_LPLU; + ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, + phy_data); + if (ret_val) + return ret_val; + } + } + + /* When LPLU is enabled we should disable SmartSpeed */ + ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); + if (ret_val) + return ret_val; + + } + return E1000_SUCCESS; +} + +/***************************************************************************** + * + * This function sets the lplu d0 state according to the active flag. When + * activating lplu this function also disables smart speed and vise versa. + * lplu will not be activated unless the device autonegotiation advertisment + * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. + * hw: Struct containing variables accessed by shared code + * active - true to enable lplu false to disable lplu. + * + * returns: - E1000_ERR_PHY if fail to read/write the PHY + * E1000_SUCCESS at any other case. + * + ****************************************************************************/ + +STATIC int32_t +em_set_d0_lplu_state(struct em_hw *hw, + boolean_t active) +{ + uint32_t phy_ctrl = 0; + int32_t ret_val; + uint16_t phy_data; + DEBUGFUNC("em_set_d0_lplu_state"); + + if (hw->mac_type <= em_82547_rev_2) + return E1000_SUCCESS; + + if (hw->mac_type == em_ich8lan) { + phy_ctrl = E1000_READ_REG(hw, PHY_CTRL); + } else { + ret_val = em_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); + if (ret_val) + return ret_val; + } + + if (!active) { + if (hw->mac_type == em_ich8lan) { + phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; + E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); + } else { + phy_data &= ~IGP02E1000_PM_D0_LPLU; + ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); + if (ret_val) + return ret_val; + } + + /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during + * Dx states where the power conservation is most important. During + * driver activity we should enable SmartSpeed, so performance is + * maintained. */ + if (hw->smart_speed == em_smart_speed_on) { + ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + &phy_data); + if (ret_val) + return ret_val; + + phy_data |= IGP01E1000_PSCFR_SMART_SPEED; + ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + phy_data); + if (ret_val) + return ret_val; + } else if (hw->smart_speed == em_smart_speed_off) { + ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + phy_data); + if (ret_val) + return ret_val; + } + + + } else { + + if (hw->mac_type == em_ich8lan) { + phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; + E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); + } else { + phy_data |= IGP02E1000_PM_D0_LPLU; + ret_val = em_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); + if (ret_val) + return ret_val; + } + + /* When LPLU is enabled we should disable SmartSpeed */ + ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); + if (ret_val) + return ret_val; + + } + return E1000_SUCCESS; +} + +/****************************************************************************** + * Change VCO speed register to improve Bit Error Rate performance of SERDES. + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +static int32_t +em_set_vco_speed(struct em_hw *hw) +{ + int32_t ret_val; + uint16_t default_page = 0; + uint16_t phy_data; + + DEBUGFUNC("em_set_vco_speed"); + + switch (hw->mac_type) { + case em_82545_rev_3: + case em_82546_rev_3: + break; + default: + return E1000_SUCCESS; + } + + /* Set PHY register 30, page 5, bit 8 to 0 */ + + ret_val = em_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page); + if (ret_val) + return ret_val; + + ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005); + if (ret_val) + return ret_val; + + ret_val = em_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~M88E1000_PHY_VCO_REG_BIT8; + ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); + if (ret_val) + return ret_val; + + /* Set PHY register 30, page 4, bit 11 to 1 */ + + ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004); + if (ret_val) + return ret_val; + + ret_val = em_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); + if (ret_val) + return ret_val; + + phy_data |= M88E1000_PHY_VCO_REG_BIT11; + ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); + if (ret_val) + return ret_val; + + ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page); + if (ret_val) + return ret_val; + + return E1000_SUCCESS; +} + + +/***************************************************************************** + * This function reads the cookie from ARC ram. + * + * returns: - E1000_SUCCESS . + ****************************************************************************/ +STATIC int32_t +em_host_if_read_cookie(struct em_hw * hw, uint8_t *buffer) +{ + uint8_t i; + uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET; + uint8_t length = E1000_MNG_DHCP_COOKIE_LENGTH; + + length = (length >> 2); + offset = (offset >> 2); + + for (i = 0; i < length; i++) { + *((uint32_t *) buffer + i) = + E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i); + } + return E1000_SUCCESS; +} + + +/***************************************************************************** + * This function checks whether the HOST IF is enabled for command operaton + * and also checks whether the previous command is completed. + * It busy waits in case of previous command is not completed. + * + * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or + * timeout + * - E1000_SUCCESS for success. + ****************************************************************************/ +STATIC int32_t +em_mng_enable_host_if(struct em_hw * hw) +{ + uint32_t hicr; + uint8_t i; + + /* Check that the host interface is enabled. */ + hicr = E1000_READ_REG(hw, HICR); + if ((hicr & E1000_HICR_EN) == 0) { + DEBUGOUT("E1000_HOST_EN bit disabled.\n"); + return -E1000_ERR_HOST_INTERFACE_COMMAND; + } + /* check the previous command is completed */ + for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) { + hicr = E1000_READ_REG(hw, HICR); + if (!(hicr & E1000_HICR_C)) + break; + msec_delay_irq(1); + } + + if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) { + DEBUGOUT("Previous command timeout failed .\n"); + return -E1000_ERR_HOST_INTERFACE_COMMAND; + } + return E1000_SUCCESS; +} + +/***************************************************************************** + * This function writes the buffer content at the offset given on the host if. + * It also does alignment considerations to do the writes in most efficient way. + * Also fills up the sum of the buffer in *buffer parameter. + * + * returns - E1000_SUCCESS for success. + ****************************************************************************/ +STATIC int32_t +em_mng_host_if_write(struct em_hw * hw, uint8_t *buffer, + uint16_t length, uint16_t offset, uint8_t *sum) +{ + uint8_t *tmp; + uint8_t *bufptr = buffer; + uint32_t data = 0; + uint16_t remaining, i, j, prev_bytes; + + /* sum = only sum of the data and it is not checksum */ + + if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) { + return -E1000_ERR_PARAM; + } + + tmp = (uint8_t *)&data; + prev_bytes = offset & 0x3; + offset &= 0xFFFC; + offset >>= 2; + + if (prev_bytes) { + data = E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset); + for (j = prev_bytes; j < sizeof(uint32_t); j++) { + *(tmp + j) = *bufptr++; + *sum += *(tmp + j); + } + E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset, data); + length -= j - prev_bytes; + offset++; + } + + remaining = length & 0x3; + length -= remaining; + + /* Calculate length in DWORDs */ + length >>= 2; + + /* The device driver writes the relevant command block into the + * ram area. */ + for (i = 0; i < length; i++) { + for (j = 0; j < sizeof(uint32_t); j++) { + *(tmp + j) = *bufptr++; + *sum += *(tmp + j); + } + + E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data); + } + if (remaining) { + for (j = 0; j < sizeof(uint32_t); j++) { + if (j < remaining) + *(tmp + j) = *bufptr++; + else + *(tmp + j) = 0; + + *sum += *(tmp + j); + } + E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data); + } + + return E1000_SUCCESS; +} + + +/***************************************************************************** + * This function writes the command header after does the checksum calculation. + * + * returns - E1000_SUCCESS for success. + ****************************************************************************/ +STATIC int32_t +em_mng_write_cmd_header(struct em_hw * hw, + struct em_host_mng_command_header * hdr) +{ + uint16_t i; + uint8_t sum; + uint8_t *buffer; + + /* Write the whole command header structure which includes sum of + * the buffer */ + + uint16_t length = sizeof(struct em_host_mng_command_header); + + sum = hdr->checksum; + hdr->checksum = 0; + + buffer = (uint8_t *) hdr; + i = length; + while (i--) + sum += buffer[i]; + + hdr->checksum = 0 - sum; + + length >>= 2; + /* The device driver writes the relevant command block into the ram area. */ + for (i = 0; i < length; i++) { + E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i)); + E1000_WRITE_FLUSH(hw); + } + + return E1000_SUCCESS; +} + + +/***************************************************************************** + * This function indicates to ARC that a new command is pending which completes + * one write operation by the driver. + * + * returns - E1000_SUCCESS for success. + ****************************************************************************/ +STATIC int32_t +em_mng_write_commit(struct em_hw * hw) +{ + uint32_t hicr; + + hicr = E1000_READ_REG(hw, HICR); + /* Setting this bit tells the ARC that a new command is pending. */ + E1000_WRITE_REG(hw, HICR, hicr | E1000_HICR_C); + + return E1000_SUCCESS; +} + + +/***************************************************************************** + * This function checks the mode of the firmware. + * + * returns - TRUE when the mode is IAMT or FALSE. + ****************************************************************************/ +boolean_t +em_check_mng_mode(struct em_hw *hw) +{ + uint32_t fwsm; + + fwsm = E1000_READ_REG(hw, FWSM); + + if (hw->mac_type == em_ich8lan) { + if ((fwsm & E1000_FWSM_MODE_MASK) == + (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) + return TRUE; + } else if ((fwsm & E1000_FWSM_MODE_MASK) == + (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) + return TRUE; + + return FALSE; +} + + +/***************************************************************************** + * This function writes the dhcp info . + ****************************************************************************/ +int32_t +em_mng_write_dhcp_info(struct em_hw * hw, uint8_t *buffer, + uint16_t length) +{ + int32_t ret_val; + struct em_host_mng_command_header hdr; + + hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD; + hdr.command_length = length; + hdr.reserved1 = 0; + hdr.reserved2 = 0; + hdr.checksum = 0; + + ret_val = em_mng_enable_host_if(hw); + if (ret_val == E1000_SUCCESS) { + ret_val = em_mng_host_if_write(hw, buffer, length, sizeof(hdr), + &(hdr.checksum)); + if (ret_val == E1000_SUCCESS) { + ret_val = em_mng_write_cmd_header(hw, &hdr); + if (ret_val == E1000_SUCCESS) + ret_val = em_mng_write_commit(hw); + } + } + return ret_val; +} + + +/***************************************************************************** + * This function calculates the checksum. + * + * returns - checksum of buffer contents. + ****************************************************************************/ +STATIC uint8_t +em_calculate_mng_checksum(char *buffer, uint32_t length) +{ + uint8_t sum = 0; + uint32_t i; + + if (!buffer) + return 0; + + for (i=0; i < length; i++) + sum += buffer[i]; + + return (uint8_t) (0 - sum); +} + +/***************************************************************************** + * This function checks whether tx pkt filtering needs to be enabled or not. + * + * returns - TRUE for packet filtering or FALSE. + ****************************************************************************/ +boolean_t +em_enable_tx_pkt_filtering(struct em_hw *hw) +{ + /* called in init as well as watchdog timer functions */ + + int32_t ret_val, checksum; + boolean_t tx_filter = FALSE; + struct em_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie); + uint8_t *buffer = (uint8_t *) &(hw->mng_cookie); + + if (em_check_mng_mode(hw)) { + ret_val = em_mng_enable_host_if(hw); + if (ret_val == E1000_SUCCESS) { + ret_val = em_host_if_read_cookie(hw, buffer); + if (ret_val == E1000_SUCCESS) { + checksum = hdr->checksum; + hdr->checksum = 0; + if ((hdr->signature == E1000_IAMT_SIGNATURE) && + checksum == em_calculate_mng_checksum((char *)buffer, + E1000_MNG_DHCP_COOKIE_LENGTH)) { + if (hdr->status & + E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT) + tx_filter = TRUE; + } else + tx_filter = TRUE; + } else + tx_filter = TRUE; + } + } + + hw->tx_pkt_filtering = tx_filter; + return tx_filter; +} + +/****************************************************************************** + * Verifies the hardware needs to allow ARPs to be processed by the host + * + * hw - Struct containing variables accessed by shared code + * + * returns: - TRUE/FALSE + * + *****************************************************************************/ +uint32_t +em_enable_mng_pass_thru(struct em_hw *hw) +{ + uint32_t manc; + uint32_t fwsm, factps; + + if (hw->asf_firmware_present) { + manc = E1000_READ_REG(hw, MANC); + + if (!(manc & E1000_MANC_RCV_TCO_EN) || + !(manc & E1000_MANC_EN_MAC_ADDR_FILTER)) + return FALSE; + if (em_arc_subsystem_valid(hw) == TRUE) { + fwsm = E1000_READ_REG(hw, FWSM); + factps = E1000_READ_REG(hw, FACTPS); + + if (((fwsm & E1000_FWSM_MODE_MASK) == + (em_mng_mode_pt << E1000_FWSM_MODE_SHIFT)) && + (factps & E1000_FACTPS_MNGCG)) + return TRUE; + } else + if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN)) + return TRUE; + } + return FALSE; +} + +static int32_t +em_polarity_reversal_workaround(struct em_hw *hw) +{ + int32_t ret_val; + uint16_t mii_status_reg; + uint16_t i; + + /* Polarity reversal workaround for forced 10F/10H links. */ + + /* Disable the transmitter on the PHY */ + + ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); + if (ret_val) + return ret_val; + ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF); + if (ret_val) + return ret_val; + + ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); + if (ret_val) + return ret_val; + + /* This loop will early-out if the NO link condition has been met. */ + for (i = PHY_FORCE_TIME; i > 0; i--) { + /* Read the MII Status Register and wait for Link Status bit + * to be clear. + */ + + ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + return ret_val; + + ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + return ret_val; + + if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break; + msec_delay_irq(100); + } + + /* Recommended delay time after link has been lost */ + msec_delay_irq(1000); + + /* Now we will re-enable th transmitter on the PHY */ + + ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); + if (ret_val) + return ret_val; + msec_delay_irq(50); + ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0); + if (ret_val) + return ret_val; + msec_delay_irq(50); + ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00); + if (ret_val) + return ret_val; + msec_delay_irq(50); + ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000); + if (ret_val) + return ret_val; + + ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); + if (ret_val) + return ret_val; + + /* This loop will early-out if the link condition has been met. */ + for (i = PHY_FORCE_TIME; i > 0; i--) { + /* Read the MII Status Register and wait for Link Status bit + * to be set. + */ + + ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + return ret_val; + + ret_val = em_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + return ret_val; + + if (mii_status_reg & MII_SR_LINK_STATUS) break; + msec_delay_irq(100); + } + return E1000_SUCCESS; +} + +/*************************************************************************** + * + * Disables PCI-Express master access. + * + * hw: Struct containing variables accessed by shared code + * + * returns: - none. + * + ***************************************************************************/ +STATIC void +em_set_pci_express_master_disable(struct em_hw *hw) +{ + uint32_t ctrl; + + DEBUGFUNC("em_set_pci_express_master_disable"); + + if (hw->bus_type != em_bus_type_pci_express) + return; + + ctrl = E1000_READ_REG(hw, CTRL); + ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; + E1000_WRITE_REG(hw, CTRL, ctrl); +} + +/******************************************************************************* + * + * Disables PCI-Express master access and verifies there are no pending requests + * + * hw: Struct containing variables accessed by shared code + * + * returns: - E1000_ERR_MASTER_REQUESTS_PENDING if master disable bit hasn't + * caused the master requests to be disabled. + * E1000_SUCCESS master requests disabled. + * + ******************************************************************************/ +int32_t +em_disable_pciex_master(struct em_hw *hw) +{ + int32_t timeout = MASTER_DISABLE_TIMEOUT; /* 80ms */ + + DEBUGFUNC("em_disable_pciex_master"); + + if (hw->bus_type != em_bus_type_pci_express) + return E1000_SUCCESS; + + em_set_pci_express_master_disable(hw); + + while (timeout) { + if (!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE)) + break; + else + usec_delay(100); + timeout--; + } + + if (!timeout) { + DEBUGOUT("Master requests are pending.\n"); + return -E1000_ERR_MASTER_REQUESTS_PENDING; + } + + return E1000_SUCCESS; +} + +/******************************************************************************* + * + * Check for EEPROM Auto Read bit done. + * + * hw: Struct containing variables accessed by shared code + * + * returns: - E1000_ERR_RESET if fail to reset MAC + * E1000_SUCCESS at any other case. + * + ******************************************************************************/ +STATIC int32_t +em_get_auto_rd_done(struct em_hw *hw) +{ + int32_t timeout = AUTO_READ_DONE_TIMEOUT; + + DEBUGFUNC("em_get_auto_rd_done"); + + switch (hw->mac_type) { + default: + msec_delay(5); + break; + case em_82571: + case em_82572: + case em_82573: + case em_80003es2lan: + case em_ich8lan: + while (timeout) { + if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD) + break; + else msec_delay(1); + timeout--; + } + + if (!timeout) { + DEBUGOUT("Auto read by HW from EEPROM has not completed.\n"); + return -E1000_ERR_RESET; + } + break; + } + + /* PHY configuration from NVM just starts after EECD_AUTO_RD sets to high. + * Need to wait for PHY configuration completion before accessing NVM + * and PHY. */ + if (hw->mac_type == em_82573) + msec_delay(25); + + return E1000_SUCCESS; +} + +/*************************************************************************** + * Checks if the PHY configuration is done + * + * hw: Struct containing variables accessed by shared code + * + * returns: - E1000_ERR_RESET if fail to reset MAC + * E1000_SUCCESS at any other case. + * + ***************************************************************************/ +STATIC int32_t +em_get_phy_cfg_done(struct em_hw *hw) +{ + int32_t timeout = PHY_CFG_TIMEOUT; + uint32_t cfg_mask = E1000_EEPROM_CFG_DONE; + + DEBUGFUNC("em_get_phy_cfg_done"); + + switch (hw->mac_type) { + default: + msec_delay_irq(10); + break; + case em_80003es2lan: + /* Separate *_CFG_DONE_* bit for each port */ + if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) + cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1; + /* Fall Through */ + case em_82571: + case em_82572: + while (timeout) { + if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask) + break; + else + msec_delay(1); + timeout--; + } + if (!timeout) { + DEBUGOUT("MNG configuration cycle has not completed.\n"); + return -E1000_ERR_RESET; + } + break; + } + + return E1000_SUCCESS; +} + +/*************************************************************************** + * + * Using the combination of SMBI and SWESMBI semaphore bits when resetting + * adapter or Eeprom access. + * + * hw: Struct containing variables accessed by shared code + * + * returns: - E1000_ERR_EEPROM if fail to access EEPROM. + * E1000_SUCCESS at any other case. + * + ***************************************************************************/ +STATIC int32_t +em_get_hw_eeprom_semaphore(struct em_hw *hw) +{ + int32_t timeout; + uint32_t swsm; + + DEBUGFUNC("em_get_hw_eeprom_semaphore"); + + if (!hw->eeprom_semaphore_present) + return E1000_SUCCESS; + + if (hw->mac_type == em_80003es2lan) { + /* Get the SW semaphore. */ + if (em_get_software_semaphore(hw) != E1000_SUCCESS) + return -E1000_ERR_EEPROM; + } + + /* Get the FW semaphore. */ + timeout = hw->eeprom.word_size + 1; + while (timeout) { + swsm = E1000_READ_REG(hw, SWSM); + swsm |= E1000_SWSM_SWESMBI; + E1000_WRITE_REG(hw, SWSM, swsm); + /* if we managed to set the bit we got the semaphore. */ + swsm = E1000_READ_REG(hw, SWSM); + if (swsm & E1000_SWSM_SWESMBI) + break; + + usec_delay(50); + timeout--; + } + + if (!timeout) { + /* Release semaphores */ + em_put_hw_eeprom_semaphore(hw); + DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n"); + return -E1000_ERR_EEPROM; + } + + return E1000_SUCCESS; +} + +/*************************************************************************** + * This function clears HW semaphore bits. + * + * hw: Struct containing variables accessed by shared code + * + * returns: - None. + * + ***************************************************************************/ +STATIC void +em_put_hw_eeprom_semaphore(struct em_hw *hw) +{ + uint32_t swsm; + + DEBUGFUNC("em_put_hw_eeprom_semaphore"); + + if (!hw->eeprom_semaphore_present) + return; + + swsm = E1000_READ_REG(hw, SWSM); + if (hw->mac_type == em_80003es2lan) { + /* Release both semaphores. */ + swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); + } else + swsm &= ~(E1000_SWSM_SWESMBI); + E1000_WRITE_REG(hw, SWSM, swsm); +} + +/*************************************************************************** + * + * Obtaining software semaphore bit (SMBI) before resetting PHY. + * + * hw: Struct containing variables accessed by shared code + * + * returns: - E1000_ERR_RESET if fail to obtain semaphore. + * E1000_SUCCESS at any other case. + * + ***************************************************************************/ +STATIC int32_t +em_get_software_semaphore(struct em_hw *hw) +{ + int32_t timeout = hw->eeprom.word_size + 1; + uint32_t swsm; + + DEBUGFUNC("em_get_software_semaphore"); + + if (hw->mac_type != em_80003es2lan) { + return E1000_SUCCESS; + } + + while (timeout) { + swsm = E1000_READ_REG(hw, SWSM); + /* If SMBI bit cleared, it is now set and we hold the semaphore */ + if (!(swsm & E1000_SWSM_SMBI)) + break; + msec_delay_irq(1); + timeout--; + } + + if (!timeout) { + DEBUGOUT("Driver can't access device - SMBI bit is set.\n"); + return -E1000_ERR_RESET; + } + + return E1000_SUCCESS; +} + +/*************************************************************************** + * + * Release semaphore bit (SMBI). + * + * hw: Struct containing variables accessed by shared code + * + ***************************************************************************/ +STATIC void +em_release_software_semaphore(struct em_hw *hw) +{ + uint32_t swsm; + + DEBUGFUNC("em_release_software_semaphore"); + + if (hw->mac_type != em_80003es2lan) { + return; + } + + swsm = E1000_READ_REG(hw, SWSM); + /* Release the SW semaphores.*/ + swsm &= ~E1000_SWSM_SMBI; + E1000_WRITE_REG(hw, SWSM, swsm); +} + +/****************************************************************************** + * Checks if PHY reset is blocked due to SOL/IDER session, for example. + * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to + * the caller to figure out how to deal with it. + * + * hw - Struct containing variables accessed by shared code + * + * returns: - E1000_BLK_PHY_RESET + * E1000_SUCCESS + * + *****************************************************************************/ +int32_t +em_check_phy_reset_block(struct em_hw *hw) +{ + uint32_t manc = 0; + uint32_t fwsm = 0; + + if (hw->mac_type == em_ich8lan) { + fwsm = E1000_READ_REG(hw, FWSM); + return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS + : E1000_BLK_PHY_RESET; + } + + if (hw->mac_type > em_82547_rev_2) + manc = E1000_READ_REG(hw, MANC); + return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? + E1000_BLK_PHY_RESET : E1000_SUCCESS; +} + +STATIC uint8_t +em_arc_subsystem_valid(struct em_hw *hw) +{ + uint32_t fwsm; + + /* On 8257x silicon, registers in the range of 0x8800 - 0x8FFC + * may not be provided a DMA clock when no manageability features are + * enabled. We do not want to perform any reads/writes to these registers + * if this is the case. We read FWSM to determine the manageability mode. + */ + switch (hw->mac_type) { + case em_82571: + case em_82572: + case em_82573: + case em_80003es2lan: + fwsm = E1000_READ_REG(hw, FWSM); + if ((fwsm & E1000_FWSM_MODE_MASK) != 0) + return TRUE; + break; + case em_ich8lan: + return TRUE; + default: + break; + } + return FALSE; +} + + +/****************************************************************************** + * Configure PCI-Ex no-snoop + * + * hw - Struct containing variables accessed by shared code. + * no_snoop - Bitmap of no-snoop events. + * + * returns: E1000_SUCCESS + * + *****************************************************************************/ +STATIC int32_t +em_set_pci_ex_no_snoop(struct em_hw *hw, uint32_t no_snoop) +{ + uint32_t gcr_reg = 0; + + DEBUGFUNC("em_set_pci_ex_no_snoop"); + + if (hw->bus_type == em_bus_type_unknown) + em_get_bus_info(hw); + + if (hw->bus_type != em_bus_type_pci_express) + return E1000_SUCCESS; + + if (no_snoop) { + gcr_reg = E1000_READ_REG(hw, GCR); + gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL); + gcr_reg |= no_snoop; + E1000_WRITE_REG(hw, GCR, gcr_reg); + } + if (hw->mac_type == em_ich8lan) { + uint32_t ctrl_ext; + + E1000_WRITE_REG(hw, GCR, PCI_EX_82566_SNOOP_ALL); + + ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); + ctrl_ext |= E1000_CTRL_EXT_RO_DIS; + E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); + } + + return E1000_SUCCESS; +} + +/*************************************************************************** + * + * Get software semaphore FLAG bit (SWFLAG). + * SWFLAG is used to synchronize the access to all shared resource between + * SW, FW and HW. + * + * hw: Struct containing variables accessed by shared code + * + ***************************************************************************/ +STATIC int32_t +em_get_software_flag(struct em_hw *hw) +{ + int32_t timeout = PHY_CFG_TIMEOUT; + uint32_t extcnf_ctrl; + + DEBUGFUNC("em_get_software_flag"); + + if (hw->mac_type == em_ich8lan) { + while (timeout) { + extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); + extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; + E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl); + + extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); + if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) + break; + msec_delay_irq(1); + timeout--; + } + + if (!timeout) { + DEBUGOUT("FW or HW locks the resource too long.\n"); + return -E1000_ERR_CONFIG; + } + } + + return E1000_SUCCESS; +} + +/*************************************************************************** + * + * Release software semaphore FLAG bit (SWFLAG). + * SWFLAG is used to synchronize the access to all shared resource between + * SW, FW and HW. + * + * hw: Struct containing variables accessed by shared code + * + ***************************************************************************/ +STATIC void +em_release_software_flag(struct em_hw *hw) +{ + uint32_t extcnf_ctrl; + + DEBUGFUNC("em_release_software_flag"); + + if (hw->mac_type == em_ich8lan) { + extcnf_ctrl= E1000_READ_REG(hw, EXTCNF_CTRL); + extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; + E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl); + } + + return; +} + + +/****************************************************************************** + * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access + * register. + * + * hw - Struct containing variables accessed by shared code + * offset - offset of word in the EEPROM to read + * data - word read from the EEPROM + * words - number of words to read + *****************************************************************************/ +STATIC int32_t +em_read_eeprom_ich8(struct em_hw *hw, uint16_t offset, uint16_t words, + uint16_t *data) +{ + int32_t error = E1000_SUCCESS; + uint32_t flash_bank = 0; + uint32_t act_offset = 0; + uint32_t bank_offset = 0; + uint16_t word = 0; + uint16_t i = 0; + + /* We need to know which is the valid flash bank. In the event + * that we didn't allocate eeprom_shadow_ram, we may not be + * managing flash_bank. So it cannot be trusted and needs + * to be updated with each read. + */ + /* Value of bit 22 corresponds to the flash bank we're on. */ + flash_bank = (E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL) ? 1 : 0; + + /* Adjust offset appropriately if we're on bank 1 - adjust for word size */ + bank_offset = flash_bank * (hw->flash_bank_size * 2); + + error = em_get_software_flag(hw); + if (error != E1000_SUCCESS) + return error; + + for (i = 0; i < words; i++) { + if (hw->eeprom_shadow_ram != NULL && + hw->eeprom_shadow_ram[offset+i].modified == TRUE) { + data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word; + } else { + /* The NVM part needs a byte offset, hence * 2 */ + act_offset = bank_offset + ((offset + i) * 2); + error = em_read_ich8_word(hw, act_offset, &word); + if (error != E1000_SUCCESS) + break; + data[i] = word; + } + } + + em_release_software_flag(hw); + + return error; +} + +/****************************************************************************** + * Writes a 16 bit word or words to the EEPROM using the ICH8's flash access + * register. Actually, writes are written to the shadow ram cache in the hw + * structure hw->em_shadow_ram. em_commit_shadow_ram flushes this to + * the NVM, which occurs when the NVM checksum is updated. + * + * hw - Struct containing variables accessed by shared code + * offset - offset of word in the EEPROM to write + * words - number of words to write + * data - words to write to the EEPROM + *****************************************************************************/ +STATIC int32_t +em_write_eeprom_ich8(struct em_hw *hw, uint16_t offset, uint16_t words, + uint16_t *data) +{ + uint32_t i = 0; + int32_t error = E1000_SUCCESS; + + error = em_get_software_flag(hw); + if (error != E1000_SUCCESS) + return error; + + /* A driver can write to the NVM only if it has eeprom_shadow_ram + * allocated. Subsequent reads to the modified words are read from + * this cached structure as well. Writes will only go into this + * cached structure unless it's followed by a call to + * em_update_eeprom_checksum() where it will commit the changes + * and clear the "modified" field. + */ + if (hw->eeprom_shadow_ram != NULL) { + for (i = 0; i < words; i++) { + if ((offset + i) < E1000_SHADOW_RAM_WORDS) { + hw->eeprom_shadow_ram[offset+i].modified = TRUE; + hw->eeprom_shadow_ram[offset+i].eeprom_word = data[i]; + } else { + error = -E1000_ERR_EEPROM; + break; + } + } + } else { + /* Drivers have the option to not allocate eeprom_shadow_ram as long + * as they don't perform any NVM writes. An attempt in doing so + * will result in this error. + */ + error = -E1000_ERR_EEPROM; + } + + em_release_software_flag(hw); + + return error; +} + +/****************************************************************************** + * This function does initial flash setup so that a new read/write/erase cycle + * can be started. + * + * hw - The pointer to the hw structure + ****************************************************************************/ +STATIC int32_t +em_ich8_cycle_init(struct em_hw *hw) +{ + union ich8_hws_flash_status hsfsts; + int32_t error = E1000_ERR_EEPROM; + int32_t i = 0; + + DEBUGFUNC("em_ich8_cycle_init"); + + hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); + + /* May be check the Flash Des Valid bit in Hw status */ + if (hsfsts.hsf_status.fldesvalid == 0) { + DEBUGOUT("Flash descriptor invalid. SW Sequencing must be used."); + return error; + } + + /* Clear FCERR in Hw status by writing 1 */ + /* Clear DAEL in Hw status by writing a 1 */ + hsfsts.hsf_status.flcerr = 1; + hsfsts.hsf_status.dael = 1; + + E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval); + + /* Either we should have a hardware SPI cycle in progress bit to check + * against, in order to start a new cycle or FDONE bit should be changed + * in the hardware so that it is 1 after harware reset, which can then be + * used as an indication whether a cycle is in progress or has been + * completed .. we should also have some software semaphore mechanism to + * guard FDONE or the cycle in progress bit so that two threads access to + * those bits can be sequentiallized or a way so that 2 threads dont + * start the cycle at the same time */ + + if (hsfsts.hsf_status.flcinprog == 0) { + /* There is no cycle running at present, so we can start a cycle */ + /* Begin by setting Flash Cycle Done. */ + hsfsts.hsf_status.flcdone = 1; + E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval); + error = E1000_SUCCESS; + } else { + /* otherwise poll for sometime so the current cycle has a chance + * to end before giving up. */ + for (i = 0; i < ICH_FLASH_COMMAND_TIMEOUT; i++) { + hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); + if (hsfsts.hsf_status.flcinprog == 0) { + error = E1000_SUCCESS; + break; + } + usec_delay(1); + } + if (error == E1000_SUCCESS) { + /* Successful in waiting for previous cycle to timeout, + * now set the Flash Cycle Done. */ + hsfsts.hsf_status.flcdone = 1; + E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval); + } else { + DEBUGOUT("Flash controller busy, cannot get access"); + } + } + return error; +} + +/****************************************************************************** + * This function starts a flash cycle and waits for its completion + * + * hw - The pointer to the hw structure + ****************************************************************************/ +STATIC int32_t +em_ich8_flash_cycle(struct em_hw *hw, uint32_t timeout) +{ + union ich8_hws_flash_ctrl hsflctl; + union ich8_hws_flash_status hsfsts; + int32_t error = E1000_ERR_EEPROM; + uint32_t i = 0; + + /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ + hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL); + hsflctl.hsf_ctrl.flcgo = 1; + E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); + + /* wait till FDONE bit is set to 1 */ + do { + hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); + if (hsfsts.hsf_status.flcdone == 1) + break; + usec_delay(1); + i++; + } while (i < timeout); + if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) { + error = E1000_SUCCESS; + } + return error; +} + +/****************************************************************************** + * Reads a byte or word from the NVM using the ICH8 flash access registers. + * + * hw - The pointer to the hw structure + * index - The index of the byte or word to read. + * size - Size of data to read, 1=byte 2=word + * data - Pointer to the word to store the value read. + *****************************************************************************/ +STATIC int32_t +em_read_ich8_data(struct em_hw *hw, uint32_t index, + uint32_t size, uint16_t* data) +{ + union ich8_hws_flash_status hsfsts; + union ich8_hws_flash_ctrl hsflctl; + uint32_t flash_linear_address; + uint32_t flash_data = 0; + int32_t error = -E1000_ERR_EEPROM; + int32_t count = 0; + + DEBUGFUNC("em_read_ich8_data"); + + if (size < 1 || size > 2 || data == 0x0 || + index > ICH_FLASH_LINEAR_ADDR_MASK) + return error; + + flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) + + hw->flash_base_addr; + + do { + usec_delay(1); + /* Steps */ + error = em_ich8_cycle_init(hw); + if (error != E1000_SUCCESS) + break; + + hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL); + /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ + hsflctl.hsf_ctrl.fldbcount = size - 1; + hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; + E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); + + /* Write the last 24 bits of index into Flash Linear address field in + * Flash Address */ + /* TODO: TBD maybe check the index against the size of flash */ + + E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address); + + error = em_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT); + + /* Check if FCERR is set to 1, if set to 1, clear it and try the whole + * sequence a few more times, else read in (shift in) the Flash Data0, + * the order is least significant byte first msb to lsb */ + if (error == E1000_SUCCESS) { + flash_data = E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_FDATA0); + if (size == 1) { + *data = (uint8_t)(flash_data & 0x000000FF); + } else if (size == 2) { + *data = (uint16_t)(flash_data & 0x0000FFFF); + } + break; + } else { + /* If we've gotten here, then things are probably completely hosed, + * but if the error condition is detected, it won't hurt to give + * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times. + */ + hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); + if (hsfsts.hsf_status.flcerr == 1) { + /* Repeat for some time before giving up. */ + continue; + } else if (hsfsts.hsf_status.flcdone == 0) { + DEBUGOUT("Timeout error - flash cycle did not complete."); + break; + } + } + } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); + + return error; +} + +/****************************************************************************** + * Writes One /two bytes to the NVM using the ICH8 flash access registers. + * + * hw - The pointer to the hw structure + * index - The index of the byte/word to read. + * size - Size of data to read, 1=byte 2=word + * data - The byte(s) to write to the NVM. + *****************************************************************************/ +STATIC int32_t +em_write_ich8_data(struct em_hw *hw, uint32_t index, uint32_t size, + uint16_t data) +{ + union ich8_hws_flash_status hsfsts; + union ich8_hws_flash_ctrl hsflctl; + uint32_t flash_linear_address; + uint32_t flash_data = 0; + int32_t error = -E1000_ERR_EEPROM; + int32_t count = 0; + + DEBUGFUNC("em_write_ich8_data"); + + if (size < 1 || size > 2 || data > size * 0xff || + index > ICH_FLASH_LINEAR_ADDR_MASK) + return error; + + flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) + + hw->flash_base_addr; + + do { + usec_delay(1); + /* Steps */ + error = em_ich8_cycle_init(hw); + if (error != E1000_SUCCESS) + break; + + hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL); + /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ + hsflctl.hsf_ctrl.fldbcount = size -1; + hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; + E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); + + /* Write the last 24 bits of index into Flash Linear address field in + * Flash Address */ + E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address); + + if (size == 1) + flash_data = (uint32_t)data & 0x00FF; + else + flash_data = (uint32_t)data; + + E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data); + + /* check if FCERR is set to 1 , if set to 1, clear it and try the whole + * sequence a few more times else done */ + error = em_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT); + if (error == E1000_SUCCESS) { + break; + } else { + /* If we're here, then things are most likely completely hosed, + * but if the error condition is detected, it won't hurt to give + * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times. + */ + hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); + if (hsfsts.hsf_status.flcerr == 1) { + /* Repeat for some time before giving up. */ + continue; + } else if (hsfsts.hsf_status.flcdone == 0) { + DEBUGOUT("Timeout error - flash cycle did not complete."); + break; + } + } + } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); + + return error; +} + +/****************************************************************************** + * Reads a single byte from the NVM using the ICH8 flash access registers. + * + * hw - pointer to em_hw structure + * index - The index of the byte to read. + * data - Pointer to a byte to store the value read. + *****************************************************************************/ +STATIC int32_t +em_read_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t* data) +{ + int32_t status = E1000_SUCCESS; + uint16_t word = 0; + + status = em_read_ich8_data(hw, index, 1, &word); + if (status == E1000_SUCCESS) { + *data = (uint8_t)word; + } + + return status; +} + +/****************************************************************************** + * Writes a single byte to the NVM using the ICH8 flash access registers. + * Performs verification by reading back the value and then going through + * a retry algorithm before giving up. + * + * hw - pointer to em_hw structure + * index - The index of the byte to write. + * byte - The byte to write to the NVM. + *****************************************************************************/ +STATIC int32_t +em_verify_write_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t byte) +{ + int32_t error = E1000_SUCCESS; + int32_t program_retries = 0; + + DEBUGOUT2("Byte := %2.2X Offset := %d\n", byte, index); + + error = em_write_ich8_byte(hw, index, byte); + + if (error != E1000_SUCCESS) { + for (program_retries = 0; program_retries < 100; program_retries++) { + DEBUGOUT2("Retrying \t Byte := %2.2X Offset := %d\n", byte, index); + error = em_write_ich8_byte(hw, index, byte); + usec_delay(100); + if (error == E1000_SUCCESS) + break; + } + } + + if (program_retries == 100) + error = E1000_ERR_EEPROM; + + return error; +} + +/****************************************************************************** + * Writes a single byte to the NVM using the ICH8 flash access registers. + * + * hw - pointer to em_hw structure + * index - The index of the byte to read. + * data - The byte to write to the NVM. + *****************************************************************************/ +STATIC int32_t +em_write_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t data) +{ + int32_t status = E1000_SUCCESS; + uint16_t word = (uint16_t)data; + + status = em_write_ich8_data(hw, index, 1, word); + + return status; +} + +/****************************************************************************** + * Reads a word from the NVM using the ICH8 flash access registers. + * + * hw - pointer to em_hw structure + * index - The starting byte index of the word to read. + * data - Pointer to a word to store the value read. + *****************************************************************************/ +STATIC int32_t +em_read_ich8_word(struct em_hw *hw, uint32_t index, uint16_t *data) +{ + int32_t status = E1000_SUCCESS; + status = em_read_ich8_data(hw, index, 2, data); + return status; +} + + +/****************************************************************************** + * Erases the bank specified. Each bank may be a 4, 8 or 64k block. Banks are 0 + * based. + * + * hw - pointer to em_hw structure + * bank - 0 for first bank, 1 for second bank + * + * Note that this function may actually erase as much as 8 or 64 KBytes. The + * amount of NVM used in each bank is a *minimum* of 4 KBytes, but in fact the + * bank size may be 4, 8 or 64 KBytes + *****************************************************************************/ +int32_t +em_erase_ich8_4k_segment(struct em_hw *hw, uint32_t bank) +{ + union ich8_hws_flash_status hsfsts; + union ich8_hws_flash_ctrl hsflctl; + uint32_t flash_linear_address; + int32_t count = 0; + int32_t error = E1000_ERR_EEPROM; + int32_t iteration; + int32_t sub_sector_size = 0; + int32_t bank_size; + int32_t j = 0; + int32_t error_flag = 0; + + hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); + + /* Determine HW Sector size: Read BERASE bits of Hw flash Status register */ + /* 00: The Hw sector is 256 bytes, hence we need to erase 16 + * consecutive sectors. The start index for the nth Hw sector can be + * calculated as bank * 4096 + n * 256 + * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. + * The start index for the nth Hw sector can be calculated + * as bank * 4096 + * 10: The HW sector is 8K bytes + * 11: The Hw sector size is 64K bytes */ + if (hsfsts.hsf_status.berasesz == 0x0) { + /* Hw sector size 256 */ + sub_sector_size = ICH_FLASH_SEG_SIZE_256; + bank_size = ICH_FLASH_SECTOR_SIZE; + iteration = ICH_FLASH_SECTOR_SIZE / ICH_FLASH_SEG_SIZE_256; + } else if (hsfsts.hsf_status.berasesz == 0x1) { + bank_size = ICH_FLASH_SEG_SIZE_4K; + iteration = 1; + } else if (hsfsts.hsf_status.berasesz == 0x3) { + bank_size = ICH_FLASH_SEG_SIZE_64K; + iteration = 1; + } else { + return error; + } + + for (j = 0; j < iteration ; j++) { + do { + count++; + /* Steps */ + error = em_ich8_cycle_init(hw); + if (error != E1000_SUCCESS) { + error_flag = 1; + break; + } + + /* Write a value 11 (block Erase) in Flash Cycle field in Hw flash + * Control */ + hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL); + hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE; + E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); + + /* Write the last 24 bits of an index within the block into Flash + * Linear address field in Flash Address. This probably needs to + * be calculated here based off the on-chip erase sector size and + * the software bank size (4, 8 or 64 KBytes) */ + flash_linear_address = bank * bank_size + j * sub_sector_size; + flash_linear_address += hw->flash_base_addr; + flash_linear_address &= ICH_FLASH_LINEAR_ADDR_MASK; + + E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address); + + error = em_ich8_flash_cycle(hw, ICH_FLASH_ERASE_TIMEOUT); + /* Check if FCERR is set to 1. If 1, clear it and try the whole + * sequence a few more times else Done */ + if (error == E1000_SUCCESS) { + break; + } else { + hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); + if (hsfsts.hsf_status.flcerr == 1) { + /* repeat for some time before giving up */ + continue; + } else if (hsfsts.hsf_status.flcdone == 0) { + error_flag = 1; + break; + } + } + } while ((count < ICH_FLASH_CYCLE_REPEAT_COUNT) && !error_flag); + if (error_flag == 1) + break; + } + if (error_flag != 1) + error = E1000_SUCCESS; + return error; +} + + +STATIC int32_t +em_init_lcd_from_nvm_config_region(struct em_hw *hw, + uint32_t cnf_base_addr, uint32_t cnf_size) +{ + uint32_t ret_val = E1000_SUCCESS; + uint16_t word_addr, reg_data, reg_addr; + uint16_t i; + + /* cnf_base_addr is in DWORD */ + word_addr = (uint16_t)(cnf_base_addr << 1); + + /* cnf_size is returned in size of dwords */ + for (i = 0; i < cnf_size; i++) { + ret_val = em_read_eeprom(hw, (word_addr + i*2), 1, ®_data); + if (ret_val) + return ret_val; + + ret_val = em_read_eeprom(hw, (word_addr + i*2 + 1), 1, ®_addr); + if (ret_val) + return ret_val; + + ret_val = em_get_software_flag(hw); + if (ret_val != E1000_SUCCESS) + return ret_val; + + ret_val = em_write_phy_reg_ex(hw, (uint32_t)reg_addr, reg_data); + + em_release_software_flag(hw); + } + + return ret_val; +} + + +/****************************************************************************** + * This function initializes the PHY from the NVM on ICH8 platforms. This + * is needed due to an issue where the NVM configuration is not properly + * autoloaded after power transitions. Therefore, after each PHY reset, we + * will load the configuration data out of the NVM manually. + * + * hw: Struct containing variables accessed by shared code + *****************************************************************************/ +STATIC int32_t +em_init_lcd_from_nvm(struct em_hw *hw) +{ + uint32_t reg_data, cnf_base_addr, cnf_size, ret_val, loop; + + if (hw->phy_type != em_phy_igp_3) + return E1000_SUCCESS; + + /* Check if SW needs configure the PHY */ + reg_data = E1000_READ_REG(hw, FEXTNVM); + if (!(reg_data & FEXTNVM_SW_CONFIG)) + return E1000_SUCCESS; + + /* Wait for basic configuration completes before proceeding*/ + loop = 0; + do { + reg_data = E1000_READ_REG(hw, STATUS) & E1000_STATUS_LAN_INIT_DONE; + usec_delay(100); + loop++; + } while ((!reg_data) && (loop < 50)); + + /* Clear the Init Done bit for the next init event */ + reg_data = E1000_READ_REG(hw, STATUS); + reg_data &= ~E1000_STATUS_LAN_INIT_DONE; + E1000_WRITE_REG(hw, STATUS, reg_data); + + /* Make sure HW does not configure LCD from PHY extended configuration + before SW configuration */ + reg_data = E1000_READ_REG(hw, EXTCNF_CTRL); + if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) { + reg_data = E1000_READ_REG(hw, EXTCNF_SIZE); + cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH; + cnf_size >>= 16; + if (cnf_size) { + reg_data = E1000_READ_REG(hw, EXTCNF_CTRL); + cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER; + /* cnf_base_addr is in DWORD */ + cnf_base_addr >>= 16; + + /* Configure LCD from extended configuration region. */ + ret_val = em_init_lcd_from_nvm_config_region(hw, cnf_base_addr, + cnf_size); + if (ret_val) + return ret_val; + } + } + + return E1000_SUCCESS; +} + + + diff --git a/src/add-ons/kernel/drivers/network/ipro1000/dev/em/if_em_hw.h b/src/add-ons/kernel/drivers/network/ipro1000/dev/em/if_em_hw.h new file mode 100644 index 0000000000..c036201dda --- /dev/null +++ b/src/add-ons/kernel/drivers/network/ipro1000/dev/em/if_em_hw.h @@ -0,0 +1,3378 @@ +/******************************************************************************* + + Copyright (c) 2001-2005, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +*******************************************************************************/ + +/*$FreeBSD: src/sys/dev/em/if_em_hw.h,v 1.15.2.5 2006/10/28 01:37:14 jfv Exp $*/ + +/* if_em_hw.h + * Structures, enums, and macros for the MAC + */ + +#ifndef _EM_HW_H_ +#define _EM_HW_H_ + +#include + + +/* Forward declarations of structures used by the shared code */ +struct em_hw; +struct em_hw_stats; + +/* Enumerated types specific to the e1000 hardware */ +/* Media Access Controlers */ +typedef enum { + em_undefined = 0, + em_82542_rev2_0, + em_82542_rev2_1, + em_82543, + em_82544, + em_82540, + em_82545, + em_82545_rev_3, + em_82546, + em_82546_rev_3, + em_82541, + em_82541_rev_2, + em_82547, + em_82547_rev_2, + em_82571, + em_82572, + em_82573, + em_80003es2lan, + em_ich8lan, + em_num_macs +} em_mac_type; + +typedef enum { + em_eeprom_uninitialized = 0, + em_eeprom_spi, + em_eeprom_microwire, + em_eeprom_flash, + em_eeprom_ich8, + em_eeprom_none, /* No NVM support */ + em_num_eeprom_types +} em_eeprom_type; + +/* Media Types */ +typedef enum { + em_media_type_copper = 0, + em_media_type_fiber = 1, + em_media_type_internal_serdes = 2, + em_num_media_types +} em_media_type; + +typedef enum { + em_10_half = 0, + em_10_full = 1, + em_100_half = 2, + em_100_full = 3 +} em_speed_duplex_type; + +struct em_shadow_ram { + uint16_t eeprom_word; + boolean_t modified; +}; + +/* PCI bus types */ +typedef enum { + em_bus_type_unknown = 0, + em_bus_type_pci, + em_bus_type_pcix, + em_bus_type_pci_express, + em_bus_type_reserved +} em_bus_type; + +/* PCI bus speeds */ +typedef enum { + em_bus_speed_unknown = 0, + em_bus_speed_33, + em_bus_speed_66, + em_bus_speed_100, + em_bus_speed_120, + em_bus_speed_133, + em_bus_speed_2500, + em_bus_speed_reserved +} em_bus_speed; + +/* PCI bus widths */ +typedef enum { + em_bus_width_unknown = 0, + /* These PCIe values should literally match the possible return values + * from config space */ + em_bus_width_pciex_1 = 1, + em_bus_width_pciex_2 = 2, + em_bus_width_pciex_4 = 4, + em_bus_width_32, + em_bus_width_64, + em_bus_width_reserved +} em_bus_width; + +/* PHY status info structure and supporting enums */ +typedef enum { + em_cable_length_50 = 0, + em_cable_length_50_80, + em_cable_length_80_110, + em_cable_length_110_140, + em_cable_length_140, + em_cable_length_undefined = 0xFF +} em_cable_length; + +typedef enum { + em_gg_cable_length_60 = 0, + em_gg_cable_length_60_115 = 1, + em_gg_cable_length_115_150 = 2, + em_gg_cable_length_150 = 4 +} em_gg_cable_length; + +typedef enum { + em_igp_cable_length_10 = 10, + em_igp_cable_length_20 = 20, + em_igp_cable_length_30 = 30, + em_igp_cable_length_40 = 40, + em_igp_cable_length_50 = 50, + em_igp_cable_length_60 = 60, + em_igp_cable_length_70 = 70, + em_igp_cable_length_80 = 80, + em_igp_cable_length_90 = 90, + em_igp_cable_length_100 = 100, + em_igp_cable_length_110 = 110, + em_igp_cable_length_115 = 115, + em_igp_cable_length_120 = 120, + em_igp_cable_length_130 = 130, + em_igp_cable_length_140 = 140, + em_igp_cable_length_150 = 150, + em_igp_cable_length_160 = 160, + em_igp_cable_length_170 = 170, + em_igp_cable_length_180 = 180 +} em_igp_cable_length; + +typedef enum { + em_10bt_ext_dist_enable_normal = 0, + em_10bt_ext_dist_enable_lower, + em_10bt_ext_dist_enable_undefined = 0xFF +} em_10bt_ext_dist_enable; + +typedef enum { + em_rev_polarity_normal = 0, + em_rev_polarity_reversed, + em_rev_polarity_undefined = 0xFF +} em_rev_polarity; + +typedef enum { + em_downshift_normal = 0, + em_downshift_activated, + em_downshift_undefined = 0xFF +} em_downshift; + +typedef enum { + em_smart_speed_default = 0, + em_smart_speed_on, + em_smart_speed_off +} em_smart_speed; + +typedef enum { + em_polarity_reversal_enabled = 0, + em_polarity_reversal_disabled, + em_polarity_reversal_undefined = 0xFF +} em_polarity_reversal; + +typedef enum { + em_auto_x_mode_manual_mdi = 0, + em_auto_x_mode_manual_mdix, + em_auto_x_mode_auto1, + em_auto_x_mode_auto2, + em_auto_x_mode_undefined = 0xFF +} em_auto_x_mode; + +typedef enum { + em_1000t_rx_status_not_ok = 0, + em_1000t_rx_status_ok, + em_1000t_rx_status_undefined = 0xFF +} em_1000t_rx_status; + +typedef enum { + em_phy_m88 = 0, + em_phy_igp, + em_phy_igp_2, + em_phy_gg82563, + em_phy_igp_3, + em_phy_ife, + em_phy_undefined = 0xFF +} em_phy_type; + +typedef enum { + em_ms_hw_default = 0, + em_ms_force_master, + em_ms_force_slave, + em_ms_auto +} em_ms_type; + +typedef enum { + em_ffe_config_enabled = 0, + em_ffe_config_active, + em_ffe_config_blocked +} em_ffe_config; + +typedef enum { + em_dsp_config_disabled = 0, + em_dsp_config_enabled, + em_dsp_config_activated, + em_dsp_config_undefined = 0xFF +} em_dsp_config; + +struct em_phy_info { + em_cable_length cable_length; + em_10bt_ext_dist_enable extended_10bt_distance; + em_rev_polarity cable_polarity; + em_downshift downshift; + em_polarity_reversal polarity_correction; + em_auto_x_mode mdix_mode; + em_1000t_rx_status local_rx; + em_1000t_rx_status remote_rx; +}; + +struct em_phy_stats { + uint32_t idle_errors; + uint32_t receive_errors; +}; + +struct em_eeprom_info { + em_eeprom_type type; + uint16_t word_size; + uint16_t opcode_bits; + uint16_t address_bits; + uint16_t delay_usec; + uint16_t page_size; + boolean_t use_eerd; + boolean_t use_eewr; +}; + +/* Flex ASF Information */ +#define E1000_HOST_IF_MAX_SIZE 2048 + +typedef enum { + em_byte_align = 0, + em_word_align = 1, + em_dword_align = 2 +} em_align_type; + + + +/* Error Codes */ +#define E1000_SUCCESS 0 +#define E1000_ERR_EEPROM 1 +#define E1000_ERR_PHY 2 +#define E1000_ERR_CONFIG 3 +#define E1000_ERR_PARAM 4 +#define E1000_ERR_MAC_TYPE 5 +#define E1000_ERR_PHY_TYPE 6 +#define E1000_ERR_RESET 9 +#define E1000_ERR_MASTER_REQUESTS_PENDING 10 +#define E1000_ERR_HOST_INTERFACE_COMMAND 11 +#define E1000_BLK_PHY_RESET 12 +#define E1000_ERR_SWFW_SYNC 13 + +#define E1000_BYTE_SWAP_WORD(_value) ((((_value) & 0x00ff) << 8) | \ + (((_value) & 0xff00) >> 8)) + +/* Function prototypes */ +/* Initialization */ +int32_t em_reset_hw(struct em_hw *hw); +int32_t em_init_hw(struct em_hw *hw); +int32_t em_set_mac_type(struct em_hw *hw); +void em_set_media_type(struct em_hw *hw); + +/* Link Configuration */ +int32_t em_setup_link(struct em_hw *hw); +int32_t em_phy_setup_autoneg(struct em_hw *hw); +void em_config_collision_dist(struct em_hw *hw); +int32_t em_check_for_link(struct em_hw *hw); +int32_t em_get_speed_and_duplex(struct em_hw *hw, uint16_t *speed, uint16_t *duplex); +int32_t em_force_mac_fc(struct em_hw *hw); + + +/* PHY */ +int32_t em_read_phy_reg(struct em_hw *hw, uint32_t reg_addr, uint16_t *phy_data); +int32_t em_write_phy_reg(struct em_hw *hw, uint32_t reg_addr, uint16_t data); +int32_t em_phy_hw_reset(struct em_hw *hw); +int32_t em_phy_reset(struct em_hw *hw); +int32_t em_phy_get_info(struct em_hw *hw, struct em_phy_info *phy_info); +int32_t em_validate_mdi_setting(struct em_hw *hw); + +void em_phy_powerdown_workaround(struct em_hw *hw); + +/* EEPROM Functions */ +int32_t em_init_eeprom_params(struct em_hw *hw); + +/* MNG HOST IF functions */ +uint32_t em_enable_mng_pass_thru(struct em_hw *hw); + +#define E1000_MNG_DHCP_TX_PAYLOAD_CMD 64 +#define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8 /* Host Interface data length */ + +#define E1000_MNG_DHCP_COMMAND_TIMEOUT 10 /* Time in ms to process MNG command */ +#define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0 /* Cookie offset */ +#define E1000_MNG_DHCP_COOKIE_LENGTH 0x10 /* Cookie length */ +#define E1000_MNG_IAMT_MODE 0x3 +#define E1000_MNG_ICH_IAMT_MODE 0x2 +#define E1000_IAMT_SIGNATURE 0x544D4149 /* Intel(R) Active Management Technology signature */ + +#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT 0x1 /* DHCP parsing enabled */ +#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT 0x2 /* DHCP parsing enabled */ +#define E1000_VFTA_ENTRY_SHIFT 0x5 +#define E1000_VFTA_ENTRY_MASK 0x7F +#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK 0x1F + +struct em_host_mng_command_header { + uint8_t command_id; + uint8_t checksum; + uint16_t reserved1; + uint16_t reserved2; + uint16_t command_length; +}; + +struct em_host_mng_command_info { + struct em_host_mng_command_header command_header; /* Command Head/Command Result Head has 4 bytes */ + uint8_t command_data[E1000_HI_MAX_MNG_DATA_LENGTH]; /* Command data can length 0..0x658*/ +}; +struct em_host_mng_dhcp_cookie{ + uint32_t signature; + uint8_t status; + uint8_t reserved0; + uint16_t vlan_id; + uint32_t reserved1; + uint16_t reserved2; + uint8_t reserved3; + uint8_t checksum; +}; + +int32_t em_read_part_num(struct em_hw *hw, uint32_t * part_num); +int32_t em_mng_write_dhcp_info(struct em_hw *hw, uint8_t *buffer, + uint16_t length); +boolean_t em_check_mng_mode(struct em_hw *hw); +boolean_t em_enable_tx_pkt_filtering(struct em_hw *hw); +int32_t em_read_eeprom(struct em_hw *hw, uint16_t reg, uint16_t words, uint16_t *data); +int32_t em_validate_eeprom_checksum(struct em_hw *hw); +int32_t em_update_eeprom_checksum(struct em_hw *hw); +int32_t em_write_eeprom(struct em_hw *hw, uint16_t reg, uint16_t words, uint16_t *data); +int32_t em_read_mac_addr(struct em_hw * hw); + + +/* Filters (multicast, vlan, receive) */ +void em_mc_addr_list_update(struct em_hw *hw, uint8_t * mc_addr_list, uint32_t mc_addr_count, uint32_t pad, uint32_t rar_used_count); +uint32_t em_hash_mc_addr(struct em_hw *hw, uint8_t * mc_addr); +void em_mta_set(struct em_hw *hw, uint32_t hash_value); +void em_rar_set(struct em_hw *hw, uint8_t * mc_addr, uint32_t rar_index); +void em_write_vfta(struct em_hw *hw, uint32_t offset, uint32_t value); + +/* LED functions */ +int32_t em_setup_led(struct em_hw *hw); +int32_t em_cleanup_led(struct em_hw *hw); +int32_t em_led_on(struct em_hw *hw); +int32_t em_led_off(struct em_hw *hw); +int32_t em_blink_led_start(struct em_hw *hw); + +/* Adaptive IFS Functions */ + +/* Everything else */ +void em_clear_hw_cntrs(struct em_hw *hw); + +void em_reset_adaptive(struct em_hw *hw); +void em_update_adaptive(struct em_hw *hw); +void em_tbi_adjust_stats(struct em_hw *hw, struct em_hw_stats *stats, uint32_t frame_len, uint8_t * mac_addr); +void em_get_bus_info(struct em_hw *hw); +void em_pci_set_mwi(struct em_hw *hw); +void em_pci_clear_mwi(struct em_hw *hw); +void em_read_pci_cfg(struct em_hw *hw, uint32_t reg, uint16_t * value); +void em_write_pci_cfg(struct em_hw *hw, uint32_t reg, uint16_t * value); +int32_t em_read_pcie_cap_reg(struct em_hw *hw, uint32_t reg, uint16_t *value); +/* Port I/O is only supported on 82544 and newer */ +uint32_t em_io_read(struct em_hw *hw, unsigned long port); +void em_io_write(struct em_hw *hw, unsigned long port, uint32_t value); +int32_t em_disable_pciex_master(struct em_hw *hw); +int32_t em_check_phy_reset_block(struct em_hw *hw); + + + +#ifndef E1000_READ_REG_IO +#define E1000_READ_REG_IO(a, reg) \ + em_read_reg_io((a), E1000_##reg) +#define E1000_WRITE_REG_IO(a, reg, val) \ + em_write_reg_io((a), E1000_##reg, val) +#endif + +/* PCI Device IDs */ +#define E1000_DEV_ID_82542 0x1000 +#define E1000_DEV_ID_82543GC_FIBER 0x1001 +#define E1000_DEV_ID_82543GC_COPPER 0x1004 +#define E1000_DEV_ID_82544EI_COPPER 0x1008 +#define E1000_DEV_ID_82544EI_FIBER 0x1009 +#define E1000_DEV_ID_82544GC_COPPER 0x100C +#define E1000_DEV_ID_82544GC_LOM 0x100D +#define E1000_DEV_ID_82540EM 0x100E +#define E1000_DEV_ID_82540EM_LOM 0x1015 +#define E1000_DEV_ID_82540EP_LOM 0x1016 +#define E1000_DEV_ID_82540EP 0x1017 +#define E1000_DEV_ID_82540EP_LP 0x101E +#define E1000_DEV_ID_82545EM_COPPER 0x100F +#define E1000_DEV_ID_82545EM_FIBER 0x1011 +#define E1000_DEV_ID_82545GM_COPPER 0x1026 +#define E1000_DEV_ID_82545GM_FIBER 0x1027 +#define E1000_DEV_ID_82545GM_SERDES 0x1028 +#define E1000_DEV_ID_82546EB_COPPER 0x1010 +#define E1000_DEV_ID_82546EB_FIBER 0x1012 +#define E1000_DEV_ID_82546EB_QUAD_COPPER 0x101D +#define E1000_DEV_ID_82541EI 0x1013 +#define E1000_DEV_ID_82541EI_MOBILE 0x1018 +#define E1000_DEV_ID_82541ER_LOM 0x1014 +#define E1000_DEV_ID_82541ER 0x1078 +#define E1000_DEV_ID_82547GI 0x1075 +#define E1000_DEV_ID_82541GI 0x1076 +#define E1000_DEV_ID_82541GI_MOBILE 0x1077 +#define E1000_DEV_ID_82541GI_LF 0x107C +#define E1000_DEV_ID_82546GB_COPPER 0x1079 +#define E1000_DEV_ID_82546GB_FIBER 0x107A +#define E1000_DEV_ID_82546GB_SERDES 0x107B +#define E1000_DEV_ID_82546GB_PCIE 0x108A +#define E1000_DEV_ID_82546GB_QUAD_COPPER 0x1099 +#define E1000_DEV_ID_82547EI 0x1019 +#define E1000_DEV_ID_82547EI_MOBILE 0x101A +#define E1000_DEV_ID_82571EB_COPPER 0x105E +#define E1000_DEV_ID_82571EB_FIBER 0x105F +#define E1000_DEV_ID_82571EB_SERDES 0x1060 +#define E1000_DEV_ID_82571EB_QUAD_COPPER 0x10A4 +#define E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE 0x10BC +#define E1000_DEV_ID_82572EI_COPPER 0x107D +#define E1000_DEV_ID_82572EI_FIBER 0x107E +#define E1000_DEV_ID_82572EI_SERDES 0x107F +#define E1000_DEV_ID_82572EI 0x10B9 +#define E1000_DEV_ID_82573E 0x108B +#define E1000_DEV_ID_82573E_IAMT 0x108C +#define E1000_DEV_ID_82573L 0x109A +#define E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 0x10B5 +#define E1000_DEV_ID_80003ES2LAN_COPPER_DPT 0x1096 +#define E1000_DEV_ID_80003ES2LAN_SERDES_DPT 0x1098 +#define E1000_DEV_ID_80003ES2LAN_COPPER_SPT 0x10BA +#define E1000_DEV_ID_80003ES2LAN_SERDES_SPT 0x10BB + +#define E1000_DEV_ID_ICH8_IGP_M_AMT 0x1049 +#define E1000_DEV_ID_ICH8_IGP_AMT 0x104A +#define E1000_DEV_ID_ICH8_IGP_C 0x104B +#define E1000_DEV_ID_ICH8_IFE 0x104C +#define E1000_DEV_ID_ICH8_IFE_GT 0x10C4 +#define E1000_DEV_ID_ICH8_IFE_G 0x10C5 +#define E1000_DEV_ID_ICH8_IGP_M 0x104D + + +#define NODE_ADDRESS_SIZE 6 +#define ETH_LENGTH_OF_ADDRESS 6 + +/* MAC decode size is 128K - This is the size of BAR0 */ +#define MAC_DECODE_SIZE (128 * 1024) + +#define E1000_82542_2_0_REV_ID 2 +#define E1000_82542_2_1_REV_ID 3 +#define E1000_REVISION_0 0 +#define E1000_REVISION_1 1 +#define E1000_REVISION_2 2 +#define E1000_REVISION_3 3 + +#define SPEED_10 10 +#define SPEED_100 100 +#define SPEED_1000 1000 +#define HALF_DUPLEX 1 +#define FULL_DUPLEX 2 + +/* The sizes (in bytes) of a ethernet packet */ +#define ENET_HEADER_SIZE 14 +#define MAXIMUM_ETHERNET_FRAME_SIZE 1518 /* With FCS */ +#define MINIMUM_ETHERNET_FRAME_SIZE 64 /* With FCS */ +#define ETHERNET_FCS_SIZE 4 +#define MAXIMUM_ETHERNET_PACKET_SIZE \ + (MAXIMUM_ETHERNET_FRAME_SIZE - ETHERNET_FCS_SIZE) +#define MINIMUM_ETHERNET_PACKET_SIZE \ + (MINIMUM_ETHERNET_FRAME_SIZE - ETHERNET_FCS_SIZE) +#define CRC_LENGTH ETHERNET_FCS_SIZE +#define MAX_JUMBO_FRAME_SIZE 0x3F00 + + +/* 802.1q VLAN Packet Sizes */ +#define VLAN_TAG_SIZE 4 /* 802.3ac tag (not DMAed) */ + +/* Ethertype field values */ +#define ETHERNET_IEEE_VLAN_TYPE 0x8100 /* 802.3ac packet */ +#define ETHERNET_IP_TYPE 0x0800 /* IP packets */ +#define ETHERNET_ARP_TYPE 0x0806 /* Address Resolution Protocol (ARP) */ + +/* Packet Header defines */ +#define IP_PROTOCOL_TCP 6 +#define IP_PROTOCOL_UDP 0x11 + +/* This defines the bits that are set in the Interrupt Mask + * Set/Read Register. Each bit is documented below: + * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0) + * o RXSEQ = Receive Sequence Error + */ +#define POLL_IMS_ENABLE_MASK ( \ + E1000_IMS_RXDMT0 | \ + E1000_IMS_RXSEQ) + +/* This defines the bits that are set in the Interrupt Mask + * Set/Read Register. Each bit is documented below: + * o RXT0 = Receiver Timer Interrupt (ring 0) + * o TXDW = Transmit Descriptor Written Back + * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0) + * o RXSEQ = Receive Sequence Error + * o LSC = Link Status Change + */ +#define IMS_ENABLE_MASK ( \ + E1000_IMS_RXT0 | \ + E1000_IMS_TXDW | \ + E1000_IMS_RXDMT0 | \ + E1000_IMS_RXSEQ | \ + E1000_IMS_LSC) + + +/* Additional interrupts need to be handled for em_ich8lan: + DSW = The FW changed the status of the DISSW bit in FWSM + PHYINT = The LAN connected device generates an interrupt + EPRST = Manageability reset event */ +#define IMS_ICH8LAN_ENABLE_MASK (\ + E1000_IMS_DSW | \ + E1000_IMS_PHYINT | \ + E1000_IMS_EPRST) + + +/* Number of high/low register pairs in the RAR. The RAR (Receive Address + * Registers) holds the directed and multicast addresses that we monitor. We + * reserve one of these spots for our directed address, allowing us room for + * E1000_RAR_ENTRIES - 1 multicast addresses. + */ +#define E1000_RAR_ENTRIES 15 + +#define E1000_RAR_ENTRIES_ICH8LAN 6 + +#define MIN_NUMBER_OF_DESCRIPTORS 8 +#define MAX_NUMBER_OF_DESCRIPTORS 0xFFF8 + +/* Receive Descriptor */ +struct em_rx_desc { + uint64_t buffer_addr; /* Address of the descriptor's data buffer */ + uint16_t length; /* Length of data DMAed into data buffer */ + uint16_t csum; /* Packet checksum */ + uint8_t status; /* Descriptor status */ + uint8_t errors; /* Descriptor Errors */ + uint16_t special; +}; + +/* Receive Descriptor - Extended */ +union em_rx_desc_extended { + struct { + uint64_t buffer_addr; + uint64_t reserved; + } read; + struct { + struct { + uint32_t mrq; /* Multiple Rx Queues */ + union { + uint32_t rss; /* RSS Hash */ + struct { + uint16_t ip_id; /* IP id */ + uint16_t csum; /* Packet Checksum */ + } csum_ip; + } hi_dword; + } lower; + struct { + uint32_t status_error; /* ext status/error */ + uint16_t length; + uint16_t vlan; /* VLAN tag */ + } upper; + } wb; /* writeback */ +}; + +#define MAX_PS_BUFFERS 4 +/* Receive Descriptor - Packet Split */ +union em_rx_desc_packet_split { + struct { + /* one buffer for protocol header(s), three data buffers */ + uint64_t buffer_addr[MAX_PS_BUFFERS]; + } read; + struct { + struct { + uint32_t mrq; /* Multiple Rx Queues */ + union { + uint32_t rss; /* RSS Hash */ + struct { + uint16_t ip_id; /* IP id */ + uint16_t csum; /* Packet Checksum */ + } csum_ip; + } hi_dword; + } lower; + struct { + uint32_t status_error; /* ext status/error */ + uint16_t length0; /* length of buffer 0 */ + uint16_t vlan; /* VLAN tag */ + } middle; + struct { + uint16_t header_status; + uint16_t length[3]; /* length of buffers 1-3 */ + } upper; + uint64_t reserved; + } wb; /* writeback */ +}; + +/* Receive Decriptor bit definitions */ +#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */ +#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */ +#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */ +#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */ +#define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum caculated */ +#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */ +#define E1000_RXD_STAT_IPCS 0x40 /* IP xsum calculated */ +#define E1000_RXD_STAT_PIF 0x80 /* passed in-exact filter */ +#define E1000_RXD_STAT_IPIDV 0x200 /* IP identification valid */ +#define E1000_RXD_STAT_UDPV 0x400 /* Valid UDP checksum */ +#define E1000_RXD_STAT_ACK 0x8000 /* ACK Packet indication */ +#define E1000_RXD_ERR_CE 0x01 /* CRC Error */ +#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */ +#define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */ +#define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */ +#define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */ +#define E1000_RXD_ERR_IPE 0x40 /* IP Checksum Error */ +#define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */ +#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */ +#define E1000_RXD_SPC_PRI_MASK 0xE000 /* Priority is in upper 3 bits */ +#define E1000_RXD_SPC_PRI_SHIFT 13 +#define E1000_RXD_SPC_CFI_MASK 0x1000 /* CFI is bit 12 */ +#define E1000_RXD_SPC_CFI_SHIFT 12 + +#define E1000_RXDEXT_STATERR_CE 0x01000000 +#define E1000_RXDEXT_STATERR_SE 0x02000000 +#define E1000_RXDEXT_STATERR_SEQ 0x04000000 +#define E1000_RXDEXT_STATERR_CXE 0x10000000 +#define E1000_RXDEXT_STATERR_TCPE 0x20000000 +#define E1000_RXDEXT_STATERR_IPE 0x40000000 +#define E1000_RXDEXT_STATERR_RXE 0x80000000 + +#define E1000_RXDPS_HDRSTAT_HDRSP 0x00008000 +#define E1000_RXDPS_HDRSTAT_HDRLEN_MASK 0x000003FF + +/* mask to determine if packets should be dropped due to frame errors */ +#define E1000_RXD_ERR_FRAME_ERR_MASK ( \ + E1000_RXD_ERR_CE | \ + E1000_RXD_ERR_SE | \ + E1000_RXD_ERR_SEQ | \ + E1000_RXD_ERR_CXE | \ + E1000_RXD_ERR_RXE) + + +/* Same mask, but for extended and packet split descriptors */ +#define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \ + E1000_RXDEXT_STATERR_CE | \ + E1000_RXDEXT_STATERR_SE | \ + E1000_RXDEXT_STATERR_SEQ | \ + E1000_RXDEXT_STATERR_CXE | \ + E1000_RXDEXT_STATERR_RXE) + + +/* Transmit Descriptor */ +struct em_tx_desc { + uint64_t buffer_addr; /* Address of the descriptor's data buffer */ + union { + uint32_t data; + struct { + uint16_t length; /* Data buffer length */ + uint8_t cso; /* Checksum offset */ + uint8_t cmd; /* Descriptor control */ + } flags; + } lower; + union { + uint32_t data; + struct { + uint8_t status; /* Descriptor status */ + uint8_t css; /* Checksum start */ + uint16_t special; + } fields; + } upper; +}; + +/* Transmit Descriptor bit definitions */ +#define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */ +#define E1000_TXD_DTYP_C 0x00000000 /* Context Descriptor */ +#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */ +#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */ +#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */ +#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */ +#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */ +#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */ +#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */ +#define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */ +#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */ +#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */ +#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */ +#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */ +#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */ +#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */ +#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */ +#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */ +#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */ +#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */ + +/* Offload Context Descriptor */ +struct em_context_desc { + union { + uint32_t ip_config; + struct { + uint8_t ipcss; /* IP checksum start */ + uint8_t ipcso; /* IP checksum offset */ + uint16_t ipcse; /* IP checksum end */ + } ip_fields; + } lower_setup; + union { + uint32_t tcp_config; + struct { + uint8_t tucss; /* TCP checksum start */ + uint8_t tucso; /* TCP checksum offset */ + uint16_t tucse; /* TCP checksum end */ + } tcp_fields; + } upper_setup; + uint32_t cmd_and_length; /* */ + union { + uint32_t data; + struct { + uint8_t status; /* Descriptor status */ + uint8_t hdr_len; /* Header length */ + uint16_t mss; /* Maximum segment size */ + } fields; + } tcp_seg_setup; +}; + +/* Offload data descriptor */ +struct em_data_desc { + uint64_t buffer_addr; /* Address of the descriptor's buffer address */ + union { + uint32_t data; + struct { + uint16_t length; /* Data buffer length */ + uint8_t typ_len_ext; /* */ + uint8_t cmd; /* */ + } flags; + } lower; + union { + uint32_t data; + struct { + uint8_t status; /* Descriptor status */ + uint8_t popts; /* Packet Options */ + uint16_t special; /* */ + } fields; + } upper; +}; + +/* Filters */ +#define E1000_NUM_UNICAST 16 /* Unicast filter entries */ +#define E1000_MC_TBL_SIZE 128 /* Multicast Filter Table (4096 bits) */ +#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */ + +#define E1000_NUM_UNICAST_ICH8LAN 7 +#define E1000_MC_TBL_SIZE_ICH8LAN 32 + + +/* Receive Address Register */ +struct em_rar { + volatile uint32_t low; /* receive address low */ + volatile uint32_t high; /* receive address high */ +}; + +/* Number of entries in the Multicast Table Array (MTA). */ +#define E1000_NUM_MTA_REGISTERS 128 +#define E1000_NUM_MTA_REGISTERS_ICH8LAN 32 + +/* IPv4 Address Table Entry */ +struct em_ipv4_at_entry { + volatile uint32_t ipv4_addr; /* IP Address (RW) */ + volatile uint32_t reserved; +}; + +/* Four wakeup IP addresses are supported */ +#define E1000_WAKEUP_IP_ADDRESS_COUNT_MAX 4 +#define E1000_IP4AT_SIZE E1000_WAKEUP_IP_ADDRESS_COUNT_MAX +#define E1000_IP4AT_SIZE_ICH8LAN 3 +#define E1000_IP6AT_SIZE 1 + +/* IPv6 Address Table Entry */ +struct em_ipv6_at_entry { + volatile uint8_t ipv6_addr[16]; +}; + +/* Flexible Filter Length Table Entry */ +struct em_fflt_entry { + volatile uint32_t length; /* Flexible Filter Length (RW) */ + volatile uint32_t reserved; +}; + +/* Flexible Filter Mask Table Entry */ +struct em_ffmt_entry { + volatile uint32_t mask; /* Flexible Filter Mask (RW) */ + volatile uint32_t reserved; +}; + +/* Flexible Filter Value Table Entry */ +struct em_ffvt_entry { + volatile uint32_t value; /* Flexible Filter Value (RW) */ + volatile uint32_t reserved; +}; + +/* Four Flexible Filters are supported */ +#define E1000_FLEXIBLE_FILTER_COUNT_MAX 4 + +/* Each Flexible Filter is at most 128 (0x80) bytes in length */ +#define E1000_FLEXIBLE_FILTER_SIZE_MAX 128 + +#define E1000_FFLT_SIZE E1000_FLEXIBLE_FILTER_COUNT_MAX +#define E1000_FFMT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX +#define E1000_FFVT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX + +#define E1000_DISABLE_SERDES_LOOPBACK 0x0400 + +/* Register Set. (82543, 82544) + * + * Registers are defined to be 32 bits and should be accessed as 32 bit values. + * These registers are physically located on the NIC, but are mapped into the + * host memory address space. + * + * RW - register is both readable and writable + * RO - register is read only + * WO - register is write only + * R/clr - register is read only and is cleared when read + * A - register array + */ +#define E1000_CTRL 0x00000 /* Device Control - RW */ +#define E1000_CTRL_DUP 0x00004 /* Device Control Duplicate (Shadow) - RW */ +#define E1000_STATUS 0x00008 /* Device Status - RO */ +#define E1000_EECD 0x00010 /* EEPROM/Flash Control - RW */ +#define E1000_EERD 0x00014 /* EEPROM Read - RW */ +#define E1000_CTRL_EXT 0x00018 /* Extended Device Control - RW */ +#define E1000_FLA 0x0001C /* Flash Access - RW */ +#define E1000_MDIC 0x00020 /* MDI Control - RW */ +#define E1000_SCTL 0x00024 /* SerDes Control - RW */ +#define E1000_FEXTNVM 0x00028 /* Future Extended NVM register */ +#define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */ +#define E1000_FCAH 0x0002C /* Flow Control Address High -RW */ +#define E1000_FCT 0x00030 /* Flow Control Type - RW */ +#define E1000_VET 0x00038 /* VLAN Ether Type - RW */ +#define E1000_ICR 0x000C0 /* Interrupt Cause Read - R/clr */ +#define E1000_ITR 0x000C4 /* Interrupt Throttling Rate - RW */ +#define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */ +#define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */ +#define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */ +#define E1000_IAM 0x000E0 /* Interrupt Acknowledge Auto Mask */ +#define E1000_RCTL 0x00100 /* RX Control - RW */ +#define E1000_RDTR1 0x02820 /* RX Delay Timer (1) - RW */ +#define E1000_RDBAL1 0x02900 /* RX Descriptor Base Address Low (1) - RW */ +#define E1000_RDBAH1 0x02904 /* RX Descriptor Base Address High (1) - RW */ +#define E1000_RDLEN1 0x02908 /* RX Descriptor Length (1) - RW */ +#define E1000_RDH1 0x02910 /* RX Descriptor Head (1) - RW */ +#define E1000_RDT1 0x02918 /* RX Descriptor Tail (1) - RW */ +#define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */ +#define E1000_TXCW 0x00178 /* TX Configuration Word - RW */ +#define E1000_RXCW 0x00180 /* RX Configuration Word - RO */ +#define E1000_TCTL 0x00400 /* TX Control - RW */ +#define E1000_TCTL_EXT 0x00404 /* Extended TX Control - RW */ +#define E1000_TIPG 0x00410 /* TX Inter-packet gap -RW */ +#define E1000_TBT 0x00448 /* TX Burst Timer - RW */ +#define E1000_AIT 0x00458 /* Adaptive Interframe Spacing Throttle - RW */ +#define E1000_LEDCTL 0x00E00 /* LED Control - RW */ +#define E1000_EXTCNF_CTRL 0x00F00 /* Extended Configuration Control */ +#define E1000_EXTCNF_SIZE 0x00F08 /* Extended Configuration Size */ +#define E1000_PHY_CTRL 0x00F10 /* PHY Control Register in CSR */ +#define FEXTNVM_SW_CONFIG 0x0001 +#define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */ +#define E1000_PBS 0x01008 /* Packet Buffer Size */ +#define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */ +#define E1000_FLASH_UPDATES 1000 +#define E1000_EEARBC 0x01024 /* EEPROM Auto Read Bus Control */ +#define E1000_FLASHT 0x01028 /* FLASH Timer Register */ +#define E1000_EEWR 0x0102C /* EEPROM Write Register - RW */ +#define E1000_FLSWCTL 0x01030 /* FLASH control register */ +#define E1000_FLSWDATA 0x01034 /* FLASH data register */ +#define E1000_FLSWCNT 0x01038 /* FLASH Access Counter */ +#define E1000_FLOP 0x0103C /* FLASH Opcode Register */ +#define E1000_ERT 0x02008 /* Early Rx Threshold - RW */ +#define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */ +#define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */ +#define E1000_PSRCTL 0x02170 /* Packet Split Receive Control - RW */ +#define E1000_RDBAL 0x02800 /* RX Descriptor Base Address Low - RW */ +#define E1000_RDBAH 0x02804 /* RX Descriptor Base Address High - RW */ +#define E1000_RDLEN 0x02808 /* RX Descriptor Length - RW */ +#define E1000_RDH 0x02810 /* RX Descriptor Head - RW */ +#define E1000_RDT 0x02818 /* RX Descriptor Tail - RW */ +#define E1000_RDTR 0x02820 /* RX Delay Timer - RW */ +#define E1000_RDBAL0 E1000_RDBAL /* RX Desc Base Address Low (0) - RW */ +#define E1000_RDBAH0 E1000_RDBAH /* RX Desc Base Address High (0) - RW */ +#define E1000_RDLEN0 E1000_RDLEN /* RX Desc Length (0) - RW */ +#define E1000_RDH0 E1000_RDH /* RX Desc Head (0) - RW */ +#define E1000_RDT0 E1000_RDT /* RX Desc Tail (0) - RW */ +#define E1000_RDTR0 E1000_RDTR /* RX Delay Timer (0) - RW */ +#define E1000_RXDCTL 0x02828 /* RX Descriptor Control queue 0 - RW */ +#define E1000_RXDCTL1 0x02928 /* RX Descriptor Control queue 1 - RW */ +#define E1000_RADV 0x0282C /* RX Interrupt Absolute Delay Timer - RW */ +#define E1000_RSRPD 0x02C00 /* RX Small Packet Detect - RW */ +#define E1000_RAID 0x02C08 /* Receive Ack Interrupt Delay - RW */ +#define E1000_TXDMAC 0x03000 /* TX DMA Control - RW */ +#define E1000_KABGTXD 0x03004 /* AFE Band Gap Transmit Ref Data */ +#define E1000_TDFH 0x03410 /* TX Data FIFO Head - RW */ +#define E1000_TDFT 0x03418 /* TX Data FIFO Tail - RW */ +#define E1000_TDFHS 0x03420 /* TX Data FIFO Head Saved - RW */ +#define E1000_TDFTS 0x03428 /* TX Data FIFO Tail Saved - RW */ +#define E1000_TDFPC 0x03430 /* TX Data FIFO Packet Count - RW */ +#define E1000_TDBAL 0x03800 /* TX Descriptor Base Address Low - RW */ +#define E1000_TDBAH 0x03804 /* TX Descriptor Base Address High - RW */ +#define E1000_TDLEN 0x03808 /* TX Descriptor Length - RW */ +#define E1000_TDH 0x03810 /* TX Descriptor Head - RW */ +#define E1000_TDT 0x03818 /* TX Descripotr Tail - RW */ +#define E1000_TIDV 0x03820 /* TX Interrupt Delay Value - RW */ +#define E1000_TXDCTL 0x03828 /* TX Descriptor Control - RW */ +#define E1000_TADV 0x0382C /* TX Interrupt Absolute Delay Val - RW */ +#define E1000_TSPMT 0x03830 /* TCP Segmentation PAD & Min Threshold - RW */ +#define E1000_TARC0 0x03840 /* TX Arbitration Count (0) */ +#define E1000_TDBAL1 0x03900 /* TX Desc Base Address Low (1) - RW */ +#define E1000_TDBAH1 0x03904 /* TX Desc Base Address High (1) - RW */ +#define E1000_TDLEN1 0x03908 /* TX Desc Length (1) - RW */ +#define E1000_TDH1 0x03910 /* TX Desc Head (1) - RW */ +#define E1000_TDT1 0x03918 /* TX Desc Tail (1) - RW */ +#define E1000_TXDCTL1 0x03928 /* TX Descriptor Control (1) - RW */ +#define E1000_TARC1 0x03940 /* TX Arbitration Count (1) */ +#define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */ +#define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */ +#define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */ +#define E1000_RXERRC 0x0400C /* Receive Error Count - R/clr */ +#define E1000_MPC 0x04010 /* Missed Packet Count - R/clr */ +#define E1000_SCC 0x04014 /* Single Collision Count - R/clr */ +#define E1000_ECOL 0x04018 /* Excessive Collision Count - R/clr */ +#define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */ +#define E1000_LATECOL 0x04020 /* Late Collision Count - R/clr */ +#define E1000_COLC 0x04028 /* Collision Count - R/clr */ +#define E1000_DC 0x04030 /* Defer Count - R/clr */ +#define E1000_TNCRS 0x04034 /* TX-No CRS - R/clr */ +#define E1000_SEC 0x04038 /* Sequence Error Count - R/clr */ +#define E1000_CEXTERR 0x0403C /* Carrier Extension Error Count - R/clr */ +#define E1000_RLEC 0x04040 /* Receive Length Error Count - R/clr */ +#define E1000_XONRXC 0x04048 /* XON RX Count - R/clr */ +#define E1000_XONTXC 0x0404C /* XON TX Count - R/clr */ +#define E1000_XOFFRXC 0x04050 /* XOFF RX Count - R/clr */ +#define E1000_XOFFTXC 0x04054 /* XOFF TX Count - R/clr */ +#define E1000_FCRUC 0x04058 /* Flow Control RX Unsupported Count- R/clr */ +#define E1000_PRC64 0x0405C /* Packets RX (64 bytes) - R/clr */ +#define E1000_PRC127 0x04060 /* Packets RX (65-127 bytes) - R/clr */ +#define E1000_PRC255 0x04064 /* Packets RX (128-255 bytes) - R/clr */ +#define E1000_PRC511 0x04068 /* Packets RX (255-511 bytes) - R/clr */ +#define E1000_PRC1023 0x0406C /* Packets RX (512-1023 bytes) - R/clr */ +#define E1000_PRC1522 0x04070 /* Packets RX (1024-1522 bytes) - R/clr */ +#define E1000_GPRC 0x04074 /* Good Packets RX Count - R/clr */ +#define E1000_BPRC 0x04078 /* Broadcast Packets RX Count - R/clr */ +#define E1000_MPRC 0x0407C /* Multicast Packets RX Count - R/clr */ +#define E1000_GPTC 0x04080 /* Good Packets TX Count - R/clr */ +#define E1000_GORCL 0x04088 /* Good Octets RX Count Low - R/clr */ +#define E1000_GORCH 0x0408C /* Good Octets RX Count High - R/clr */ +#define E1000_GOTCL 0x04090 /* Good Octets TX Count Low - R/clr */ +#define E1000_GOTCH 0x04094 /* Good Octets TX Count High - R/clr */ +#define E1000_RNBC 0x040A0 /* RX No Buffers Count - R/clr */ +#define E1000_RUC 0x040A4 /* RX Undersize Count - R/clr */ +#define E1000_RFC 0x040A8 /* RX Fragment Count - R/clr */ +#define E1000_ROC 0x040AC /* RX Oversize Count - R/clr */ +#define E1000_RJC 0x040B0 /* RX Jabber Count - R/clr */ +#define E1000_MGTPRC 0x040B4 /* Management Packets RX Count - R/clr */ +#define E1000_MGTPDC 0x040B8 /* Management Packets Dropped Count - R/clr */ +#define E1000_MGTPTC 0x040BC /* Management Packets TX Count - R/clr */ +#define E1000_TORL 0x040C0 /* Total Octets RX Low - R/clr */ +#define E1000_TORH 0x040C4 /* Total Octets RX High - R/clr */ +#define E1000_TOTL 0x040C8 /* Total Octets TX Low - R/clr */ +#define E1000_TOTH 0x040CC /* Total Octets TX High - R/clr */ +#define E1000_TPR 0x040D0 /* Total Packets RX - R/clr */ +#define E1000_TPT 0x040D4 /* Total Packets TX - R/clr */ +#define E1000_PTC64 0x040D8 /* Packets TX (64 bytes) - R/clr */ +#define E1000_PTC127 0x040DC /* Packets TX (65-127 bytes) - R/clr */ +#define E1000_PTC255 0x040E0 /* Packets TX (128-255 bytes) - R/clr */ +#define E1000_PTC511 0x040E4 /* Packets TX (256-511 bytes) - R/clr */ +#define E1000_PTC1023 0x040E8 /* Packets TX (512-1023 bytes) - R/clr */ +#define E1000_PTC1522 0x040EC /* Packets TX (1024-1522 Bytes) - R/clr */ +#define E1000_MPTC 0x040F0 /* Multicast Packets TX Count - R/clr */ +#define E1000_BPTC 0x040F4 /* Broadcast Packets TX Count - R/clr */ +#define E1000_TSCTC 0x040F8 /* TCP Segmentation Context TX - R/clr */ +#define E1000_TSCTFC 0x040FC /* TCP Segmentation Context TX Fail - R/clr */ +#define E1000_IAC 0x04100 /* Interrupt Assertion Count */ +#define E1000_ICRXPTC 0x04104 /* Interrupt Cause Rx Packet Timer Expire Count */ +#define E1000_ICRXATC 0x04108 /* Interrupt Cause Rx Absolute Timer Expire Count */ +#define E1000_ICTXPTC 0x0410C /* Interrupt Cause Tx Packet Timer Expire Count */ +#define E1000_ICTXATC 0x04110 /* Interrupt Cause Tx Absolute Timer Expire Count */ +#define E1000_ICTXQEC 0x04118 /* Interrupt Cause Tx Queue Empty Count */ +#define E1000_ICTXQMTC 0x0411C /* Interrupt Cause Tx Queue Minimum Threshold Count */ +#define E1000_ICRXDMTC 0x04120 /* Interrupt Cause Rx Descriptor Minimum Threshold Count */ +#define E1000_ICRXOC 0x04124 /* Interrupt Cause Receiver Overrun Count */ +#define E1000_RXCSUM 0x05000 /* RX Checksum Control - RW */ +#define E1000_RFCTL 0x05008 /* Receive Filter Control*/ +#define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */ +#define E1000_RA 0x05400 /* Receive Address - RW Array */ +#define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */ +#define E1000_WUC 0x05800 /* Wakeup Control - RW */ +#define E1000_WUFC 0x05808 /* Wakeup Filter Control - RW */ +#define E1000_WUS 0x05810 /* Wakeup Status - RO */ +#define E1000_MANC 0x05820 /* Management Control - RW */ +#define E1000_IPAV 0x05838 /* IP Address Valid - RW */ +#define E1000_IP4AT 0x05840 /* IPv4 Address Table - RW Array */ +#define E1000_IP6AT 0x05880 /* IPv6 Address Table - RW Array */ +#define E1000_WUPL 0x05900 /* Wakeup Packet Length - RW */ +#define E1000_WUPM 0x05A00 /* Wakeup Packet Memory - RO A */ +#define E1000_FFLT 0x05F00 /* Flexible Filter Length Table - RW Array */ +#define E1000_HOST_IF 0x08800 /* Host Interface */ +#define E1000_FFMT 0x09000 /* Flexible Filter Mask Table - RW Array */ +#define E1000_FFVT 0x09800 /* Flexible Filter Value Table - RW Array */ + +#define E1000_KUMCTRLSTA 0x00034 /* MAC-PHY interface - RW */ +#define E1000_MDPHYA 0x0003C /* PHY address - RW */ +#define E1000_MANC2H 0x05860 /* Managment Control To Host - RW */ +#define E1000_SW_FW_SYNC 0x05B5C /* Software-Firmware Synchronization - RW */ + +#define E1000_GCR 0x05B00 /* PCI-Ex Control */ +#define E1000_GSCL_1 0x05B10 /* PCI-Ex Statistic Control #1 */ +#define E1000_GSCL_2 0x05B14 /* PCI-Ex Statistic Control #2 */ +#define E1000_GSCL_3 0x05B18 /* PCI-Ex Statistic Control #3 */ +#define E1000_GSCL_4 0x05B1C /* PCI-Ex Statistic Control #4 */ +#define E1000_FACTPS 0x05B30 /* Function Active and Power State to MNG */ +#define E1000_SWSM 0x05B50 /* SW Semaphore */ +#define E1000_FWSM 0x05B54 /* FW Semaphore */ +#define E1000_FFLT_DBG 0x05F04 /* Debug Register */ +#define E1000_HICR 0x08F00 /* Host Inteface Control */ + +/* RSS registers */ +#define E1000_CPUVEC 0x02C10 /* CPU Vector Register - RW */ +#define E1000_MRQC 0x05818 /* Multiple Receive Control - RW */ +#define E1000_RETA 0x05C00 /* Redirection Table - RW Array */ +#define E1000_RSSRK 0x05C80 /* RSS Random Key - RW Array */ +#define E1000_RSSIM 0x05864 /* RSS Interrupt Mask */ +#define E1000_RSSIR 0x05868 /* RSS Interrupt Request */ +/* Register Set (82542) + * + * Some of the 82542 registers are located at different offsets than they are + * in more current versions of the 8254x. Despite the difference in location, + * the registers function in the same manner. + */ +#define E1000_82542_CTRL E1000_CTRL +#define E1000_82542_CTRL_DUP E1000_CTRL_DUP +#define E1000_82542_STATUS E1000_STATUS +#define E1000_82542_EECD E1000_EECD +#define E1000_82542_EERD E1000_EERD +#define E1000_82542_CTRL_EXT E1000_CTRL_EXT +#define E1000_82542_FLA E1000_FLA +#define E1000_82542_MDIC E1000_MDIC +#define E1000_82542_SCTL E1000_SCTL +#define E1000_82542_FEXTNVM E1000_FEXTNVM +#define E1000_82542_FCAL E1000_FCAL +#define E1000_82542_FCAH E1000_FCAH +#define E1000_82542_FCT E1000_FCT +#define E1000_82542_VET E1000_VET +#define E1000_82542_RA 0x00040 +#define E1000_82542_ICR E1000_ICR +#define E1000_82542_ITR E1000_ITR +#define E1000_82542_ICS E1000_ICS +#define E1000_82542_IMS E1000_IMS +#define E1000_82542_IMC E1000_IMC +#define E1000_82542_RCTL E1000_RCTL +#define E1000_82542_RDTR 0x00108 +#define E1000_82542_RDBAL 0x00110 +#define E1000_82542_RDBAH 0x00114 +#define E1000_82542_RDLEN 0x00118 +#define E1000_82542_RDH 0x00120 +#define E1000_82542_RDT 0x00128 +#define E1000_82542_RDTR0 E1000_82542_RDTR +#define E1000_82542_RDBAL0 E1000_82542_RDBAL +#define E1000_82542_RDBAH0 E1000_82542_RDBAH +#define E1000_82542_RDLEN0 E1000_82542_RDLEN +#define E1000_82542_RDH0 E1000_82542_RDH +#define E1000_82542_RDT0 E1000_82542_RDT +#define E1000_82542_SRRCTL(_n) (0x280C + ((_n) << 8)) /* Split and Replication + * RX Control - RW */ +#define E1000_82542_DCA_RXCTRL(_n) (0x02814 + ((_n) << 8)) +#define E1000_82542_RDBAH3 0x02B04 /* RX Desc Base High Queue 3 - RW */ +#define E1000_82542_RDBAL3 0x02B00 /* RX Desc Low Queue 3 - RW */ +#define E1000_82542_RDLEN3 0x02B08 /* RX Desc Length Queue 3 - RW */ +#define E1000_82542_RDH3 0x02B10 /* RX Desc Head Queue 3 - RW */ +#define E1000_82542_RDT3 0x02B18 /* RX Desc Tail Queue 3 - RW */ +#define E1000_82542_RDBAL2 0x02A00 /* RX Desc Base Low Queue 2 - RW */ +#define E1000_82542_RDBAH2 0x02A04 /* RX Desc Base High Queue 2 - RW */ +#define E1000_82542_RDLEN2 0x02A08 /* RX Desc Length Queue 2 - RW */ +#define E1000_82542_RDH2 0x02A10 /* RX Desc Head Queue 2 - RW */ +#define E1000_82542_RDT2 0x02A18 /* RX Desc Tail Queue 2 - RW */ +#define E1000_82542_RDTR1 0x00130 +#define E1000_82542_RDBAL1 0x00138 +#define E1000_82542_RDBAH1 0x0013C +#define E1000_82542_RDLEN1 0x00140 +#define E1000_82542_RDH1 0x00148 +#define E1000_82542_RDT1 0x00150 +#define E1000_82542_FCRTH 0x00160 +#define E1000_82542_FCRTL 0x00168 +#define E1000_82542_FCTTV E1000_FCTTV +#define E1000_82542_TXCW E1000_TXCW +#define E1000_82542_RXCW E1000_RXCW +#define E1000_82542_MTA 0x00200 +#define E1000_82542_TCTL E1000_TCTL +#define E1000_82542_TCTL_EXT E1000_TCTL_EXT +#define E1000_82542_TIPG E1000_TIPG +#define E1000_82542_TDBAL 0x00420 +#define E1000_82542_TDBAH 0x00424 +#define E1000_82542_TDLEN 0x00428 +#define E1000_82542_TDH 0x00430 +#define E1000_82542_TDT 0x00438 +#define E1000_82542_TIDV 0x00440 +#define E1000_82542_TBT E1000_TBT +#define E1000_82542_AIT E1000_AIT +#define E1000_82542_VFTA 0x00600 +#define E1000_82542_LEDCTL E1000_LEDCTL +#define E1000_82542_PBA E1000_PBA +#define E1000_82542_PBS E1000_PBS +#define E1000_82542_EEMNGCTL E1000_EEMNGCTL +#define E1000_82542_EEARBC E1000_EEARBC +#define E1000_82542_FLASHT E1000_FLASHT +#define E1000_82542_EEWR E1000_EEWR +#define E1000_82542_FLSWCTL E1000_FLSWCTL +#define E1000_82542_FLSWDATA E1000_FLSWDATA +#define E1000_82542_FLSWCNT E1000_FLSWCNT +#define E1000_82542_FLOP E1000_FLOP +#define E1000_82542_EXTCNF_CTRL E1000_EXTCNF_CTRL +#define E1000_82542_EXTCNF_SIZE E1000_EXTCNF_SIZE +#define E1000_82542_PHY_CTRL E1000_PHY_CTRL +#define E1000_82542_ERT E1000_ERT +#define E1000_82542_RXDCTL E1000_RXDCTL +#define E1000_82542_RXDCTL1 E1000_RXDCTL1 +#define E1000_82542_RADV E1000_RADV +#define E1000_82542_RSRPD E1000_RSRPD +#define E1000_82542_TXDMAC E1000_TXDMAC +#define E1000_82542_KABGTXD E1000_KABGTXD +#define E1000_82542_TDFHS E1000_TDFHS +#define E1000_82542_TDFTS E1000_TDFTS +#define E1000_82542_TDFPC E1000_TDFPC +#define E1000_82542_TXDCTL E1000_TXDCTL +#define E1000_82542_TADV E1000_TADV +#define E1000_82542_TSPMT E1000_TSPMT +#define E1000_82542_CRCERRS E1000_CRCERRS +#define E1000_82542_ALGNERRC E1000_ALGNERRC +#define E1000_82542_SYMERRS E1000_SYMERRS +#define E1000_82542_RXERRC E1000_RXERRC +#define E1000_82542_MPC E1000_MPC +#define E1000_82542_SCC E1000_SCC +#define E1000_82542_ECOL E1000_ECOL +#define E1000_82542_MCC E1000_MCC +#define E1000_82542_LATECOL E1000_LATECOL +#define E1000_82542_COLC E1000_COLC +#define E1000_82542_DC E1000_DC +#define E1000_82542_TNCRS E1000_TNCRS +#define E1000_82542_SEC E1000_SEC +#define E1000_82542_CEXTERR E1000_CEXTERR +#define E1000_82542_RLEC E1000_RLEC +#define E1000_82542_XONRXC E1000_XONRXC +#define E1000_82542_XONTXC E1000_XONTXC +#define E1000_82542_XOFFRXC E1000_XOFFRXC +#define E1000_82542_XOFFTXC E1000_XOFFTXC +#define E1000_82542_FCRUC E1000_FCRUC +#define E1000_82542_PRC64 E1000_PRC64 +#define E1000_82542_PRC127 E1000_PRC127 +#define E1000_82542_PRC255 E1000_PRC255 +#define E1000_82542_PRC511 E1000_PRC511 +#define E1000_82542_PRC1023 E1000_PRC1023 +#define E1000_82542_PRC1522 E1000_PRC1522 +#define E1000_82542_GPRC E1000_GPRC +#define E1000_82542_BPRC E1000_BPRC +#define E1000_82542_MPRC E1000_MPRC +#define E1000_82542_GPTC E1000_GPTC +#define E1000_82542_GORCL E1000_GORCL +#define E1000_82542_GORCH E1000_GORCH +#define E1000_82542_GOTCL E1000_GOTCL +#define E1000_82542_GOTCH E1000_GOTCH +#define E1000_82542_RNBC E1000_RNBC +#define E1000_82542_RUC E1000_RUC +#define E1000_82542_RFC E1000_RFC +#define E1000_82542_ROC E1000_ROC +#define E1000_82542_RJC E1000_RJC +#define E1000_82542_MGTPRC E1000_MGTPRC +#define E1000_82542_MGTPDC E1000_MGTPDC +#define E1000_82542_MGTPTC E1000_MGTPTC +#define E1000_82542_TORL E1000_TORL +#define E1000_82542_TORH E1000_TORH +#define E1000_82542_TOTL E1000_TOTL +#define E1000_82542_TOTH E1000_TOTH +#define E1000_82542_TPR E1000_TPR +#define E1000_82542_TPT E1000_TPT +#define E1000_82542_PTC64 E1000_PTC64 +#define E1000_82542_PTC127 E1000_PTC127 +#define E1000_82542_PTC255 E1000_PTC255 +#define E1000_82542_PTC511 E1000_PTC511 +#define E1000_82542_PTC1023 E1000_PTC1023 +#define E1000_82542_PTC1522 E1000_PTC1522 +#define E1000_82542_MPTC E1000_MPTC +#define E1000_82542_BPTC E1000_BPTC +#define E1000_82542_TSCTC E1000_TSCTC +#define E1000_82542_TSCTFC E1000_TSCTFC +#define E1000_82542_RXCSUM E1000_RXCSUM +#define E1000_82542_WUC E1000_WUC +#define E1000_82542_WUFC E1000_WUFC +#define E1000_82542_WUS E1000_WUS +#define E1000_82542_MANC E1000_MANC +#define E1000_82542_IPAV E1000_IPAV +#define E1000_82542_IP4AT E1000_IP4AT +#define E1000_82542_IP6AT E1000_IP6AT +#define E1000_82542_WUPL E1000_WUPL +#define E1000_82542_WUPM E1000_WUPM +#define E1000_82542_FFLT E1000_FFLT +#define E1000_82542_TDFH 0x08010 +#define E1000_82542_TDFT 0x08018 +#define E1000_82542_FFMT E1000_FFMT +#define E1000_82542_FFVT E1000_FFVT +#define E1000_82542_HOST_IF E1000_HOST_IF +#define E1000_82542_IAM E1000_IAM +#define E1000_82542_EEMNGCTL E1000_EEMNGCTL +#define E1000_82542_PSRCTL E1000_PSRCTL +#define E1000_82542_RAID E1000_RAID +#define E1000_82542_TARC0 E1000_TARC0 +#define E1000_82542_TDBAL1 E1000_TDBAL1 +#define E1000_82542_TDBAH1 E1000_TDBAH1 +#define E1000_82542_TDLEN1 E1000_TDLEN1 +#define E1000_82542_TDH1 E1000_TDH1 +#define E1000_82542_TDT1 E1000_TDT1 +#define E1000_82542_TXDCTL1 E1000_TXDCTL1 +#define E1000_82542_TARC1 E1000_TARC1 +#define E1000_82542_RFCTL E1000_RFCTL +#define E1000_82542_GCR E1000_GCR +#define E1000_82542_GSCL_1 E1000_GSCL_1 +#define E1000_82542_GSCL_2 E1000_GSCL_2 +#define E1000_82542_GSCL_3 E1000_GSCL_3 +#define E1000_82542_GSCL_4 E1000_GSCL_4 +#define E1000_82542_FACTPS E1000_FACTPS +#define E1000_82542_SWSM E1000_SWSM +#define E1000_82542_FWSM E1000_FWSM +#define E1000_82542_FFLT_DBG E1000_FFLT_DBG +#define E1000_82542_IAC E1000_IAC +#define E1000_82542_ICRXPTC E1000_ICRXPTC +#define E1000_82542_ICRXATC E1000_ICRXATC +#define E1000_82542_ICTXPTC E1000_ICTXPTC +#define E1000_82542_ICTXATC E1000_ICTXATC +#define E1000_82542_ICTXQEC E1000_ICTXQEC +#define E1000_82542_ICTXQMTC E1000_ICTXQMTC +#define E1000_82542_ICRXDMTC E1000_ICRXDMTC +#define E1000_82542_ICRXOC E1000_ICRXOC +#define E1000_82542_HICR E1000_HICR + +#define E1000_82542_CPUVEC E1000_CPUVEC +#define E1000_82542_MRQC E1000_MRQC +#define E1000_82542_RETA E1000_RETA +#define E1000_82542_RSSRK E1000_RSSRK +#define E1000_82542_RSSIM E1000_RSSIM +#define E1000_82542_RSSIR E1000_RSSIR +#define E1000_82542_KUMCTRLSTA E1000_KUMCTRLSTA +#define E1000_82542_SW_FW_SYNC E1000_SW_FW_SYNC + +/* Statistics counters collected by the MAC */ +struct em_hw_stats { + uint64_t crcerrs; + uint64_t algnerrc; + uint64_t symerrs; + uint64_t rxerrc; + uint64_t mpc; + uint64_t scc; + uint64_t ecol; + uint64_t mcc; + uint64_t latecol; + uint64_t colc; + uint64_t dc; + uint64_t tncrs; + uint64_t sec; + uint64_t cexterr; + uint64_t rlec; + uint64_t xonrxc; + uint64_t xontxc; + uint64_t xoffrxc; + uint64_t xofftxc; + uint64_t fcruc; + uint64_t prc64; + uint64_t prc127; + uint64_t prc255; + uint64_t prc511; + uint64_t prc1023; + uint64_t prc1522; + uint64_t gprc; + uint64_t bprc; + uint64_t mprc; + uint64_t gptc; + uint64_t gorcl; + uint64_t gorch; + uint64_t gotcl; + uint64_t gotch; + uint64_t rnbc; + uint64_t ruc; + uint64_t rfc; + uint64_t roc; + uint64_t rjc; + uint64_t mgprc; + uint64_t mgpdc; + uint64_t mgptc; + uint64_t torl; + uint64_t torh; + uint64_t totl; + uint64_t toth; + uint64_t tpr; + uint64_t tpt; + uint64_t ptc64; + uint64_t ptc127; + uint64_t ptc255; + uint64_t ptc511; + uint64_t ptc1023; + uint64_t ptc1522; + uint64_t mptc; + uint64_t bptc; + uint64_t tsctc; + uint64_t tsctfc; + uint64_t iac; + uint64_t icrxptc; + uint64_t icrxatc; + uint64_t ictxptc; + uint64_t ictxatc; + uint64_t ictxqec; + uint64_t ictxqmtc; + uint64_t icrxdmtc; + uint64_t icrxoc; +}; + +/* Structure containing variables used by the shared code (em_hw.c) */ +struct em_hw { + uint8_t *hw_addr; + uint8_t *flash_address; + em_mac_type mac_type; + em_phy_type phy_type; + uint32_t phy_init_script; + em_media_type media_type; + void *back; + struct em_shadow_ram *eeprom_shadow_ram; + uint32_t flash_bank_size; + uint32_t flash_base_addr; + uint32_t fc; + em_bus_speed bus_speed; + em_bus_width bus_width; + em_bus_type bus_type; + struct em_eeprom_info eeprom; + em_ms_type master_slave; + em_ms_type original_master_slave; + em_ffe_config ffe_config_state; + uint32_t asf_firmware_present; + uint32_t eeprom_semaphore_present; + uint32_t swfw_sync_present; + uint32_t swfwhw_semaphore_present; + + unsigned long io_base; + uint32_t phy_id; + uint32_t phy_revision; + uint32_t phy_addr; + uint32_t original_fc; + uint32_t txcw; + uint32_t autoneg_failed; + uint32_t max_frame_size; + uint32_t min_frame_size; + uint32_t mc_filter_type; + uint32_t num_mc_addrs; + uint32_t collision_delta; + uint32_t tx_packet_delta; + uint32_t ledctl_default; + uint32_t ledctl_mode1; + uint32_t ledctl_mode2; + boolean_t tx_pkt_filtering; + struct em_host_mng_dhcp_cookie mng_cookie; + uint16_t phy_spd_default; + uint16_t autoneg_advertised; + uint16_t pci_cmd_word; + uint16_t fc_high_water; + uint16_t fc_low_water; + uint16_t fc_pause_time; + uint16_t current_ifs_val; + uint16_t ifs_min_val; + uint16_t ifs_max_val; + uint16_t ifs_step_size; + uint16_t ifs_ratio; + uint16_t device_id; + uint16_t vendor_id; + uint16_t subsystem_id; + uint16_t subsystem_vendor_id; + uint8_t revision_id; + uint8_t autoneg; + uint8_t mdix; + uint8_t forced_speed_duplex; + uint8_t wait_autoneg_complete; + uint8_t dma_fairness; + uint8_t mac_addr[NODE_ADDRESS_SIZE]; + uint8_t perm_mac_addr[NODE_ADDRESS_SIZE]; + boolean_t disable_polarity_correction; + boolean_t speed_downgraded; + em_smart_speed smart_speed; + em_dsp_config dsp_config_state; + boolean_t get_link_status; + boolean_t serdes_link_down; + boolean_t tbi_compatibility_en; + boolean_t tbi_compatibility_on; + boolean_t laa_is_present; + boolean_t phy_reset_disable; + boolean_t initialize_hw_bits_disable; + boolean_t fc_send_xon; + boolean_t fc_strict_ieee; + boolean_t report_tx_early; + boolean_t adaptive_ifs; + boolean_t ifs_params_forced; + boolean_t in_ifs_mode; + boolean_t mng_reg_access_disabled; + boolean_t leave_av_bit_off; + boolean_t kmrn_lock_loss_workaround_disabled; +}; + + +#define E1000_EEPROM_SWDPIN0 0x0001 /* SWDPIN 0 EEPROM Value */ +#define E1000_EEPROM_LED_LOGIC 0x0020 /* Led Logic Word */ +#define E1000_EEPROM_RW_REG_DATA 16 /* Offset to data in EEPROM read/write registers */ +#define E1000_EEPROM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */ +#define E1000_EEPROM_RW_REG_START 1 /* First bit for telling part to start operation */ +#define E1000_EEPROM_RW_ADDR_SHIFT 2 /* Shift to the address bits */ +#define E1000_EEPROM_POLL_WRITE 1 /* Flag for polling for write complete */ +#define E1000_EEPROM_POLL_READ 0 /* Flag for polling for read complete */ +/* Register Bit Masks */ +/* Device Control */ +#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */ +#define E1000_CTRL_BEM 0x00000002 /* Endian Mode.0=little,1=big */ +#define E1000_CTRL_PRIOR 0x00000004 /* Priority on PCI. 0=rx,1=fair */ +#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master requests */ +#define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */ +#define E1000_CTRL_TME 0x00000010 /* Test mode. 0=normal,1=test */ +#define E1000_CTRL_SLE 0x00000020 /* Serial Link on 0=dis,1=en */ +#define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */ +#define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */ +#define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */ +#define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */ +#define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */ +#define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */ +#define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */ +#define E1000_CTRL_BEM32 0x00000400 /* Big Endian 32 mode */ +#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */ +#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */ +#define E1000_CTRL_D_UD_EN 0x00002000 /* Dock/Undock enable */ +#define E1000_CTRL_D_UD_POLARITY 0x00004000 /* Defined polarity of Dock/Undock indication in SDP[0] */ +#define E1000_CTRL_FORCE_PHY_RESET 0x00008000 /* Reset both PHY ports, through PHYRST_N pin */ +#define E1000_CTRL_EXT_LINK_EN 0x00010000 /* enable link status from external LINK_0 and LINK_1 pins */ +#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */ +#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */ +#define E1000_CTRL_SWDPIN2 0x00100000 /* SWDPIN 2 value */ +#define E1000_CTRL_SWDPIN3 0x00200000 /* SWDPIN 3 value */ +#define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */ +#define E1000_CTRL_SWDPIO1 0x00800000 /* SWDPIN 1 input or output */ +#define E1000_CTRL_SWDPIO2 0x01000000 /* SWDPIN 2 input or output */ +#define E1000_CTRL_SWDPIO3 0x02000000 /* SWDPIN 3 input or output */ +#define E1000_CTRL_RST 0x04000000 /* Global reset */ +#define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */ +#define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */ +#define E1000_CTRL_RTE 0x20000000 /* Routing tag enable */ +#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */ +#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */ +#define E1000_CTRL_SW2FW_INT 0x02000000 /* Initiate an interrupt to manageability engine */ +/* Device Status */ +#define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */ +#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */ +#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */ +#define E1000_STATUS_FUNC_SHIFT 2 +#define E1000_STATUS_FUNC_0 0x00000000 /* Function 0 */ +#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */ +#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */ +#define E1000_STATUS_TBIMODE 0x00000020 /* TBI mode */ +#define E1000_STATUS_SPEED_MASK 0x000000C0 +#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */ +#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */ +#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */ +#define E1000_STATUS_LAN_INIT_DONE 0x00000200 /* Lan Init Completion + by EEPROM/Flash */ +#define E1000_STATUS_ASDV 0x00000300 /* Auto speed detect value */ +#define E1000_STATUS_DOCK_CI 0x00000800 /* Change in Dock/Undock state. Clear on write '0'. */ +#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Status of Master requests. */ +#define E1000_STATUS_MTXCKOK 0x00000400 /* MTX clock running OK */ +#define E1000_STATUS_PCI66 0x00000800 /* In 66Mhz slot */ +#define E1000_STATUS_BUS64 0x00001000 /* In 64 bit slot */ +#define E1000_STATUS_PCIX_MODE 0x00002000 /* PCI-X mode */ +#define E1000_STATUS_PCIX_SPEED 0x0000C000 /* PCI-X bus speed */ +#define E1000_STATUS_BMC_SKU_0 0x00100000 /* BMC USB redirect disabled */ +#define E1000_STATUS_BMC_SKU_1 0x00200000 /* BMC SRAM disabled */ +#define E1000_STATUS_BMC_SKU_2 0x00400000 /* BMC SDRAM disabled */ +#define E1000_STATUS_BMC_CRYPTO 0x00800000 /* BMC crypto disabled */ +#define E1000_STATUS_BMC_LITE 0x01000000 /* BMC external code execution disabled */ +#define E1000_STATUS_RGMII_ENABLE 0x02000000 /* RGMII disabled */ +#define E1000_STATUS_FUSE_8 0x04000000 +#define E1000_STATUS_FUSE_9 0x08000000 +#define E1000_STATUS_SERDES0_DIS 0x10000000 /* SERDES disabled on port 0 */ +#define E1000_STATUS_SERDES1_DIS 0x20000000 /* SERDES disabled on port 1 */ + +/* Constants used to intrepret the masked PCI-X bus speed. */ +#define E1000_STATUS_PCIX_SPEED_66 0x00000000 /* PCI-X bus speed 50-66 MHz */ +#define E1000_STATUS_PCIX_SPEED_100 0x00004000 /* PCI-X bus speed 66-100 MHz */ +#define E1000_STATUS_PCIX_SPEED_133 0x00008000 /* PCI-X bus speed 100-133 MHz */ + +/* EEPROM/Flash Control */ +#define E1000_EECD_SK 0x00000001 /* EEPROM Clock */ +#define E1000_EECD_CS 0x00000002 /* EEPROM Chip Select */ +#define E1000_EECD_DI 0x00000004 /* EEPROM Data In */ +#define E1000_EECD_DO 0x00000008 /* EEPROM Data Out */ +#define E1000_EECD_FWE_MASK 0x00000030 +#define E1000_EECD_FWE_DIS 0x00000010 /* Disable FLASH writes */ +#define E1000_EECD_FWE_EN 0x00000020 /* Enable FLASH writes */ +#define E1000_EECD_FWE_SHIFT 4 +#define E1000_EECD_REQ 0x00000040 /* EEPROM Access Request */ +#define E1000_EECD_GNT 0x00000080 /* EEPROM Access Grant */ +#define E1000_EECD_PRES 0x00000100 /* EEPROM Present */ +#define E1000_EECD_SIZE 0x00000200 /* EEPROM Size (0=64 word 1=256 word) */ +#define E1000_EECD_ADDR_BITS 0x00000400 /* EEPROM Addressing bits based on type + * (0-small, 1-large) */ +#define E1000_EECD_TYPE 0x00002000 /* EEPROM Type (1-SPI, 0-Microwire) */ +#ifndef E1000_EEPROM_GRANT_ATTEMPTS +#define E1000_EEPROM_GRANT_ATTEMPTS 1000 /* EEPROM # attempts to gain grant */ +#endif +#define E1000_EECD_AUTO_RD 0x00000200 /* EEPROM Auto Read done */ +#define E1000_EECD_SIZE_EX_MASK 0x00007800 /* EEprom Size */ +#define E1000_EECD_SIZE_EX_SHIFT 11 +#define E1000_EECD_NVADDS 0x00018000 /* NVM Address Size */ +#define E1000_EECD_SELSHAD 0x00020000 /* Select Shadow RAM */ +#define E1000_EECD_INITSRAM 0x00040000 /* Initialize Shadow RAM */ +#define E1000_EECD_FLUPD 0x00080000 /* Update FLASH */ +#define E1000_EECD_AUPDEN 0x00100000 /* Enable Autonomous FLASH update */ +#define E1000_EECD_SHADV 0x00200000 /* Shadow RAM Data Valid */ +#define E1000_EECD_SEC1VAL 0x00400000 /* Sector One Valid */ +#define E1000_EECD_SECVAL_SHIFT 22 +#define E1000_STM_OPCODE 0xDB00 +#define E1000_HICR_FW_RESET 0xC0 + +#define E1000_SHADOW_RAM_WORDS 2048 +#define E1000_ICH_NVM_SIG_WORD 0x13 +#define E1000_ICH_NVM_SIG_MASK 0xC0 + +/* EEPROM Read */ +#define E1000_EERD_START 0x00000001 /* Start Read */ +#define E1000_EERD_DONE 0x00000010 /* Read Done */ +#define E1000_EERD_ADDR_SHIFT 8 +#define E1000_EERD_ADDR_MASK 0x0000FF00 /* Read Address */ +#define E1000_EERD_DATA_SHIFT 16 +#define E1000_EERD_DATA_MASK 0xFFFF0000 /* Read Data */ + +/* SPI EEPROM Status Register */ +#define EEPROM_STATUS_RDY_SPI 0x01 +#define EEPROM_STATUS_WEN_SPI 0x02 +#define EEPROM_STATUS_BP0_SPI 0x04 +#define EEPROM_STATUS_BP1_SPI 0x08 +#define EEPROM_STATUS_WPEN_SPI 0x80 + +/* Extended Device Control */ +#define E1000_CTRL_EXT_GPI0_EN 0x00000001 /* Maps SDP4 to GPI0 */ +#define E1000_CTRL_EXT_GPI1_EN 0x00000002 /* Maps SDP5 to GPI1 */ +#define E1000_CTRL_EXT_PHYINT_EN E1000_CTRL_EXT_GPI1_EN +#define E1000_CTRL_EXT_GPI2_EN 0x00000004 /* Maps SDP6 to GPI2 */ +#define E1000_CTRL_EXT_GPI3_EN 0x00000008 /* Maps SDP7 to GPI3 */ +#define E1000_CTRL_EXT_SDP4_DATA 0x00000010 /* Value of SW Defineable Pin 4 */ +#define E1000_CTRL_EXT_SDP5_DATA 0x00000020 /* Value of SW Defineable Pin 5 */ +#define E1000_CTRL_EXT_PHY_INT E1000_CTRL_EXT_SDP5_DATA +#define E1000_CTRL_EXT_SDP6_DATA 0x00000040 /* Value of SW Defineable Pin 6 */ +#define E1000_CTRL_EXT_SDP7_DATA 0x00000080 /* Value of SW Defineable Pin 7 */ +#define E1000_CTRL_EXT_SDP4_DIR 0x00000100 /* Direction of SDP4 0=in 1=out */ +#define E1000_CTRL_EXT_SDP5_DIR 0x00000200 /* Direction of SDP5 0=in 1=out */ +#define E1000_CTRL_EXT_SDP6_DIR 0x00000400 /* Direction of SDP6 0=in 1=out */ +#define E1000_CTRL_EXT_SDP7_DIR 0x00000800 /* Direction of SDP7 0=in 1=out */ +#define E1000_CTRL_EXT_ASDCHK 0x00001000 /* Initiate an ASD sequence */ +#define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */ +#define E1000_CTRL_EXT_IPS 0x00004000 /* Invert Power State */ +#define E1000_CTRL_EXT_SPD_BYPS 0x00008000 /* Speed Select Bypass */ +#define E1000_CTRL_EXT_RO_DIS 0x00020000 /* Relaxed Ordering disable */ +#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000 +#define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000 +#define E1000_CTRL_EXT_LINK_MODE_TBI 0x00C00000 +#define E1000_CTRL_EXT_LINK_MODE_KMRN 0x00000000 +#define E1000_CTRL_EXT_LINK_MODE_SERDES 0x00C00000 +#define E1000_CTRL_EXT_LINK_MODE_SGMII 0x00800000 +#define E1000_CTRL_EXT_WR_WMARK_MASK 0x03000000 +#define E1000_CTRL_EXT_WR_WMARK_256 0x00000000 +#define E1000_CTRL_EXT_WR_WMARK_320 0x01000000 +#define E1000_CTRL_EXT_WR_WMARK_384 0x02000000 +#define E1000_CTRL_EXT_WR_WMARK_448 0x03000000 +#define E1000_CTRL_EXT_DRV_LOAD 0x10000000 /* Driver loaded bit for FW */ +#define E1000_CTRL_EXT_IAME 0x08000000 /* Interrupt acknowledge Auto-mask */ +#define E1000_CTRL_EXT_INT_TIMER_CLR 0x20000000 /* Clear Interrupt timers after IMS clear */ +#define E1000_CRTL_EXT_PB_PAREN 0x01000000 /* packet buffer parity error detection enabled */ +#define E1000_CTRL_EXT_DF_PAREN 0x02000000 /* descriptor FIFO parity error detection enable */ +#define E1000_CTRL_EXT_GHOST_PAREN 0x40000000 + +/* MDI Control */ +#define E1000_MDIC_DATA_MASK 0x0000FFFF +#define E1000_MDIC_REG_MASK 0x001F0000 +#define E1000_MDIC_REG_SHIFT 16 +#define E1000_MDIC_PHY_MASK 0x03E00000 +#define E1000_MDIC_PHY_SHIFT 21 +#define E1000_MDIC_OP_WRITE 0x04000000 +#define E1000_MDIC_OP_READ 0x08000000 +#define E1000_MDIC_READY 0x10000000 +#define E1000_MDIC_INT_EN 0x20000000 +#define E1000_MDIC_ERROR 0x40000000 + +#define E1000_KUMCTRLSTA_MASK 0x0000FFFF +#define E1000_KUMCTRLSTA_OFFSET 0x001F0000 +#define E1000_KUMCTRLSTA_OFFSET_SHIFT 16 +#define E1000_KUMCTRLSTA_REN 0x00200000 + +#define E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL 0x00000000 +#define E1000_KUMCTRLSTA_OFFSET_CTRL 0x00000001 +#define E1000_KUMCTRLSTA_OFFSET_INB_CTRL 0x00000002 +#define E1000_KUMCTRLSTA_OFFSET_DIAG 0x00000003 +#define E1000_KUMCTRLSTA_OFFSET_TIMEOUTS 0x00000004 +#define E1000_KUMCTRLSTA_OFFSET_INB_PARAM 0x00000009 +#define E1000_KUMCTRLSTA_OFFSET_HD_CTRL 0x00000010 +#define E1000_KUMCTRLSTA_OFFSET_M2P_SERDES 0x0000001E +#define E1000_KUMCTRLSTA_OFFSET_M2P_MODES 0x0000001F + +/* FIFO Control */ +#define E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS 0x00000008 +#define E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS 0x00000800 + +/* In-Band Control */ +#define E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT 0x00000500 +#define E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING 0x00000010 + +/* Half-Duplex Control */ +#define E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT 0x00000004 +#define E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT 0x00000000 + +#define E1000_KUMCTRLSTA_OFFSET_K0S_CTRL 0x0000001E + +#define E1000_KUMCTRLSTA_DIAG_FELPBK 0x2000 +#define E1000_KUMCTRLSTA_DIAG_NELPBK 0x1000 + +#define E1000_KUMCTRLSTA_K0S_100_EN 0x2000 +#define E1000_KUMCTRLSTA_K0S_GBE_EN 0x1000 +#define E1000_KUMCTRLSTA_K0S_ENTRY_LATENCY_MASK 0x0003 + +#define E1000_KABGTXD_BGSQLBIAS 0x00050000 + +#define E1000_PHY_CTRL_SPD_EN 0x00000001 +#define E1000_PHY_CTRL_D0A_LPLU 0x00000002 +#define E1000_PHY_CTRL_NOND0A_LPLU 0x00000004 +#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008 +#define E1000_PHY_CTRL_GBE_DISABLE 0x00000040 +#define E1000_PHY_CTRL_B2B_EN 0x00000080 + +/* LED Control */ +#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F +#define E1000_LEDCTL_LED0_MODE_SHIFT 0 +#define E1000_LEDCTL_LED0_BLINK_RATE 0x0000020 +#define E1000_LEDCTL_LED0_IVRT 0x00000040 +#define E1000_LEDCTL_LED0_BLINK 0x00000080 +#define E1000_LEDCTL_LED1_MODE_MASK 0x00000F00 +#define E1000_LEDCTL_LED1_MODE_SHIFT 8 +#define E1000_LEDCTL_LED1_BLINK_RATE 0x0002000 +#define E1000_LEDCTL_LED1_IVRT 0x00004000 +#define E1000_LEDCTL_LED1_BLINK 0x00008000 +#define E1000_LEDCTL_LED2_MODE_MASK 0x000F0000 +#define E1000_LEDCTL_LED2_MODE_SHIFT 16 +#define E1000_LEDCTL_LED2_BLINK_RATE 0x00200000 +#define E1000_LEDCTL_LED2_IVRT 0x00400000 +#define E1000_LEDCTL_LED2_BLINK 0x00800000 +#define E1000_LEDCTL_LED3_MODE_MASK 0x0F000000 +#define E1000_LEDCTL_LED3_MODE_SHIFT 24 +#define E1000_LEDCTL_LED3_BLINK_RATE 0x20000000 +#define E1000_LEDCTL_LED3_IVRT 0x40000000 +#define E1000_LEDCTL_LED3_BLINK 0x80000000 + +#define E1000_LEDCTL_MODE_LINK_10_1000 0x0 +#define E1000_LEDCTL_MODE_LINK_100_1000 0x1 +#define E1000_LEDCTL_MODE_LINK_UP 0x2 +#define E1000_LEDCTL_MODE_ACTIVITY 0x3 +#define E1000_LEDCTL_MODE_LINK_ACTIVITY 0x4 +#define E1000_LEDCTL_MODE_LINK_10 0x5 +#define E1000_LEDCTL_MODE_LINK_100 0x6 +#define E1000_LEDCTL_MODE_LINK_1000 0x7 +#define E1000_LEDCTL_MODE_PCIX_MODE 0x8 +#define E1000_LEDCTL_MODE_FULL_DUPLEX 0x9 +#define E1000_LEDCTL_MODE_COLLISION 0xA +#define E1000_LEDCTL_MODE_BUS_SPEED 0xB +#define E1000_LEDCTL_MODE_BUS_SIZE 0xC +#define E1000_LEDCTL_MODE_PAUSED 0xD +#define E1000_LEDCTL_MODE_LED_ON 0xE +#define E1000_LEDCTL_MODE_LED_OFF 0xF + +/* Receive Address */ +#define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */ + +/* Interrupt Cause Read */ +#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */ +#define E1000_ICR_TXQE 0x00000002 /* Transmit Queue empty */ +#define E1000_ICR_LSC 0x00000004 /* Link Status Change */ +#define E1000_ICR_RXSEQ 0x00000008 /* rx sequence error */ +#define E1000_ICR_RXDMT0 0x00000010 /* rx desc min. threshold (0) */ +#define E1000_ICR_RXO 0x00000040 /* rx overrun */ +#define E1000_ICR_RXT0 0x00000080 /* rx timer intr (ring 0) */ +#define E1000_ICR_MDAC 0x00000200 /* MDIO access complete */ +#define E1000_ICR_RXCFG 0x00000400 /* RX /c/ ordered set */ +#define E1000_ICR_GPI_EN0 0x00000800 /* GP Int 0 */ +#define E1000_ICR_GPI_EN1 0x00001000 /* GP Int 1 */ +#define E1000_ICR_GPI_EN2 0x00002000 /* GP Int 2 */ +#define E1000_ICR_GPI_EN3 0x00004000 /* GP Int 3 */ +#define E1000_ICR_TXD_LOW 0x00008000 +#define E1000_ICR_SRPD 0x00010000 +#define E1000_ICR_ACK 0x00020000 /* Receive Ack frame */ +#define E1000_ICR_MNG 0x00040000 /* Manageability event */ +#define E1000_ICR_DOCK 0x00080000 /* Dock/Undock */ +#define E1000_ICR_INT_ASSERTED 0x80000000 /* If this bit asserted, the driver should claim the interrupt */ +#define E1000_ICR_RXD_FIFO_PAR0 0x00100000 /* queue 0 Rx descriptor FIFO parity error */ +#define E1000_ICR_TXD_FIFO_PAR0 0x00200000 /* queue 0 Tx descriptor FIFO parity error */ +#define E1000_ICR_HOST_ARB_PAR 0x00400000 /* host arb read buffer parity error */ +#define E1000_ICR_PB_PAR 0x00800000 /* packet buffer parity error */ +#define E1000_ICR_RXD_FIFO_PAR1 0x01000000 /* queue 1 Rx descriptor FIFO parity error */ +#define E1000_ICR_TXD_FIFO_PAR1 0x02000000 /* queue 1 Tx descriptor FIFO parity error */ +#define E1000_ICR_ALL_PARITY 0x03F00000 /* all parity error bits */ +#define E1000_ICR_DSW 0x00000020 /* FW changed the status of DISSW bit in the FWSM */ +#define E1000_ICR_PHYINT 0x00001000 /* LAN connected device generates an interrupt */ +#define E1000_ICR_EPRST 0x00100000 /* ME handware reset occurs */ + + +/* Interrupt Cause Set */ +#define E1000_ICS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ +#define E1000_ICS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */ +#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */ +#define E1000_ICS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */ +#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ +#define E1000_ICS_RXO E1000_ICR_RXO /* rx overrun */ +#define E1000_ICS_RXT0 E1000_ICR_RXT0 /* rx timer intr */ +#define E1000_ICS_MDAC E1000_ICR_MDAC /* MDIO access complete */ +#define E1000_ICS_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */ +#define E1000_ICS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */ +#define E1000_ICS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */ +#define E1000_ICS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */ +#define E1000_ICS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ +#define E1000_ICS_TXD_LOW E1000_ICR_TXD_LOW +#define E1000_ICS_SRPD E1000_ICR_SRPD +#define E1000_ICS_ACK E1000_ICR_ACK /* Receive Ack frame */ +#define E1000_ICS_MNG E1000_ICR_MNG /* Manageability event */ +#define E1000_ICS_DOCK E1000_ICR_DOCK /* Dock/Undock */ +#define E1000_ICS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* queue 0 Rx descriptor FIFO parity error */ +#define E1000_ICS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* queue 0 Tx descriptor FIFO parity error */ +#define E1000_ICS_HOST_ARB_PAR E1000_ICR_HOST_ARB_PAR /* host arb read buffer parity error */ +#define E1000_ICS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */ +#define E1000_ICS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */ +#define E1000_ICS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */ +#define E1000_ICS_DSW E1000_ICR_DSW +#define E1000_ICS_PHYINT E1000_ICR_PHYINT +#define E1000_ICS_EPRST E1000_ICR_EPRST + + +/* Interrupt Mask Set */ +#define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ +#define E1000_IMS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */ +#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */ +#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */ +#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ +#define E1000_IMS_RXO E1000_ICR_RXO /* rx overrun */ +#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* rx timer intr */ +#define E1000_IMS_MDAC E1000_ICR_MDAC /* MDIO access complete */ +#define E1000_IMS_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */ +#define E1000_IMS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */ +#define E1000_IMS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */ +#define E1000_IMS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */ +#define E1000_IMS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ +#define E1000_IMS_TXD_LOW E1000_ICR_TXD_LOW +#define E1000_IMS_SRPD E1000_ICR_SRPD +#define E1000_IMS_ACK E1000_ICR_ACK /* Receive Ack frame */ +#define E1000_IMS_MNG E1000_ICR_MNG /* Manageability event */ +#define E1000_IMS_DOCK E1000_ICR_DOCK /* Dock/Undock */ +#define E1000_IMS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* queue 0 Rx descriptor FIFO parity error */ +#define E1000_IMS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* queue 0 Tx descriptor FIFO parity error */ +#define E1000_IMS_HOST_ARB_PAR E1000_ICR_HOST_ARB_PAR /* host arb read buffer parity error */ +#define E1000_IMS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */ +#define E1000_IMS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */ +#define E1000_IMS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */ +#define E1000_IMS_DSW E1000_ICR_DSW +#define E1000_IMS_PHYINT E1000_ICR_PHYINT +#define E1000_IMS_EPRST E1000_ICR_EPRST + + +/* Interrupt Mask Clear */ +#define E1000_IMC_TXDW E1000_ICR_TXDW /* Transmit desc written back */ +#define E1000_IMC_TXQE E1000_ICR_TXQE /* Transmit Queue empty */ +#define E1000_IMC_LSC E1000_ICR_LSC /* Link Status Change */ +#define E1000_IMC_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */ +#define E1000_IMC_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ +#define E1000_IMC_RXO E1000_ICR_RXO /* rx overrun */ +#define E1000_IMC_RXT0 E1000_ICR_RXT0 /* rx timer intr */ +#define E1000_IMC_MDAC E1000_ICR_MDAC /* MDIO access complete */ +#define E1000_IMC_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */ +#define E1000_IMC_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */ +#define E1000_IMC_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */ +#define E1000_IMC_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */ +#define E1000_IMC_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ +#define E1000_IMC_TXD_LOW E1000_ICR_TXD_LOW +#define E1000_IMC_SRPD E1000_ICR_SRPD +#define E1000_IMC_ACK E1000_ICR_ACK /* Receive Ack frame */ +#define E1000_IMC_MNG E1000_ICR_MNG /* Manageability event */ +#define E1000_IMC_DOCK E1000_ICR_DOCK /* Dock/Undock */ +#define E1000_IMC_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* queue 0 Rx descriptor FIFO parity error */ +#define E1000_IMC_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* queue 0 Tx descriptor FIFO parity error */ +#define E1000_IMC_HOST_ARB_PAR E1000_ICR_HOST_ARB_PAR /* host arb read buffer parity error */ +#define E1000_IMC_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */ +#define E1000_IMC_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */ +#define E1000_IMC_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */ +#define E1000_IMC_DSW E1000_ICR_DSW +#define E1000_IMC_PHYINT E1000_ICR_PHYINT +#define E1000_IMC_EPRST E1000_ICR_EPRST + + +/* Receive Control */ +#define E1000_RCTL_RST 0x00000001 /* Software reset */ +#define E1000_RCTL_EN 0x00000002 /* enable */ +#define E1000_RCTL_SBP 0x00000004 /* store bad packet */ +#define E1000_RCTL_UPE 0x00000008 /* unicast promiscuous enable */ +#define E1000_RCTL_MPE 0x00000010 /* multicast promiscuous enab */ +#define E1000_RCTL_LPE 0x00000020 /* long packet enable */ +#define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */ +#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */ +#define E1000_RCTL_LBM_SLP 0x00000080 /* serial link loopback mode */ +#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */ +#define E1000_RCTL_DTYP_MASK 0x00000C00 /* Descriptor type mask */ +#define E1000_RCTL_DTYP_PS 0x00000400 /* Packet Split descriptor */ +#define E1000_RCTL_RDMTS_HALF 0x00000000 /* rx desc min threshold size */ +#define E1000_RCTL_RDMTS_QUAT 0x00000100 /* rx desc min threshold size */ +#define E1000_RCTL_RDMTS_EIGTH 0x00000200 /* rx desc min threshold size */ +#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */ +#define E1000_RCTL_MO_0 0x00000000 /* multicast offset 11:0 */ +#define E1000_RCTL_MO_1 0x00001000 /* multicast offset 12:1 */ +#define E1000_RCTL_MO_2 0x00002000 /* multicast offset 13:2 */ +#define E1000_RCTL_MO_3 0x00003000 /* multicast offset 15:4 */ +#define E1000_RCTL_MDR 0x00004000 /* multicast desc ring 0 */ +#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */ +/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */ +#define E1000_RCTL_SZ_2048 0x00000000 /* rx buffer size 2048 */ +#define E1000_RCTL_SZ_1024 0x00010000 /* rx buffer size 1024 */ +#define E1000_RCTL_SZ_512 0x00020000 /* rx buffer size 512 */ +#define E1000_RCTL_SZ_256 0x00030000 /* rx buffer size 256 */ +/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */ +#define E1000_RCTL_SZ_16384 0x00010000 /* rx buffer size 16384 */ +#define E1000_RCTL_SZ_8192 0x00020000 /* rx buffer size 8192 */ +#define E1000_RCTL_SZ_4096 0x00030000 /* rx buffer size 4096 */ +#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */ +#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */ +#define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */ +#define E1000_RCTL_DPF 0x00400000 /* discard pause frames */ +#define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */ +#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */ +#define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */ +#define E1000_RCTL_FLXBUF_MASK 0x78000000 /* Flexible buffer size */ +#define E1000_RCTL_FLXBUF_SHIFT 27 /* Flexible buffer shift */ + +/* Use byte values for the following shift parameters + * Usage: + * psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) & + * E1000_PSRCTL_BSIZE0_MASK) | + * ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) & + * E1000_PSRCTL_BSIZE1_MASK) | + * ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) & + * E1000_PSRCTL_BSIZE2_MASK) | + * ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |; + * E1000_PSRCTL_BSIZE3_MASK)) + * where value0 = [128..16256], default=256 + * value1 = [1024..64512], default=4096 + * value2 = [0..64512], default=4096 + * value3 = [0..64512], default=0 + */ + +#define E1000_PSRCTL_BSIZE0_MASK 0x0000007F +#define E1000_PSRCTL_BSIZE1_MASK 0x00003F00 +#define E1000_PSRCTL_BSIZE2_MASK 0x003F0000 +#define E1000_PSRCTL_BSIZE3_MASK 0x3F000000 + +#define E1000_PSRCTL_BSIZE0_SHIFT 7 /* Shift _right_ 7 */ +#define E1000_PSRCTL_BSIZE1_SHIFT 2 /* Shift _right_ 2 */ +#define E1000_PSRCTL_BSIZE2_SHIFT 6 /* Shift _left_ 6 */ +#define E1000_PSRCTL_BSIZE3_SHIFT 14 /* Shift _left_ 14 */ + +/* SW_W_SYNC definitions */ +#define E1000_SWFW_EEP_SM 0x0001 +#define E1000_SWFW_PHY0_SM 0x0002 +#define E1000_SWFW_PHY1_SM 0x0004 +#define E1000_SWFW_MAC_CSR_SM 0x0008 + +/* Receive Descriptor */ +#define E1000_RDT_DELAY 0x0000ffff /* Delay timer (1=1024us) */ +#define E1000_RDT_FPDB 0x80000000 /* Flush descriptor block */ +#define E1000_RDLEN_LEN 0x0007ff80 /* descriptor length */ +#define E1000_RDH_RDH 0x0000ffff /* receive descriptor head */ +#define E1000_RDT_RDT 0x0000ffff /* receive descriptor tail */ + +/* Flow Control */ +#define E1000_FCRTH_RTH 0x0000FFF8 /* Mask Bits[15:3] for RTH */ +#define E1000_FCRTH_XFCE 0x80000000 /* External Flow Control Enable */ +#define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */ +#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */ + +/* Flow Control Settings */ +#define E1000_FC_NONE 0 +#define E1000_FC_RX_PAUSE 1 +#define E1000_FC_TX_PAUSE 2 +#define E1000_FC_FULL 3 +#define E1000_FC_DEFAULT 0xFF + +/* Header split receive */ +#define E1000_RFCTL_ISCSI_DIS 0x00000001 +#define E1000_RFCTL_ISCSI_DWC_MASK 0x0000003E +#define E1000_RFCTL_ISCSI_DWC_SHIFT 1 +#define E1000_RFCTL_NFSW_DIS 0x00000040 +#define E1000_RFCTL_NFSR_DIS 0x00000080 +#define E1000_RFCTL_NFS_VER_MASK 0x00000300 +#define E1000_RFCTL_NFS_VER_SHIFT 8 +#define E1000_RFCTL_IPV6_DIS 0x00000400 +#define E1000_RFCTL_IPV6_XSUM_DIS 0x00000800 +#define E1000_RFCTL_ACK_DIS 0x00001000 +#define E1000_RFCTL_ACKD_DIS 0x00002000 +#define E1000_RFCTL_IPFRSP_DIS 0x00004000 +#define E1000_RFCTL_EXTEN 0x00008000 +#define E1000_RFCTL_IPV6_EX_DIS 0x00010000 +#define E1000_RFCTL_NEW_IPV6_EXT_DIS 0x00020000 + +/* Receive Descriptor Control */ +#define E1000_RXDCTL_PTHRESH 0x0000003F /* RXDCTL Prefetch Threshold */ +#define E1000_RXDCTL_HTHRESH 0x00003F00 /* RXDCTL Host Threshold */ +#define E1000_RXDCTL_WTHRESH 0x003F0000 /* RXDCTL Writeback Threshold */ +#define E1000_RXDCTL_GRAN 0x01000000 /* RXDCTL Granularity */ + +/* Transmit Descriptor Control */ +#define E1000_TXDCTL_PTHRESH 0x000000FF /* TXDCTL Prefetch Threshold */ +#define E1000_TXDCTL_HTHRESH 0x0000FF00 /* TXDCTL Host Threshold */ +#define E1000_TXDCTL_WTHRESH 0x00FF0000 /* TXDCTL Writeback Threshold */ +#define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */ +#define E1000_TXDCTL_LWTHRESH 0xFE000000 /* TXDCTL Low Threshold */ +#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */ +#define E1000_TXDCTL_COUNT_DESC 0x00400000 /* Enable the counting of desc. + still to be processed. */ +/* Transmit Configuration Word */ +#define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */ +#define E1000_TXCW_HD 0x00000040 /* TXCW half duplex */ +#define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */ +#define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */ +#define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */ +#define E1000_TXCW_RF 0x00003000 /* TXCW remote fault */ +#define E1000_TXCW_NP 0x00008000 /* TXCW next page */ +#define E1000_TXCW_CW 0x0000ffff /* TxConfigWord mask */ +#define E1000_TXCW_TXC 0x40000000 /* Transmit Config control */ +#define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */ + +/* Receive Configuration Word */ +#define E1000_RXCW_CW 0x0000ffff /* RxConfigWord mask */ +#define E1000_RXCW_NC 0x04000000 /* Receive config no carrier */ +#define E1000_RXCW_IV 0x08000000 /* Receive config invalid */ +#define E1000_RXCW_CC 0x10000000 /* Receive config change */ +#define E1000_RXCW_C 0x20000000 /* Receive config */ +#define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */ +#define E1000_RXCW_ANC 0x80000000 /* Auto-neg complete */ + +/* Transmit Control */ +#define E1000_TCTL_RST 0x00000001 /* software reset */ +#define E1000_TCTL_EN 0x00000002 /* enable tx */ +#define E1000_TCTL_BCE 0x00000004 /* busy check enable */ +#define E1000_TCTL_PSP 0x00000008 /* pad short packets */ +#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */ +#define E1000_TCTL_COLD 0x003ff000 /* collision distance */ +#define E1000_TCTL_SWXOFF 0x00400000 /* SW Xoff transmission */ +#define E1000_TCTL_PBE 0x00800000 /* Packet Burst Enable */ +#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */ +#define E1000_TCTL_NRTU 0x02000000 /* No Re-transmit on underrun */ +#define E1000_TCTL_MULR 0x10000000 /* Multiple request support */ +/* Extended Transmit Control */ +#define E1000_TCTL_EXT_BST_MASK 0x000003FF /* Backoff Slot Time */ +#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */ + +#define DEFAULT_80003ES2LAN_TCTL_EXT_GCEX 0x00010000 + +/* Receive Checksum Control */ +#define E1000_RXCSUM_PCSS_MASK 0x000000FF /* Packet Checksum Start */ +#define E1000_RXCSUM_IPOFL 0x00000100 /* IPv4 checksum offload */ +#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */ +#define E1000_RXCSUM_IPV6OFL 0x00000400 /* IPv6 checksum offload */ +#define E1000_RXCSUM_IPPCSE 0x00001000 /* IP payload checksum enable */ +#define E1000_RXCSUM_PCSD 0x00002000 /* packet checksum disabled */ + +/* Multiple Receive Queue Control */ +#define E1000_MRQC_ENABLE_MASK 0x00000003 +#define E1000_MRQC_ENABLE_RSS_2Q 0x00000001 +#define E1000_MRQC_ENABLE_RSS_INT 0x00000004 +#define E1000_MRQC_RSS_FIELD_MASK 0xFFFF0000 +#define E1000_MRQC_RSS_FIELD_IPV4_TCP 0x00010000 +#define E1000_MRQC_RSS_FIELD_IPV4 0x00020000 +#define E1000_MRQC_RSS_FIELD_IPV6_TCP_EX 0x00040000 +#define E1000_MRQC_RSS_FIELD_IPV6_EX 0x00080000 +#define E1000_MRQC_RSS_FIELD_IPV6 0x00100000 +#define E1000_MRQC_RSS_FIELD_IPV6_TCP 0x00200000 + +/* Definitions for power management and wakeup registers */ +/* Wake Up Control */ +#define E1000_WUC_APME 0x00000001 /* APM Enable */ +#define E1000_WUC_PME_EN 0x00000002 /* PME Enable */ +#define E1000_WUC_PME_STATUS 0x00000004 /* PME Status */ +#define E1000_WUC_APMPME 0x00000008 /* Assert PME on APM Wakeup */ +#define E1000_WUC_SPM 0x80000000 /* Enable SPM */ + +/* Wake Up Filter Control */ +#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */ +#define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */ +#define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */ +#define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */ +#define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */ +#define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */ +#define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */ +#define E1000_WUFC_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Enable */ +#define E1000_WUFC_IGNORE_TCO 0x00008000 /* Ignore WakeOn TCO packets */ +#define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */ +#define E1000_WUFC_FLX1 0x00020000 /* Flexible Filter 1 Enable */ +#define E1000_WUFC_FLX2 0x00040000 /* Flexible Filter 2 Enable */ +#define E1000_WUFC_FLX3 0x00080000 /* Flexible Filter 3 Enable */ +#define E1000_WUFC_ALL_FILTERS 0x000F00FF /* Mask for all wakeup filters */ +#define E1000_WUFC_FLX_OFFSET 16 /* Offset to the Flexible Filters bits */ +#define E1000_WUFC_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */ + +/* Wake Up Status */ +#define E1000_WUS_LNKC 0x00000001 /* Link Status Changed */ +#define E1000_WUS_MAG 0x00000002 /* Magic Packet Received */ +#define E1000_WUS_EX 0x00000004 /* Directed Exact Received */ +#define E1000_WUS_MC 0x00000008 /* Directed Multicast Received */ +#define E1000_WUS_BC 0x00000010 /* Broadcast Received */ +#define E1000_WUS_ARP 0x00000020 /* ARP Request Packet Received */ +#define E1000_WUS_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Received */ +#define E1000_WUS_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Received */ +#define E1000_WUS_FLX0 0x00010000 /* Flexible Filter 0 Match */ +#define E1000_WUS_FLX1 0x00020000 /* Flexible Filter 1 Match */ +#define E1000_WUS_FLX2 0x00040000 /* Flexible Filter 2 Match */ +#define E1000_WUS_FLX3 0x00080000 /* Flexible Filter 3 Match */ +#define E1000_WUS_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */ + +/* Management Control */ +#define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */ +#define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */ +#define E1000_MANC_R_ON_FORCE 0x00000004 /* Reset on Force TCO - RO */ +#define E1000_MANC_RMCP_EN 0x00000100 /* Enable RCMP 026Fh Filtering */ +#define E1000_MANC_0298_EN 0x00000200 /* Enable RCMP 0298h Filtering */ +#define E1000_MANC_IPV4_EN 0x00000400 /* Enable IPv4 */ +#define E1000_MANC_IPV6_EN 0x00000800 /* Enable IPv6 */ +#define E1000_MANC_SNAP_EN 0x00001000 /* Accept LLC/SNAP */ +#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */ +#define E1000_MANC_NEIGHBOR_EN 0x00004000 /* Enable Neighbor Discovery + * Filtering */ +#define E1000_MANC_ARP_RES_EN 0x00008000 /* Enable ARP response Filtering */ +#define E1000_MANC_TCO_RESET 0x00010000 /* TCO Reset Occurred */ +#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */ +#define E1000_MANC_REPORT_STATUS 0x00040000 /* Status Reporting Enabled */ +#define E1000_MANC_RCV_ALL 0x00080000 /* Receive All Enabled */ +#define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */ +#define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000 /* Enable MAC address + * filtering */ +#define E1000_MANC_EN_MNG2HOST 0x00200000 /* Enable MNG packets to host + * memory */ +#define E1000_MANC_EN_IP_ADDR_FILTER 0x00400000 /* Enable IP address + * filtering */ +#define E1000_MANC_EN_XSUM_FILTER 0x00800000 /* Enable checksum filtering */ +#define E1000_MANC_BR_EN 0x01000000 /* Enable broadcast filtering */ +#define E1000_MANC_SMB_REQ 0x01000000 /* SMBus Request */ +#define E1000_MANC_SMB_GNT 0x02000000 /* SMBus Grant */ +#define E1000_MANC_SMB_CLK_IN 0x04000000 /* SMBus Clock In */ +#define E1000_MANC_SMB_DATA_IN 0x08000000 /* SMBus Data In */ +#define E1000_MANC_SMB_DATA_OUT 0x10000000 /* SMBus Data Out */ +#define E1000_MANC_SMB_CLK_OUT 0x20000000 /* SMBus Clock Out */ + +#define E1000_MANC_SMB_DATA_OUT_SHIFT 28 /* SMBus Data Out Shift */ +#define E1000_MANC_SMB_CLK_OUT_SHIFT 29 /* SMBus Clock Out Shift */ + +/* SW Semaphore Register */ +#define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */ +#define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */ +#define E1000_SWSM_WMNG 0x00000004 /* Wake MNG Clock */ +#define E1000_SWSM_DRV_LOAD 0x00000008 /* Driver Loaded Bit */ + +/* FW Semaphore Register */ +#define E1000_FWSM_MODE_MASK 0x0000000E /* FW mode */ +#define E1000_FWSM_MODE_SHIFT 1 +#define E1000_FWSM_FW_VALID 0x00008000 /* FW established a valid mode */ + +#define E1000_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI reset */ +#define E1000_FWSM_DISSW 0x10000000 /* FW disable SW Write Access */ +#define E1000_FWSM_SKUSEL_MASK 0x60000000 /* LAN SKU select */ +#define E1000_FWSM_SKUEL_SHIFT 29 +#define E1000_FWSM_SKUSEL_EMB 0x0 /* Embedded SKU */ +#define E1000_FWSM_SKUSEL_CONS 0x1 /* Consumer SKU */ +#define E1000_FWSM_SKUSEL_PERF_100 0x2 /* Perf & Corp 10/100 SKU */ +#define E1000_FWSM_SKUSEL_PERF_GBE 0x3 /* Perf & Copr GbE SKU */ + +/* FFLT Debug Register */ +#define E1000_FFLT_DBG_INVC 0x00100000 /* Invalid /C/ code handling */ + +typedef enum { + em_mng_mode_none = 0, + em_mng_mode_asf, + em_mng_mode_pt, + em_mng_mode_ipmi, + em_mng_mode_host_interface_only +} em_mng_mode; + +/* Host Inteface Control Register */ +#define E1000_HICR_EN 0x00000001 /* Enable Bit - RO */ +#define E1000_HICR_C 0x00000002 /* Driver sets this bit when done + * to put command in RAM */ +#define E1000_HICR_SV 0x00000004 /* Status Validity */ +#define E1000_HICR_FWR 0x00000080 /* FW reset. Set by the Host */ + +/* Host Interface Command Interface - Address range 0x8800-0x8EFF */ +#define E1000_HI_MAX_DATA_LENGTH 252 /* Host Interface data length */ +#define E1000_HI_MAX_BLOCK_BYTE_LENGTH 1792 /* Number of bytes in range */ +#define E1000_HI_MAX_BLOCK_DWORD_LENGTH 448 /* Number of dwords in range */ +#define E1000_HI_COMMAND_TIMEOUT 500 /* Time in ms to process HI command */ + +struct em_host_command_header { + uint8_t command_id; + uint8_t command_length; + uint8_t command_options; /* I/F bits for command, status for return */ + uint8_t checksum; +}; +struct em_host_command_info { + struct em_host_command_header command_header; /* Command Head/Command Result Head has 4 bytes */ + uint8_t command_data[E1000_HI_MAX_DATA_LENGTH]; /* Command data can length 0..252 */ +}; + +/* Host SMB register #0 */ +#define E1000_HSMC0R_CLKIN 0x00000001 /* SMB Clock in */ +#define E1000_HSMC0R_DATAIN 0x00000002 /* SMB Data in */ +#define E1000_HSMC0R_DATAOUT 0x00000004 /* SMB Data out */ +#define E1000_HSMC0R_CLKOUT 0x00000008 /* SMB Clock out */ + +/* Host SMB register #1 */ +#define E1000_HSMC1R_CLKIN E1000_HSMC0R_CLKIN +#define E1000_HSMC1R_DATAIN E1000_HSMC0R_DATAIN +#define E1000_HSMC1R_DATAOUT E1000_HSMC0R_DATAOUT +#define E1000_HSMC1R_CLKOUT E1000_HSMC0R_CLKOUT + +/* FW Status Register */ +#define E1000_FWSTS_FWS_MASK 0x000000FF /* FW Status */ + +/* Wake Up Packet Length */ +#define E1000_WUPL_LENGTH_MASK 0x0FFF /* Only the lower 12 bits are valid */ + +#define E1000_MDALIGN 4096 + +/* PCI-Ex registers*/ + +/* PCI-Ex Control Register */ +#define E1000_GCR_RXD_NO_SNOOP 0x00000001 +#define E1000_GCR_RXDSCW_NO_SNOOP 0x00000002 +#define E1000_GCR_RXDSCR_NO_SNOOP 0x00000004 +#define E1000_GCR_TXD_NO_SNOOP 0x00000008 +#define E1000_GCR_TXDSCW_NO_SNOOP 0x00000010 +#define E1000_GCR_TXDSCR_NO_SNOOP 0x00000020 + +#define PCI_EX_NO_SNOOP_ALL (E1000_GCR_RXD_NO_SNOOP | \ + E1000_GCR_RXDSCW_NO_SNOOP | \ + E1000_GCR_RXDSCR_NO_SNOOP | \ + E1000_GCR_TXD_NO_SNOOP | \ + E1000_GCR_TXDSCW_NO_SNOOP | \ + E1000_GCR_TXDSCR_NO_SNOOP) + +#define PCI_EX_82566_SNOOP_ALL PCI_EX_NO_SNOOP_ALL + +#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000 +/* Function Active and Power State to MNG */ +#define E1000_FACTPS_FUNC0_POWER_STATE_MASK 0x00000003 +#define E1000_FACTPS_LAN0_VALID 0x00000004 +#define E1000_FACTPS_FUNC0_AUX_EN 0x00000008 +#define E1000_FACTPS_FUNC1_POWER_STATE_MASK 0x000000C0 +#define E1000_FACTPS_FUNC1_POWER_STATE_SHIFT 6 +#define E1000_FACTPS_LAN1_VALID 0x00000100 +#define E1000_FACTPS_FUNC1_AUX_EN 0x00000200 +#define E1000_FACTPS_FUNC2_POWER_STATE_MASK 0x00003000 +#define E1000_FACTPS_FUNC2_POWER_STATE_SHIFT 12 +#define E1000_FACTPS_IDE_ENABLE 0x00004000 +#define E1000_FACTPS_FUNC2_AUX_EN 0x00008000 +#define E1000_FACTPS_FUNC3_POWER_STATE_MASK 0x000C0000 +#define E1000_FACTPS_FUNC3_POWER_STATE_SHIFT 18 +#define E1000_FACTPS_SP_ENABLE 0x00100000 +#define E1000_FACTPS_FUNC3_AUX_EN 0x00200000 +#define E1000_FACTPS_FUNC4_POWER_STATE_MASK 0x03000000 +#define E1000_FACTPS_FUNC4_POWER_STATE_SHIFT 24 +#define E1000_FACTPS_IPMI_ENABLE 0x04000000 +#define E1000_FACTPS_FUNC4_AUX_EN 0x08000000 +#define E1000_FACTPS_MNGCG 0x20000000 +#define E1000_FACTPS_LAN_FUNC_SEL 0x40000000 +#define E1000_FACTPS_PM_STATE_CHANGED 0x80000000 + +/* PCI-Ex Config Space */ +#define PCI_EX_LINK_STATUS 0x12 +#define PCI_EX_LINK_WIDTH_MASK 0x3F0 +#define PCI_EX_LINK_WIDTH_SHIFT 4 + +/* EEPROM Commands - Microwire */ +#define EEPROM_READ_OPCODE_MICROWIRE 0x6 /* EEPROM read opcode */ +#define EEPROM_WRITE_OPCODE_MICROWIRE 0x5 /* EEPROM write opcode */ +#define EEPROM_ERASE_OPCODE_MICROWIRE 0x7 /* EEPROM erase opcode */ +#define EEPROM_EWEN_OPCODE_MICROWIRE 0x13 /* EEPROM erase/write enable */ +#define EEPROM_EWDS_OPCODE_MICROWIRE 0x10 /* EEPROM erast/write disable */ + +/* EEPROM Commands - SPI */ +#define EEPROM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */ +#define EEPROM_READ_OPCODE_SPI 0x03 /* EEPROM read opcode */ +#define EEPROM_WRITE_OPCODE_SPI 0x02 /* EEPROM write opcode */ +#define EEPROM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */ +#define EEPROM_WREN_OPCODE_SPI 0x06 /* EEPROM set Write Enable latch */ +#define EEPROM_WRDI_OPCODE_SPI 0x04 /* EEPROM reset Write Enable latch */ +#define EEPROM_RDSR_OPCODE_SPI 0x05 /* EEPROM read Status register */ +#define EEPROM_WRSR_OPCODE_SPI 0x01 /* EEPROM write Status register */ +#define EEPROM_ERASE4K_OPCODE_SPI 0x20 /* EEPROM ERASE 4KB */ +#define EEPROM_ERASE64K_OPCODE_SPI 0xD8 /* EEPROM ERASE 64KB */ +#define EEPROM_ERASE256_OPCODE_SPI 0xDB /* EEPROM ERASE 256B */ + +/* EEPROM Size definitions */ +#define EEPROM_WORD_SIZE_SHIFT 6 +#define EEPROM_SIZE_SHIFT 10 +#define EEPROM_SIZE_MASK 0x1C00 + +/* EEPROM Word Offsets */ +#define EEPROM_COMPAT 0x0003 +#define EEPROM_ID_LED_SETTINGS 0x0004 +#define EEPROM_VERSION 0x0005 +#define EEPROM_SERDES_AMPLITUDE 0x0006 /* For SERDES output amplitude adjustment. */ +#define EEPROM_PHY_CLASS_WORD 0x0007 +#define EEPROM_INIT_CONTROL1_REG 0x000A +#define EEPROM_INIT_CONTROL2_REG 0x000F +#define EEPROM_SWDEF_PINS_CTRL_PORT_1 0x0010 +#define EEPROM_INIT_CONTROL3_PORT_B 0x0014 +#define EEPROM_INIT_3GIO_3 0x001A +#define EEPROM_SWDEF_PINS_CTRL_PORT_0 0x0020 +#define EEPROM_INIT_CONTROL3_PORT_A 0x0024 +#define EEPROM_CFG 0x0012 +#define EEPROM_FLASH_VERSION 0x0032 +#define EEPROM_CHECKSUM_REG 0x003F + +#define E1000_EEPROM_CFG_DONE 0x00040000 /* MNG config cycle done */ +#define E1000_EEPROM_CFG_DONE_PORT_1 0x00080000 /* ...for second port */ + +/* Word definitions for ID LED Settings */ +#define ID_LED_RESERVED_0000 0x0000 +#define ID_LED_RESERVED_FFFF 0xFFFF +#define ID_LED_RESERVED_82573 0xF746 +#define ID_LED_DEFAULT_82573 0x1811 +#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \ + (ID_LED_OFF1_OFF2 << 8) | \ + (ID_LED_DEF1_DEF2 << 4) | \ + (ID_LED_DEF1_DEF2)) +#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \ + (ID_LED_DEF1_OFF2 << 8) | \ + (ID_LED_DEF1_ON2 << 4) | \ + (ID_LED_DEF1_DEF2)) +#define ID_LED_DEF1_DEF2 0x1 +#define ID_LED_DEF1_ON2 0x2 +#define ID_LED_DEF1_OFF2 0x3 +#define ID_LED_ON1_DEF2 0x4 +#define ID_LED_ON1_ON2 0x5 +#define ID_LED_ON1_OFF2 0x6 +#define ID_LED_OFF1_DEF2 0x7 +#define ID_LED_OFF1_ON2 0x8 +#define ID_LED_OFF1_OFF2 0x9 + +#define IGP_ACTIVITY_LED_MASK 0xFFFFF0FF +#define IGP_ACTIVITY_LED_ENABLE 0x0300 +#define IGP_LED3_MODE 0x07000000 + + +/* Mask bits for SERDES amplitude adjustment in Word 6 of the EEPROM */ +#define EEPROM_SERDES_AMPLITUDE_MASK 0x000F + +/* Mask bit for PHY class in Word 7 of the EEPROM */ +#define EEPROM_PHY_CLASS_A 0x8000 + +/* Mask bits for fields in Word 0x0a of the EEPROM */ +#define EEPROM_WORD0A_ILOS 0x0010 +#define EEPROM_WORD0A_SWDPIO 0x01E0 +#define EEPROM_WORD0A_LRST 0x0200 +#define EEPROM_WORD0A_FD 0x0400 +#define EEPROM_WORD0A_66MHZ 0x0800 + +/* Mask bits for fields in Word 0x0f of the EEPROM */ +#define EEPROM_WORD0F_PAUSE_MASK 0x3000 +#define EEPROM_WORD0F_PAUSE 0x1000 +#define EEPROM_WORD0F_ASM_DIR 0x2000 +#define EEPROM_WORD0F_ANE 0x0800 +#define EEPROM_WORD0F_SWPDIO_EXT 0x00F0 +#define EEPROM_WORD0F_LPLU 0x0001 + +/* Mask bits for fields in Word 0x10/0x20 of the EEPROM */ +#define EEPROM_WORD1020_GIGA_DISABLE 0x0010 +#define EEPROM_WORD1020_GIGA_DISABLE_NON_D0A 0x0008 + +/* Mask bits for fields in Word 0x1a of the EEPROM */ +#define EEPROM_WORD1A_ASPM_MASK 0x000C + +/* For checksumming, the sum of all words in the EEPROM should equal 0xBABA. */ +#define EEPROM_SUM 0xBABA + +/* EEPROM Map defines (WORD OFFSETS)*/ +#define EEPROM_NODE_ADDRESS_BYTE_0 0 +#define EEPROM_PBA_BYTE_1 8 + +#define EEPROM_RESERVED_WORD 0xFFFF + +/* EEPROM Map Sizes (Byte Counts) */ +#define PBA_SIZE 4 + +/* Collision related configuration parameters */ +#define E1000_COLLISION_THRESHOLD 15 +#define E1000_CT_SHIFT 4 +/* Collision distance is a 0-based value that applies to + * half-duplex-capable hardware only. */ +#define E1000_COLLISION_DISTANCE 63 +#define E1000_COLLISION_DISTANCE_82542 64 +#define E1000_FDX_COLLISION_DISTANCE E1000_COLLISION_DISTANCE +#define E1000_HDX_COLLISION_DISTANCE E1000_COLLISION_DISTANCE +#define E1000_COLD_SHIFT 12 + +/* Number of Transmit and Receive Descriptors must be a multiple of 8 */ +#define REQ_TX_DESCRIPTOR_MULTIPLE 8 +#define REQ_RX_DESCRIPTOR_MULTIPLE 8 + +/* Default values for the transmit IPG register */ +#define DEFAULT_82542_TIPG_IPGT 10 +#define DEFAULT_82543_TIPG_IPGT_FIBER 9 +#define DEFAULT_82543_TIPG_IPGT_COPPER 8 + +#define E1000_TIPG_IPGT_MASK 0x000003FF +#define E1000_TIPG_IPGR1_MASK 0x000FFC00 +#define E1000_TIPG_IPGR2_MASK 0x3FF00000 + +#define DEFAULT_82542_TIPG_IPGR1 2 +#define DEFAULT_82543_TIPG_IPGR1 8 +#define E1000_TIPG_IPGR1_SHIFT 10 + +#define DEFAULT_82542_TIPG_IPGR2 10 +#define DEFAULT_82543_TIPG_IPGR2 6 +#define DEFAULT_80003ES2LAN_TIPG_IPGR2 7 +#define E1000_TIPG_IPGR2_SHIFT 20 + +#define DEFAULT_80003ES2LAN_TIPG_IPGT_10_100 0x00000009 +#define DEFAULT_80003ES2LAN_TIPG_IPGT_1000 0x00000008 +#define E1000_TXDMAC_DPP 0x00000001 + +/* Adaptive IFS defines */ +#define TX_THRESHOLD_START 8 +#define TX_THRESHOLD_INCREMENT 10 +#define TX_THRESHOLD_DECREMENT 1 +#define TX_THRESHOLD_STOP 190 +#define TX_THRESHOLD_DISABLE 0 +#define TX_THRESHOLD_TIMER_MS 10000 +#define MIN_NUM_XMITS 1000 +#define IFS_MAX 80 +#define IFS_STEP 10 +#define IFS_MIN 40 +#define IFS_RATIO 4 + +/* Extended Configuration Control and Size */ +#define E1000_EXTCNF_CTRL_PCIE_WRITE_ENABLE 0x00000001 +#define E1000_EXTCNF_CTRL_PHY_WRITE_ENABLE 0x00000002 +#define E1000_EXTCNF_CTRL_D_UD_ENABLE 0x00000004 +#define E1000_EXTCNF_CTRL_D_UD_LATENCY 0x00000008 +#define E1000_EXTCNF_CTRL_D_UD_OWNER 0x00000010 +#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020 +#define E1000_EXTCNF_CTRL_MDIO_HW_OWNERSHIP 0x00000040 +#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER 0x0FFF0000 + +#define E1000_EXTCNF_SIZE_EXT_PHY_LENGTH 0x000000FF +#define E1000_EXTCNF_SIZE_EXT_DOCK_LENGTH 0x0000FF00 +#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH 0x00FF0000 +#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE 0x00000001 +#define E1000_EXTCNF_CTRL_SWFLAG 0x00000020 + +/* PBA constants */ +#define E1000_PBA_8K 0x0008 /* 8KB, default Rx allocation */ +#define E1000_PBA_12K 0x000C /* 12KB, default Rx allocation */ +#define E1000_PBA_16K 0x0010 /* 16KB, default TX allocation */ +#define E1000_PBA_22K 0x0016 +#define E1000_PBA_24K 0x0018 +#define E1000_PBA_30K 0x001E +#define E1000_PBA_32K 0x0020 +#define E1000_PBA_34K 0x0022 +#define E1000_PBA_38K 0x0026 +#define E1000_PBA_40K 0x0028 +#define E1000_PBA_48K 0x0030 /* 48KB, default RX allocation */ + +#define E1000_PBS_16K E1000_PBA_16K + +/* Flow Control Constants */ +#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001 +#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100 +#define FLOW_CONTROL_TYPE 0x8808 + +/* The historical defaults for the flow control values are given below. */ +#define FC_DEFAULT_HI_THRESH (0x8000) /* 32KB */ +#define FC_DEFAULT_LO_THRESH (0x4000) /* 16KB */ +#define FC_DEFAULT_TX_TIMER (0x100) /* ~130 us */ + +/* PCIX Config space */ +#define PCIX_COMMAND_REGISTER 0xE6 +#define PCIX_STATUS_REGISTER_LO 0xE8 +#define PCIX_STATUS_REGISTER_HI 0xEA + +#define PCIX_COMMAND_MMRBC_MASK 0x000C +#define PCIX_COMMAND_MMRBC_SHIFT 0x2 +#define PCIX_STATUS_HI_MMRBC_MASK 0x0060 +#define PCIX_STATUS_HI_MMRBC_SHIFT 0x5 +#define PCIX_STATUS_HI_MMRBC_4K 0x3 +#define PCIX_STATUS_HI_MMRBC_2K 0x2 + + +/* Number of bits required to shift right the "pause" bits from the + * EEPROM (bits 13:12) to the "pause" (bits 8:7) field in the TXCW register. + */ +#define PAUSE_SHIFT 5 + +/* Number of bits required to shift left the "SWDPIO" bits from the + * EEPROM (bits 8:5) to the "SWDPIO" (bits 25:22) field in the CTRL register. + */ +#define SWDPIO_SHIFT 17 + +/* Number of bits required to shift left the "SWDPIO_EXT" bits from the + * EEPROM word F (bits 7:4) to the bits 11:8 of The Extended CTRL register. + */ +#define SWDPIO__EXT_SHIFT 4 + +/* Number of bits required to shift left the "ILOS" bit from the EEPROM + * (bit 4) to the "ILOS" (bit 7) field in the CTRL register. + */ +#define ILOS_SHIFT 3 + + +#define RECEIVE_BUFFER_ALIGN_SIZE (256) + +/* Number of milliseconds we wait for auto-negotiation to complete */ +#define LINK_UP_TIMEOUT 500 + +/* Number of 100 microseconds we wait for PCI Express master disable */ +#define MASTER_DISABLE_TIMEOUT 800 +/* Number of milliseconds we wait for Eeprom auto read bit done after MAC reset */ +#define AUTO_READ_DONE_TIMEOUT 10 +/* Number of milliseconds we wait for PHY configuration done after MAC reset */ +#define PHY_CFG_TIMEOUT 100 + +#define E1000_TX_BUFFER_SIZE ((uint32_t)1514) + +/* The carrier extension symbol, as received by the NIC. */ +#define CARRIER_EXTENSION 0x0F + +/* TBI_ACCEPT macro definition: + * + * This macro requires: + * adapter = a pointer to struct em_hw + * status = the 8 bit status field of the RX descriptor with EOP set + * error = the 8 bit error field of the RX descriptor with EOP set + * length = the sum of all the length fields of the RX descriptors that + * make up the current frame + * last_byte = the last byte of the frame DMAed by the hardware + * max_frame_length = the maximum frame length we want to accept. + * min_frame_length = the minimum frame length we want to accept. + * + * This macro is a conditional that should be used in the interrupt + * handler's Rx processing routine when RxErrors have been detected. + * + * Typical use: + * ... + * if (TBI_ACCEPT) { + * accept_frame = TRUE; + * em_tbi_adjust_stats(adapter, MacAddress); + * frame_length--; + * } else { + * accept_frame = FALSE; + * } + * ... + */ + +#define TBI_ACCEPT(adapter, status, errors, length, last_byte) \ + ((adapter)->tbi_compatibility_on && \ + (((errors) & E1000_RXD_ERR_FRAME_ERR_MASK) == E1000_RXD_ERR_CE) && \ + ((last_byte) == CARRIER_EXTENSION) && \ + (((status) & E1000_RXD_STAT_VP) ? \ + (((length) > ((adapter)->min_frame_size - VLAN_TAG_SIZE)) && \ + ((length) <= ((adapter)->max_frame_size + 1))) : \ + (((length) > (adapter)->min_frame_size) && \ + ((length) <= ((adapter)->max_frame_size + VLAN_TAG_SIZE + 1))))) + + +/* Structures, enums, and macros for the PHY */ + +/* Bit definitions for the Management Data IO (MDIO) and Management Data + * Clock (MDC) pins in the Device Control Register. + */ +#define E1000_CTRL_PHY_RESET_DIR E1000_CTRL_SWDPIO0 +#define E1000_CTRL_PHY_RESET E1000_CTRL_SWDPIN0 +#define E1000_CTRL_MDIO_DIR E1000_CTRL_SWDPIO2 +#define E1000_CTRL_MDIO E1000_CTRL_SWDPIN2 +#define E1000_CTRL_MDC_DIR E1000_CTRL_SWDPIO3 +#define E1000_CTRL_MDC E1000_CTRL_SWDPIN3 +#define E1000_CTRL_PHY_RESET_DIR4 E1000_CTRL_EXT_SDP4_DIR +#define E1000_CTRL_PHY_RESET4 E1000_CTRL_EXT_SDP4_DATA + + +/* PHY 1000 MII Register/Bit Definitions */ +/* PHY Registers defined by IEEE */ +#define PHY_CTRL 0x00 /* Control Register */ +#define PHY_STATUS 0x01 /* Status Regiser */ +#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */ +#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */ +#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */ +#define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */ +#define PHY_AUTONEG_EXP 0x06 /* Autoneg Expansion Reg */ +#define PHY_NEXT_PAGE_TX 0x07 /* Next Page TX */ +#define PHY_LP_NEXT_PAGE 0x08 /* Link Partner Next Page */ +#define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */ +#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */ +#define PHY_EXT_STATUS 0x0F /* Extended Status Reg */ + +#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */ +#define MAX_PHY_MULTI_PAGE_REG 0xF /* Registers equal on all pages */ + +/* M88E1000 Specific Registers */ +#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Register */ +#define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Register */ +#define M88E1000_INT_ENABLE 0x12 /* Interrupt Enable Register */ +#define M88E1000_INT_STATUS 0x13 /* Interrupt Status Register */ +#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Control */ +#define M88E1000_RX_ERR_CNTR 0x15 /* Receive Error Counter */ + +#define M88E1000_PHY_EXT_CTRL 0x1A /* PHY extend control register */ +#define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg 29 for page number setting */ +#define M88E1000_PHY_GEN_CONTROL 0x1E /* Its meaning depends on reg 29 */ +#define M88E1000_PHY_VCO_REG_BIT8 0x100 /* Bits 8 & 11 are adjusted for */ +#define M88E1000_PHY_VCO_REG_BIT11 0x800 /* improved BER performance */ + +#define IGP01E1000_IEEE_REGS_PAGE 0x0000 +#define IGP01E1000_IEEE_RESTART_AUTONEG 0x3300 +#define IGP01E1000_IEEE_FORCE_GIGA 0x0140 + +/* IGP01E1000 Specific Registers */ +#define IGP01E1000_PHY_PORT_CONFIG 0x10 /* PHY Specific Port Config Register */ +#define IGP01E1000_PHY_PORT_STATUS 0x11 /* PHY Specific Status Register */ +#define IGP01E1000_PHY_PORT_CTRL 0x12 /* PHY Specific Control Register */ +#define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health Register */ +#define IGP01E1000_GMII_FIFO 0x14 /* GMII FIFO Register */ +#define IGP01E1000_PHY_CHANNEL_QUALITY 0x15 /* PHY Channel Quality Register */ +#define IGP02E1000_PHY_POWER_MGMT 0x19 +#define IGP01E1000_PHY_PAGE_SELECT 0x1F /* PHY Page Select Core Register */ + +/* IGP01E1000 AGC Registers - stores the cable length values*/ +#define IGP01E1000_PHY_AGC_A 0x1172 +#define IGP01E1000_PHY_AGC_B 0x1272 +#define IGP01E1000_PHY_AGC_C 0x1472 +#define IGP01E1000_PHY_AGC_D 0x1872 + +/* IGP02E1000 AGC Registers for cable length values */ +#define IGP02E1000_PHY_AGC_A 0x11B1 +#define IGP02E1000_PHY_AGC_B 0x12B1 +#define IGP02E1000_PHY_AGC_C 0x14B1 +#define IGP02E1000_PHY_AGC_D 0x18B1 + +/* IGP01E1000 DSP Reset Register */ +#define IGP01E1000_PHY_DSP_RESET 0x1F33 +#define IGP01E1000_PHY_DSP_SET 0x1F71 +#define IGP01E1000_PHY_DSP_FFE 0x1F35 + +#define IGP01E1000_PHY_CHANNEL_NUM 4 +#define IGP02E1000_PHY_CHANNEL_NUM 4 + +#define IGP01E1000_PHY_AGC_PARAM_A 0x1171 +#define IGP01E1000_PHY_AGC_PARAM_B 0x1271 +#define IGP01E1000_PHY_AGC_PARAM_C 0x1471 +#define IGP01E1000_PHY_AGC_PARAM_D 0x1871 + +#define IGP01E1000_PHY_EDAC_MU_INDEX 0xC000 +#define IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS 0x8000 + +#define IGP01E1000_PHY_ANALOG_TX_STATE 0x2890 +#define IGP01E1000_PHY_ANALOG_CLASS_A 0x2000 +#define IGP01E1000_PHY_FORCE_ANALOG_ENABLE 0x0004 +#define IGP01E1000_PHY_DSP_FFE_CM_CP 0x0069 + +#define IGP01E1000_PHY_DSP_FFE_DEFAULT 0x002A +/* IGP01E1000 PCS Initialization register - stores the polarity status when + * speed = 1000 Mbps. */ +#define IGP01E1000_PHY_PCS_INIT_REG 0x00B4 +#define IGP01E1000_PHY_PCS_CTRL_REG 0x00B5 + +#define IGP01E1000_ANALOG_REGS_PAGE 0x20C0 + +/* Bits... + * 15-5: page + * 4-0: register offset + */ +#define GG82563_PAGE_SHIFT 5 +#define GG82563_REG(page, reg) \ + (((page) << GG82563_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS)) +#define GG82563_MIN_ALT_REG 30 + +/* GG82563 Specific Registers */ +#define GG82563_PHY_SPEC_CTRL \ + GG82563_REG(0, 16) /* PHY Specific Control */ +#define GG82563_PHY_SPEC_STATUS \ + GG82563_REG(0, 17) /* PHY Specific Status */ +#define GG82563_PHY_INT_ENABLE \ + GG82563_REG(0, 18) /* Interrupt Enable */ +#define GG82563_PHY_SPEC_STATUS_2 \ + GG82563_REG(0, 19) /* PHY Specific Status 2 */ +#define GG82563_PHY_RX_ERR_CNTR \ + GG82563_REG(0, 21) /* Receive Error Counter */ +#define GG82563_PHY_PAGE_SELECT \ + GG82563_REG(0, 22) /* Page Select */ +#define GG82563_PHY_SPEC_CTRL_2 \ + GG82563_REG(0, 26) /* PHY Specific Control 2 */ +#define GG82563_PHY_PAGE_SELECT_ALT \ + GG82563_REG(0, 29) /* Alternate Page Select */ +#define GG82563_PHY_TEST_CLK_CTRL \ + GG82563_REG(0, 30) /* Test Clock Control (use reg. 29 to select) */ + +#define GG82563_PHY_MAC_SPEC_CTRL \ + GG82563_REG(2, 21) /* MAC Specific Control Register */ +#define GG82563_PHY_MAC_SPEC_CTRL_2 \ + GG82563_REG(2, 26) /* MAC Specific Control 2 */ + +#define GG82563_PHY_DSP_DISTANCE \ + GG82563_REG(5, 26) /* DSP Distance */ + +/* Page 193 - Port Control Registers */ +#define GG82563_PHY_KMRN_MODE_CTRL \ + GG82563_REG(193, 16) /* Kumeran Mode Control */ +#define GG82563_PHY_PORT_RESET \ + GG82563_REG(193, 17) /* Port Reset */ +#define GG82563_PHY_REVISION_ID \ + GG82563_REG(193, 18) /* Revision ID */ +#define GG82563_PHY_DEVICE_ID \ + GG82563_REG(193, 19) /* Device ID */ +#define GG82563_PHY_PWR_MGMT_CTRL \ + GG82563_REG(193, 20) /* Power Management Control */ +#define GG82563_PHY_RATE_ADAPT_CTRL \ + GG82563_REG(193, 25) /* Rate Adaptation Control */ + +/* Page 194 - KMRN Registers */ +#define GG82563_PHY_KMRN_FIFO_CTRL_STAT \ + GG82563_REG(194, 16) /* FIFO's Control/Status */ +#define GG82563_PHY_KMRN_CTRL \ + GG82563_REG(194, 17) /* Control */ +#define GG82563_PHY_INBAND_CTRL \ + GG82563_REG(194, 18) /* Inband Control */ +#define GG82563_PHY_KMRN_DIAGNOSTIC \ + GG82563_REG(194, 19) /* Diagnostic */ +#define GG82563_PHY_ACK_TIMEOUTS \ + GG82563_REG(194, 20) /* Acknowledge Timeouts */ +#define GG82563_PHY_ADV_ABILITY \ + GG82563_REG(194, 21) /* Advertised Ability */ +#define GG82563_PHY_LINK_PARTNER_ADV_ABILITY \ + GG82563_REG(194, 23) /* Link Partner Advertised Ability */ +#define GG82563_PHY_ADV_NEXT_PAGE \ + GG82563_REG(194, 24) /* Advertised Next Page */ +#define GG82563_PHY_LINK_PARTNER_ADV_NEXT_PAGE \ + GG82563_REG(194, 25) /* Link Partner Advertised Next page */ +#define GG82563_PHY_KMRN_MISC \ + GG82563_REG(194, 26) /* Misc. */ + +/* PHY Control Register */ +#define MII_CR_SPEED_SELECT_MSB 0x0040 /* bits 6,13: 10=1000, 01=100, 00=10 */ +#define MII_CR_COLL_TEST_ENABLE 0x0080 /* Collision test enable */ +#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */ +#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */ +#define MII_CR_ISOLATE 0x0400 /* Isolate PHY from MII */ +#define MII_CR_POWER_DOWN 0x0800 /* Power down */ +#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */ +#define MII_CR_SPEED_SELECT_LSB 0x2000 /* bits 6,13: 10=1000, 01=100, 00=10 */ +#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */ +#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */ + +/* PHY Status Register */ +#define MII_SR_EXTENDED_CAPS 0x0001 /* Extended register capabilities */ +#define MII_SR_JABBER_DETECT 0x0002 /* Jabber Detected */ +#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */ +#define MII_SR_AUTONEG_CAPS 0x0008 /* Auto Neg Capable */ +#define MII_SR_REMOTE_FAULT 0x0010 /* Remote Fault Detect */ +#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */ +#define MII_SR_PREAMBLE_SUPPRESS 0x0040 /* Preamble may be suppressed */ +#define MII_SR_EXTENDED_STATUS 0x0100 /* Ext. status info in Reg 0x0F */ +#define MII_SR_100T2_HD_CAPS 0x0200 /* 100T2 Half Duplex Capable */ +#define MII_SR_100T2_FD_CAPS 0x0400 /* 100T2 Full Duplex Capable */ +#define MII_SR_10T_HD_CAPS 0x0800 /* 10T Half Duplex Capable */ +#define MII_SR_10T_FD_CAPS 0x1000 /* 10T Full Duplex Capable */ +#define MII_SR_100X_HD_CAPS 0x2000 /* 100X Half Duplex Capable */ +#define MII_SR_100X_FD_CAPS 0x4000 /* 100X Full Duplex Capable */ +#define MII_SR_100T4_CAPS 0x8000 /* 100T4 Capable */ + +/* Autoneg Advertisement Register */ +#define NWAY_AR_SELECTOR_FIELD 0x0001 /* indicates IEEE 802.3 CSMA/CD */ +#define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */ +#define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */ +#define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */ +#define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */ +#define NWAY_AR_100T4_CAPS 0x0200 /* 100T4 Capable */ +#define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */ +#define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */ +#define NWAY_AR_REMOTE_FAULT 0x2000 /* Remote Fault detected */ +#define NWAY_AR_NEXT_PAGE 0x8000 /* Next Page ability supported */ + +/* Link Partner Ability Register (Base Page) */ +#define NWAY_LPAR_SELECTOR_FIELD 0x0000 /* LP protocol selector field */ +#define NWAY_LPAR_10T_HD_CAPS 0x0020 /* LP is 10T Half Duplex Capable */ +#define NWAY_LPAR_10T_FD_CAPS 0x0040 /* LP is 10T Full Duplex Capable */ +#define NWAY_LPAR_100TX_HD_CAPS 0x0080 /* LP is 100TX Half Duplex Capable */ +#define NWAY_LPAR_100TX_FD_CAPS 0x0100 /* LP is 100TX Full Duplex Capable */ +#define NWAY_LPAR_100T4_CAPS 0x0200 /* LP is 100T4 Capable */ +#define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */ +#define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asymmetric Pause Direction bit */ +#define NWAY_LPAR_REMOTE_FAULT 0x2000 /* LP has detected Remote Fault */ +#define NWAY_LPAR_ACKNOWLEDGE 0x4000 /* LP has rx'd link code word */ +#define NWAY_LPAR_NEXT_PAGE 0x8000 /* Next Page ability supported */ + +/* Autoneg Expansion Register */ +#define NWAY_ER_LP_NWAY_CAPS 0x0001 /* LP has Auto Neg Capability */ +#define NWAY_ER_PAGE_RXD 0x0002 /* LP is 10T Half Duplex Capable */ +#define NWAY_ER_NEXT_PAGE_CAPS 0x0004 /* LP is 10T Full Duplex Capable */ +#define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008 /* LP is 100TX Half Duplex Capable */ +#define NWAY_ER_PAR_DETECT_FAULT 0x0010 /* LP is 100TX Full Duplex Capable */ + +/* Next Page TX Register */ +#define NPTX_MSG_CODE_FIELD 0x0001 /* NP msg code or unformatted data */ +#define NPTX_TOGGLE 0x0800 /* Toggles between exchanges + * of different NP + */ +#define NPTX_ACKNOWLDGE2 0x1000 /* 1 = will comply with msg + * 0 = cannot comply with msg + */ +#define NPTX_MSG_PAGE 0x2000 /* formatted(1)/unformatted(0) pg */ +#define NPTX_NEXT_PAGE 0x8000 /* 1 = addition NP will follow + * 0 = sending last NP + */ + +/* Link Partner Next Page Register */ +#define LP_RNPR_MSG_CODE_FIELD 0x0001 /* NP msg code or unformatted data */ +#define LP_RNPR_TOGGLE 0x0800 /* Toggles between exchanges + * of different NP + */ +#define LP_RNPR_ACKNOWLDGE2 0x1000 /* 1 = will comply with msg + * 0 = cannot comply with msg + */ +#define LP_RNPR_MSG_PAGE 0x2000 /* formatted(1)/unformatted(0) pg */ +#define LP_RNPR_ACKNOWLDGE 0x4000 /* 1 = ACK / 0 = NO ACK */ +#define LP_RNPR_NEXT_PAGE 0x8000 /* 1 = addition NP will follow + * 0 = sending last NP + */ + +/* 1000BASE-T Control Register */ +#define CR_1000T_ASYM_PAUSE 0x0080 /* Advertise asymmetric pause bit */ +#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */ +#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */ +#define CR_1000T_REPEATER_DTE 0x0400 /* 1=Repeater/switch device port */ + /* 0=DTE device */ +#define CR_1000T_MS_VALUE 0x0800 /* 1=Configure PHY as Master */ + /* 0=Configure PHY as Slave */ +#define CR_1000T_MS_ENABLE 0x1000 /* 1=Master/Slave manual config value */ + /* 0=Automatic Master/Slave config */ +#define CR_1000T_TEST_MODE_NORMAL 0x0000 /* Normal Operation */ +#define CR_1000T_TEST_MODE_1 0x2000 /* Transmit Waveform test */ +#define CR_1000T_TEST_MODE_2 0x4000 /* Master Transmit Jitter test */ +#define CR_1000T_TEST_MODE_3 0x6000 /* Slave Transmit Jitter test */ +#define CR_1000T_TEST_MODE_4 0x8000 /* Transmitter Distortion test */ + +/* 1000BASE-T Status Register */ +#define SR_1000T_IDLE_ERROR_CNT 0x00FF /* Num idle errors since last read */ +#define SR_1000T_ASYM_PAUSE_DIR 0x0100 /* LP asymmetric pause direction bit */ +#define SR_1000T_LP_HD_CAPS 0x0400 /* LP is 1000T HD capable */ +#define SR_1000T_LP_FD_CAPS 0x0800 /* LP is 1000T FD capable */ +#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */ +#define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */ +#define SR_1000T_MS_CONFIG_RES 0x4000 /* 1=Local TX is Master, 0=Slave */ +#define SR_1000T_MS_CONFIG_FAULT 0x8000 /* Master/Slave config fault */ +#define SR_1000T_REMOTE_RX_STATUS_SHIFT 12 +#define SR_1000T_LOCAL_RX_STATUS_SHIFT 13 +#define SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT 5 +#define FFE_IDLE_ERR_COUNT_TIMEOUT_20 20 +#define FFE_IDLE_ERR_COUNT_TIMEOUT_100 100 + +/* Extended Status Register */ +#define IEEE_ESR_1000T_HD_CAPS 0x1000 /* 1000T HD capable */ +#define IEEE_ESR_1000T_FD_CAPS 0x2000 /* 1000T FD capable */ +#define IEEE_ESR_1000X_HD_CAPS 0x4000 /* 1000X HD capable */ +#define IEEE_ESR_1000X_FD_CAPS 0x8000 /* 1000X FD capable */ + +#define PHY_TX_POLARITY_MASK 0x0100 /* register 10h bit 8 (polarity bit) */ +#define PHY_TX_NORMAL_POLARITY 0 /* register 10h bit 8 (normal polarity) */ + +#define AUTO_POLARITY_DISABLE 0x0010 /* register 11h bit 4 */ + /* (0=enable, 1=disable) */ + +/* M88E1000 PHY Specific Control Register */ +#define M88E1000_PSCR_JABBER_DISABLE 0x0001 /* 1=Jabber Function disabled */ +#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reversal enabled */ +#define M88E1000_PSCR_SQE_TEST 0x0004 /* 1=SQE Test enabled */ +#define M88E1000_PSCR_CLK125_DISABLE 0x0010 /* 1=CLK125 low, + * 0=CLK125 toggling + */ +#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 /* MDI Crossover Mode bits 6:5 */ + /* Manual MDI configuration */ +#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */ +#define M88E1000_PSCR_AUTO_X_1000T 0x0040 /* 1000BASE-T: Auto crossover, + * 100BASE-TX/10BASE-T: + * MDI Mode + */ +#define M88E1000_PSCR_AUTO_X_MODE 0x0060 /* Auto crossover enabled + * all speeds. + */ +#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE 0x0080 + /* 1=Enable Extended 10BASE-T distance + * (Lower 10BASE-T RX Threshold) + * 0=Normal 10BASE-T RX Threshold */ +#define M88E1000_PSCR_MII_5BIT_ENABLE 0x0100 + /* 1=5-Bit interface in 100BASE-TX + * 0=MII interface in 100BASE-TX */ +#define M88E1000_PSCR_SCRAMBLER_DISABLE 0x0200 /* 1=Scrambler disable */ +#define M88E1000_PSCR_FORCE_LINK_GOOD 0x0400 /* 1=Force link good */ +#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Transmit */ + +#define M88E1000_PSCR_POLARITY_REVERSAL_SHIFT 1 +#define M88E1000_PSCR_AUTO_X_MODE_SHIFT 5 +#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT 7 + +/* M88E1000 PHY Specific Status Register */ +#define M88E1000_PSSR_JABBER 0x0001 /* 1=Jabber */ +#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */ +#define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */ +#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */ +#define M88E1000_PSSR_CABLE_LENGTH 0x0380 /* 0=<50M;1=50-80M;2=80-110M; + * 3=110-140M;4=>140M */ +#define M88E1000_PSSR_LINK 0x0400 /* 1=Link up, 0=Link down */ +#define M88E1000_PSSR_SPD_DPLX_RESOLVED 0x0800 /* 1=Speed & Duplex resolved */ +#define M88E1000_PSSR_PAGE_RCVD 0x1000 /* 1=Page received */ +#define M88E1000_PSSR_DPLX 0x2000 /* 1=Duplex 0=Half Duplex */ +#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */ +#define M88E1000_PSSR_10MBS 0x0000 /* 00=10Mbs */ +#define M88E1000_PSSR_100MBS 0x4000 /* 01=100Mbs */ +#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */ + +#define M88E1000_PSSR_REV_POLARITY_SHIFT 1 +#define M88E1000_PSSR_DOWNSHIFT_SHIFT 5 +#define M88E1000_PSSR_MDIX_SHIFT 6 +#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7 + +/* M88E1000 Extended PHY Specific Control Register */ +#define M88E1000_EPSCR_FIBER_LOOPBACK 0x4000 /* 1=Fiber loopback */ +#define M88E1000_EPSCR_DOWN_NO_IDLE 0x8000 /* 1=Lost lock detect enabled. + * Will assert lost lock and bring + * link down if idle not seen + * within 1ms in 1000BASE-T + */ +/* Number of times we will attempt to autonegotiate before downshifting if we + * are the master */ +#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00 +#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000 +#define M88E1000_EPSCR_MASTER_DOWNSHIFT_2X 0x0400 +#define M88E1000_EPSCR_MASTER_DOWNSHIFT_3X 0x0800 +#define M88E1000_EPSCR_MASTER_DOWNSHIFT_4X 0x0C00 +/* Number of times we will attempt to autonegotiate before downshifting if we + * are the slave */ +#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300 +#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_DIS 0x0000 +#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100 +#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_2X 0x0200 +#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_3X 0x0300 +#define M88E1000_EPSCR_TX_CLK_2_5 0x0060 /* 2.5 MHz TX_CLK */ +#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */ +#define M88E1000_EPSCR_TX_CLK_0 0x0000 /* NO TX_CLK */ + +/* M88EC018 Rev 2 specific DownShift settings */ +#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00 +#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_1X 0x0000 +#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_2X 0x0200 +#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_3X 0x0400 +#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_4X 0x0600 +#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800 +#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_6X 0x0A00 +#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_7X 0x0C00 +#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_8X 0x0E00 + +/* IGP01E1000 Specific Port Config Register - R/W */ +#define IGP01E1000_PSCFR_AUTO_MDIX_PAR_DETECT 0x0010 +#define IGP01E1000_PSCFR_PRE_EN 0x0020 +#define IGP01E1000_PSCFR_SMART_SPEED 0x0080 +#define IGP01E1000_PSCFR_DISABLE_TPLOOPBACK 0x0100 +#define IGP01E1000_PSCFR_DISABLE_JABBER 0x0400 +#define IGP01E1000_PSCFR_DISABLE_TRANSMIT 0x2000 + +/* IGP01E1000 Specific Port Status Register - R/O */ +#define IGP01E1000_PSSR_AUTONEG_FAILED 0x0001 /* RO LH SC */ +#define IGP01E1000_PSSR_POLARITY_REVERSED 0x0002 +#define IGP01E1000_PSSR_CABLE_LENGTH 0x007C +#define IGP01E1000_PSSR_FULL_DUPLEX 0x0200 +#define IGP01E1000_PSSR_LINK_UP 0x0400 +#define IGP01E1000_PSSR_MDIX 0x0800 +#define IGP01E1000_PSSR_SPEED_MASK 0xC000 /* speed bits mask */ +#define IGP01E1000_PSSR_SPEED_10MBPS 0x4000 +#define IGP01E1000_PSSR_SPEED_100MBPS 0x8000 +#define IGP01E1000_PSSR_SPEED_1000MBPS 0xC000 +#define IGP01E1000_PSSR_CABLE_LENGTH_SHIFT 0x0002 /* shift right 2 */ +#define IGP01E1000_PSSR_MDIX_SHIFT 0x000B /* shift right 11 */ + +/* IGP01E1000 Specific Port Control Register - R/W */ +#define IGP01E1000_PSCR_TP_LOOPBACK 0x0010 +#define IGP01E1000_PSCR_CORRECT_NC_SCMBLR 0x0200 +#define IGP01E1000_PSCR_TEN_CRS_SELECT 0x0400 +#define IGP01E1000_PSCR_FLIP_CHIP 0x0800 +#define IGP01E1000_PSCR_AUTO_MDIX 0x1000 +#define IGP01E1000_PSCR_FORCE_MDI_MDIX 0x2000 /* 0-MDI, 1-MDIX */ + +/* IGP01E1000 Specific Port Link Health Register */ +#define IGP01E1000_PLHR_SS_DOWNGRADE 0x8000 +#define IGP01E1000_PLHR_GIG_SCRAMBLER_ERROR 0x4000 +#define IGP01E1000_PLHR_MASTER_FAULT 0x2000 +#define IGP01E1000_PLHR_MASTER_RESOLUTION 0x1000 +#define IGP01E1000_PLHR_GIG_REM_RCVR_NOK 0x0800 /* LH */ +#define IGP01E1000_PLHR_IDLE_ERROR_CNT_OFLOW 0x0400 /* LH */ +#define IGP01E1000_PLHR_DATA_ERR_1 0x0200 /* LH */ +#define IGP01E1000_PLHR_DATA_ERR_0 0x0100 +#define IGP01E1000_PLHR_AUTONEG_FAULT 0x0040 +#define IGP01E1000_PLHR_AUTONEG_ACTIVE 0x0010 +#define IGP01E1000_PLHR_VALID_CHANNEL_D 0x0008 +#define IGP01E1000_PLHR_VALID_CHANNEL_C 0x0004 +#define IGP01E1000_PLHR_VALID_CHANNEL_B 0x0002 +#define IGP01E1000_PLHR_VALID_CHANNEL_A 0x0001 + +/* IGP01E1000 Channel Quality Register */ +#define IGP01E1000_MSE_CHANNEL_D 0x000F +#define IGP01E1000_MSE_CHANNEL_C 0x00F0 +#define IGP01E1000_MSE_CHANNEL_B 0x0F00 +#define IGP01E1000_MSE_CHANNEL_A 0xF000 + +#define IGP02E1000_PM_SPD 0x0001 /* Smart Power Down */ +#define IGP02E1000_PM_D3_LPLU 0x0004 /* Enable LPLU in non-D0a modes */ +#define IGP02E1000_PM_D0_LPLU 0x0002 /* Enable LPLU in D0a mode */ + +/* IGP01E1000 DSP reset macros */ +#define DSP_RESET_ENABLE 0x0 +#define DSP_RESET_DISABLE 0x2 +#define E1000_MAX_DSP_RESETS 10 + +/* IGP01E1000 & IGP02E1000 AGC Registers */ + +#define IGP01E1000_AGC_LENGTH_SHIFT 7 /* Coarse - 13:11, Fine - 10:7 */ +#define IGP02E1000_AGC_LENGTH_SHIFT 9 /* Coarse - 15:13, Fine - 12:9 */ + +/* IGP02E1000 AGC Register Length 9-bit mask */ +#define IGP02E1000_AGC_LENGTH_MASK 0x7F + +/* 7 bits (3 Coarse + 4 Fine) --> 128 optional values */ +#define IGP01E1000_AGC_LENGTH_TABLE_SIZE 128 +#define IGP02E1000_AGC_LENGTH_TABLE_SIZE 113 + +/* The precision error of the cable length is +/- 10 meters */ +#define IGP01E1000_AGC_RANGE 10 +#define IGP02E1000_AGC_RANGE 15 + +/* IGP01E1000 PCS Initialization register */ +/* bits 3:6 in the PCS registers stores the channels polarity */ +#define IGP01E1000_PHY_POLARITY_MASK 0x0078 + +/* IGP01E1000 GMII FIFO Register */ +#define IGP01E1000_GMII_FLEX_SPD 0x10 /* Enable flexible speed + * on Link-Up */ +#define IGP01E1000_GMII_SPD 0x20 /* Enable SPD */ + +/* IGP01E1000 Analog Register */ +#define IGP01E1000_ANALOG_SPARE_FUSE_STATUS 0x20D1 +#define IGP01E1000_ANALOG_FUSE_STATUS 0x20D0 +#define IGP01E1000_ANALOG_FUSE_CONTROL 0x20DC +#define IGP01E1000_ANALOG_FUSE_BYPASS 0x20DE + +#define IGP01E1000_ANALOG_FUSE_POLY_MASK 0xF000 +#define IGP01E1000_ANALOG_FUSE_FINE_MASK 0x0F80 +#define IGP01E1000_ANALOG_FUSE_COARSE_MASK 0x0070 +#define IGP01E1000_ANALOG_SPARE_FUSE_ENABLED 0x0100 +#define IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL 0x0002 + +#define IGP01E1000_ANALOG_FUSE_COARSE_THRESH 0x0040 +#define IGP01E1000_ANALOG_FUSE_COARSE_10 0x0010 +#define IGP01E1000_ANALOG_FUSE_FINE_1 0x0080 +#define IGP01E1000_ANALOG_FUSE_FINE_10 0x0500 + +/* GG82563 PHY Specific Status Register (Page 0, Register 16 */ +#define GG82563_PSCR_DISABLE_JABBER 0x0001 /* 1=Disable Jabber */ +#define GG82563_PSCR_POLARITY_REVERSAL_DISABLE 0x0002 /* 1=Polarity Reversal Disabled */ +#define GG82563_PSCR_POWER_DOWN 0x0004 /* 1=Power Down */ +#define GG82563_PSCR_COPPER_TRANSMITER_DISABLE 0x0008 /* 1=Transmitter Disabled */ +#define GG82563_PSCR_CROSSOVER_MODE_MASK 0x0060 +#define GG82563_PSCR_CROSSOVER_MODE_MDI 0x0000 /* 00=Manual MDI configuration */ +#define GG82563_PSCR_CROSSOVER_MODE_MDIX 0x0020 /* 01=Manual MDIX configuration */ +#define GG82563_PSCR_CROSSOVER_MODE_AUTO 0x0060 /* 11=Automatic crossover */ +#define GG82563_PSCR_ENALBE_EXTENDED_DISTANCE 0x0080 /* 1=Enable Extended Distance */ +#define GG82563_PSCR_ENERGY_DETECT_MASK 0x0300 +#define GG82563_PSCR_ENERGY_DETECT_OFF 0x0000 /* 00,01=Off */ +#define GG82563_PSCR_ENERGY_DETECT_RX 0x0200 /* 10=Sense on Rx only (Energy Detect) */ +#define GG82563_PSCR_ENERGY_DETECT_RX_TM 0x0300 /* 11=Sense and Tx NLP */ +#define GG82563_PSCR_FORCE_LINK_GOOD 0x0400 /* 1=Force Link Good */ +#define GG82563_PSCR_DOWNSHIFT_ENABLE 0x0800 /* 1=Enable Downshift */ +#define GG82563_PSCR_DOWNSHIFT_COUNTER_MASK 0x7000 +#define GG82563_PSCR_DOWNSHIFT_COUNTER_SHIFT 12 + +/* PHY Specific Status Register (Page 0, Register 17) */ +#define GG82563_PSSR_JABBER 0x0001 /* 1=Jabber */ +#define GG82563_PSSR_POLARITY 0x0002 /* 1=Polarity Reversed */ +#define GG82563_PSSR_LINK 0x0008 /* 1=Link is Up */ +#define GG82563_PSSR_ENERGY_DETECT 0x0010 /* 1=Sleep, 0=Active */ +#define GG82563_PSSR_DOWNSHIFT 0x0020 /* 1=Downshift */ +#define GG82563_PSSR_CROSSOVER_STATUS 0x0040 /* 1=MDIX, 0=MDI */ +#define GG82563_PSSR_RX_PAUSE_ENABLED 0x0100 /* 1=Receive Pause Enabled */ +#define GG82563_PSSR_TX_PAUSE_ENABLED 0x0200 /* 1=Transmit Pause Enabled */ +#define GG82563_PSSR_LINK_UP 0x0400 /* 1=Link Up */ +#define GG82563_PSSR_SPEED_DUPLEX_RESOLVED 0x0800 /* 1=Resolved */ +#define GG82563_PSSR_PAGE_RECEIVED 0x1000 /* 1=Page Received */ +#define GG82563_PSSR_DUPLEX 0x2000 /* 1-Full-Duplex */ +#define GG82563_PSSR_SPEED_MASK 0xC000 +#define GG82563_PSSR_SPEED_10MBPS 0x0000 /* 00=10Mbps */ +#define GG82563_PSSR_SPEED_100MBPS 0x4000 /* 01=100Mbps */ +#define GG82563_PSSR_SPEED_1000MBPS 0x8000 /* 10=1000Mbps */ + +/* PHY Specific Status Register 2 (Page 0, Register 19) */ +#define GG82563_PSSR2_JABBER 0x0001 /* 1=Jabber */ +#define GG82563_PSSR2_POLARITY_CHANGED 0x0002 /* 1=Polarity Changed */ +#define GG82563_PSSR2_ENERGY_DETECT_CHANGED 0x0010 /* 1=Energy Detect Changed */ +#define GG82563_PSSR2_DOWNSHIFT_INTERRUPT 0x0020 /* 1=Downshift Detected */ +#define GG82563_PSSR2_MDI_CROSSOVER_CHANGE 0x0040 /* 1=Crossover Changed */ +#define GG82563_PSSR2_FALSE_CARRIER 0x0100 /* 1=False Carrier */ +#define GG82563_PSSR2_SYMBOL_ERROR 0x0200 /* 1=Symbol Error */ +#define GG82563_PSSR2_LINK_STATUS_CHANGED 0x0400 /* 1=Link Status Changed */ +#define GG82563_PSSR2_AUTO_NEG_COMPLETED 0x0800 /* 1=Auto-Neg Completed */ +#define GG82563_PSSR2_PAGE_RECEIVED 0x1000 /* 1=Page Received */ +#define GG82563_PSSR2_DUPLEX_CHANGED 0x2000 /* 1=Duplex Changed */ +#define GG82563_PSSR2_SPEED_CHANGED 0x4000 /* 1=Speed Changed */ +#define GG82563_PSSR2_AUTO_NEG_ERROR 0x8000 /* 1=Auto-Neg Error */ + +/* PHY Specific Control Register 2 (Page 0, Register 26) */ +#define GG82563_PSCR2_10BT_POLARITY_FORCE 0x0002 /* 1=Force Negative Polarity */ +#define GG82563_PSCR2_1000MB_TEST_SELECT_MASK 0x000C +#define GG82563_PSCR2_1000MB_TEST_SELECT_NORMAL 0x0000 /* 00,01=Normal Operation */ +#define GG82563_PSCR2_1000MB_TEST_SELECT_112NS 0x0008 /* 10=Select 112ns Sequence */ +#define GG82563_PSCR2_1000MB_TEST_SELECT_16NS 0x000C /* 11=Select 16ns Sequence */ +#define GG82563_PSCR2_REVERSE_AUTO_NEG 0x2000 /* 1=Reverse Auto-Negotiation */ +#define GG82563_PSCR2_1000BT_DISABLE 0x4000 /* 1=Disable 1000BASE-T */ +#define GG82563_PSCR2_TRANSMITER_TYPE_MASK 0x8000 +#define GG82563_PSCR2_TRANSMITTER_TYPE_CLASS_B 0x0000 /* 0=Class B */ +#define GG82563_PSCR2_TRANSMITTER_TYPE_CLASS_A 0x8000 /* 1=Class A */ + +/* MAC Specific Control Register (Page 2, Register 21) */ +/* Tx clock speed for Link Down and 1000BASE-T for the following speeds */ +#define GG82563_MSCR_TX_CLK_MASK 0x0007 +#define GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ 0x0004 +#define GG82563_MSCR_TX_CLK_100MBPS_25MHZ 0x0005 +#define GG82563_MSCR_TX_CLK_1000MBPS_2_5MHZ 0x0006 +#define GG82563_MSCR_TX_CLK_1000MBPS_25MHZ 0x0007 + +#define GG82563_MSCR_ASSERT_CRS_ON_TX 0x0010 /* 1=Assert */ + +/* DSP Distance Register (Page 5, Register 26) */ +#define GG82563_DSPD_CABLE_LENGTH 0x0007 /* 0 = <50M; + 1 = 50-80M; + 2 = 80-110M; + 3 = 110-140M; + 4 = >140M */ + +/* Kumeran Mode Control Register (Page 193, Register 16) */ +#define GG82563_KMCR_PHY_LEDS_EN 0x0020 /* 1=PHY LEDs, 0=Kumeran Inband LEDs */ +#define GG82563_KMCR_FORCE_LINK_UP 0x0040 /* 1=Force Link Up */ +#define GG82563_KMCR_SUPPRESS_SGMII_EPD_EXT 0x0080 +#define GG82563_KMCR_MDIO_BUS_SPEED_SELECT_MASK 0x0400 +#define GG82563_KMCR_MDIO_BUS_SPEED_SELECT 0x0400 /* 1=6.25MHz, 0=0.8MHz */ +#define GG82563_KMCR_PASS_FALSE_CARRIER 0x0800 + +/* Power Management Control Register (Page 193, Register 20) */ +#define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE 0x0001 /* 1=Enalbe SERDES Electrical Idle */ +#define GG82563_PMCR_DISABLE_PORT 0x0002 /* 1=Disable Port */ +#define GG82563_PMCR_DISABLE_SERDES 0x0004 /* 1=Disable SERDES */ +#define GG82563_PMCR_REVERSE_AUTO_NEG 0x0008 /* 1=Enable Reverse Auto-Negotiation */ +#define GG82563_PMCR_DISABLE_1000_NON_D0 0x0010 /* 1=Disable 1000Mbps Auto-Neg in non D0 */ +#define GG82563_PMCR_DISABLE_1000 0x0020 /* 1=Disable 1000Mbps Auto-Neg Always */ +#define GG82563_PMCR_REVERSE_AUTO_NEG_D0A 0x0040 /* 1=Enable D0a Reverse Auto-Negotiation */ +#define GG82563_PMCR_FORCE_POWER_STATE 0x0080 /* 1=Force Power State */ +#define GG82563_PMCR_PROGRAMMED_POWER_STATE_MASK 0x0300 +#define GG82563_PMCR_PROGRAMMED_POWER_STATE_DR 0x0000 /* 00=Dr */ +#define GG82563_PMCR_PROGRAMMED_POWER_STATE_D0U 0x0100 /* 01=D0u */ +#define GG82563_PMCR_PROGRAMMED_POWER_STATE_D0A 0x0200 /* 10=D0a */ +#define GG82563_PMCR_PROGRAMMED_POWER_STATE_D3 0x0300 /* 11=D3 */ + +/* In-Band Control Register (Page 194, Register 18) */ +#define GG82563_ICR_DIS_PADDING 0x0010 /* Disable Padding Use */ + + +/* Bit definitions for valid PHY IDs. */ +/* I = Integrated + * E = External + */ +#define M88_VENDOR 0x0141 +#define M88E1000_E_PHY_ID 0x01410C50 +#define M88E1000_I_PHY_ID 0x01410C30 +#define M88E1011_I_PHY_ID 0x01410C20 +#define IGP01E1000_I_PHY_ID 0x02A80380 +#define M88E1000_12_PHY_ID M88E1000_E_PHY_ID +#define M88E1000_14_PHY_ID M88E1000_E_PHY_ID +#define M88E1011_I_REV_4 0x04 +#define M88E1111_I_PHY_ID 0x01410CC0 +#define L1LXT971A_PHY_ID 0x001378E0 +#define GG82563_E_PHY_ID 0x01410CA0 + + +/* Bits... + * 15-5: page + * 4-0: register offset + */ +#define PHY_PAGE_SHIFT 5 +#define PHY_REG(page, reg) \ + (((page) << PHY_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS)) + +#define IGP3_PHY_PORT_CTRL \ + PHY_REG(769, 17) /* Port General Configuration */ +#define IGP3_PHY_RATE_ADAPT_CTRL \ + PHY_REG(769, 25) /* Rate Adapter Control Register */ + +#define IGP3_KMRN_FIFO_CTRL_STATS \ + PHY_REG(770, 16) /* KMRN FIFO's control/status register */ +#define IGP3_KMRN_POWER_MNG_CTRL \ + PHY_REG(770, 17) /* KMRN Power Management Control Register */ +#define IGP3_KMRN_INBAND_CTRL \ + PHY_REG(770, 18) /* KMRN Inband Control Register */ +#define IGP3_KMRN_DIAG \ + PHY_REG(770, 19) /* KMRN Diagnostic register */ +#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002 /* RX PCS is not synced */ +#define IGP3_KMRN_ACK_TIMEOUT \ + PHY_REG(770, 20) /* KMRN Acknowledge Timeouts register */ + +#define IGP3_VR_CTRL \ + PHY_REG(776, 18) /* Voltage regulator control register */ +#define IGP3_VR_CTRL_MODE_SHUT 0x0200 /* Enter powerdown, shutdown VRs */ +#define IGP3_VR_CTRL_MODE_MASK 0x0300 /* Shutdown VR Mask */ + +#define IGP3_CAPABILITY \ + PHY_REG(776, 19) /* IGP3 Capability Register */ + +/* Capabilities for SKU Control */ +#define IGP3_CAP_INITIATE_TEAM 0x0001 /* Able to initiate a team */ +#define IGP3_CAP_WFM 0x0002 /* Support WoL and PXE */ +#define IGP3_CAP_ASF 0x0004 /* Support ASF */ +#define IGP3_CAP_LPLU 0x0008 /* Support Low Power Link Up */ +#define IGP3_CAP_DC_AUTO_SPEED 0x0010 /* Support AC/DC Auto Link Speed */ +#define IGP3_CAP_SPD 0x0020 /* Support Smart Power Down */ +#define IGP3_CAP_MULT_QUEUE 0x0040 /* Support 2 tx & 2 rx queues */ +#define IGP3_CAP_RSS 0x0080 /* Support RSS */ +#define IGP3_CAP_8021PQ 0x0100 /* Support 802.1Q & 802.1p */ +#define IGP3_CAP_AMT_CB 0x0200 /* Support active manageability and circuit breaker */ + +#define IGP3_PPC_JORDAN_EN 0x0001 +#define IGP3_PPC_JORDAN_GIGA_SPEED 0x0002 + +#define IGP3_KMRN_PMC_EE_IDLE_LINK_DIS 0x0001 +#define IGP3_KMRN_PMC_K0S_ENTRY_LATENCY_MASK 0x001E +#define IGP3_KMRN_PMC_K0S_MODE1_EN_GIGA 0x0020 +#define IGP3_KMRN_PMC_K0S_MODE1_EN_100 0x0040 + +#define IGP3E1000_PHY_MISC_CTRL 0x1B /* Misc. Ctrl register */ +#define IGP3_PHY_MISC_DUPLEX_MANUAL_SET 0x1000 /* Duplex Manual Set */ + +#define IGP3_KMRN_EXT_CTRL PHY_REG(770, 18) +#define IGP3_KMRN_EC_DIS_INBAND 0x0080 + +#define IGP03E1000_E_PHY_ID 0x02A80390 +#define IFE_E_PHY_ID 0x02A80330 /* 10/100 PHY */ +#define IFE_PLUS_E_PHY_ID 0x02A80320 +#define IFE_C_E_PHY_ID 0x02A80310 + +#define IFE_PHY_EXTENDED_STATUS_CONTROL 0x10 /* 100BaseTx Extended Status, Control and Address */ +#define IFE_PHY_SPECIAL_CONTROL 0x11 /* 100BaseTx PHY special control register */ +#define IFE_PHY_RCV_FALSE_CARRIER 0x13 /* 100BaseTx Receive False Carrier Counter */ +#define IFE_PHY_RCV_DISCONNECT 0x14 /* 100BaseTx Receive Disconnet Counter */ +#define IFE_PHY_RCV_ERROT_FRAME 0x15 /* 100BaseTx Receive Error Frame Counter */ +#define IFE_PHY_RCV_SYMBOL_ERR 0x16 /* Receive Symbol Error Counter */ +#define IFE_PHY_PREM_EOF_ERR 0x17 /* 100BaseTx Receive Premature End Of Frame Error Counter */ +#define IFE_PHY_RCV_EOF_ERR 0x18 /* 10BaseT Receive End Of Frame Error Counter */ +#define IFE_PHY_TX_JABBER_DETECT 0x19 /* 10BaseT Transmit Jabber Detect Counter */ +#define IFE_PHY_EQUALIZER 0x1A /* PHY Equalizer Control and Status */ +#define IFE_PHY_SPECIAL_CONTROL_LED 0x1B /* PHY special control and LED configuration */ +#define IFE_PHY_MDIX_CONTROL 0x1C /* MDI/MDI-X Control register */ +#define IFE_PHY_HWI_CONTROL 0x1D /* Hardware Integrity Control (HWI) */ + +#define IFE_PESC_REDUCED_POWER_DOWN_DISABLE 0x2000 /* Defaut 1 = Disable auto reduced power down */ +#define IFE_PESC_100BTX_POWER_DOWN 0x0400 /* Indicates the power state of 100BASE-TX */ +#define IFE_PESC_10BTX_POWER_DOWN 0x0200 /* Indicates the power state of 10BASE-T */ +#define IFE_PESC_POLARITY_REVERSED 0x0100 /* Indicates 10BASE-T polarity */ +#define IFE_PESC_PHY_ADDR_MASK 0x007C /* Bit 6:2 for sampled PHY address */ +#define IFE_PESC_SPEED 0x0002 /* Auto-negotiation speed result 1=100Mbs, 0=10Mbs */ +#define IFE_PESC_DUPLEX 0x0001 /* Auto-negotiation duplex result 1=Full, 0=Half */ +#define IFE_PESC_POLARITY_REVERSED_SHIFT 8 + +#define IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN 0x0100 /* 1 = Dyanmic Power Down disabled */ +#define IFE_PSC_FORCE_POLARITY 0x0020 /* 1=Reversed Polarity, 0=Normal */ +#define IFE_PSC_AUTO_POLARITY_DISABLE 0x0010 /* 1=Auto Polarity Disabled, 0=Enabled */ +#define IFE_PSC_JABBER_FUNC_DISABLE 0x0001 /* 1=Jabber Disabled, 0=Normal Jabber Operation */ +#define IFE_PSC_FORCE_POLARITY_SHIFT 5 +#define IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT 4 + +#define IFE_PMC_AUTO_MDIX 0x0080 /* 1=enable MDI/MDI-X feature, default 0=disabled */ +#define IFE_PMC_FORCE_MDIX 0x0040 /* 1=force MDIX-X, 0=force MDI */ +#define IFE_PMC_MDIX_STATUS 0x0020 /* 1=MDI-X, 0=MDI */ +#define IFE_PMC_AUTO_MDIX_COMPLETE 0x0010 /* Resolution algorthm is completed */ +#define IFE_PMC_MDIX_MODE_SHIFT 6 +#define IFE_PHC_MDIX_RESET_ALL_MASK 0x0000 /* Disable auto MDI-X */ + +#define IFE_PHC_HWI_ENABLE 0x8000 /* Enable the HWI feature */ +#define IFE_PHC_ABILITY_CHECK 0x4000 /* 1= Test Passed, 0=failed */ +#define IFE_PHC_TEST_EXEC 0x2000 /* PHY launch test pulses on the wire */ +#define IFE_PHC_HIGHZ 0x0200 /* 1 = Open Circuit */ +#define IFE_PHC_LOWZ 0x0400 /* 1 = Short Circuit */ +#define IFE_PHC_LOW_HIGH_Z_MASK 0x0600 /* Mask for indication type of problem on the line */ +#define IFE_PHC_DISTANCE_MASK 0x01FF /* Mask for distance to the cable problem, in 80cm granularity */ +#define IFE_PHC_RESET_ALL_MASK 0x0000 /* Disable HWI */ +#define IFE_PSCL_PROBE_MODE 0x0020 /* LED Probe mode */ +#define IFE_PSCL_PROBE_LEDS_OFF 0x0006 /* Force LEDs 0 and 2 off */ +#define IFE_PSCL_PROBE_LEDS_ON 0x0007 /* Force LEDs 0 and 2 on */ + +#define ICH_FLASH_COMMAND_TIMEOUT 5000 /* 5000 uSecs - adjusted */ +#define ICH_FLASH_ERASE_TIMEOUT 3000000 /* Up to 3 seconds - worst case */ +#define ICH_FLASH_CYCLE_REPEAT_COUNT 10 /* 10 cycles */ +#define ICH_FLASH_SEG_SIZE_256 256 +#define ICH_FLASH_SEG_SIZE_4K 4096 +#define ICH_FLASH_SEG_SIZE_64K 65536 + +#define ICH_CYCLE_READ 0x0 +#define ICH_CYCLE_RESERVED 0x1 +#define ICH_CYCLE_WRITE 0x2 +#define ICH_CYCLE_ERASE 0x3 + +#define ICH_FLASH_GFPREG 0x0000 +#define ICH_FLASH_HSFSTS 0x0004 +#define ICH_FLASH_HSFCTL 0x0006 +#define ICH_FLASH_FADDR 0x0008 +#define ICH_FLASH_FDATA0 0x0010 +#define ICH_FLASH_FRACC 0x0050 +#define ICH_FLASH_FREG0 0x0054 +#define ICH_FLASH_FREG1 0x0058 +#define ICH_FLASH_FREG2 0x005C +#define ICH_FLASH_FREG3 0x0060 +#define ICH_FLASH_FPR0 0x0074 +#define ICH_FLASH_FPR1 0x0078 +#define ICH_FLASH_SSFSTS 0x0090 +#define ICH_FLASH_SSFCTL 0x0092 +#define ICH_FLASH_PREOP 0x0094 +#define ICH_FLASH_OPTYPE 0x0096 +#define ICH_FLASH_OPMENU 0x0098 + +#define ICH_FLASH_REG_MAPSIZE 0x00A0 +#define ICH_FLASH_SECTOR_SIZE 4096 +#define ICH_GFPREG_BASE_MASK 0x1FFF +#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF + +/* ICH8 GbE Flash Hardware Sequencing Flash Status Register bit breakdown */ +/* Offset 04h HSFSTS */ +union ich8_hws_flash_status { + struct ich8_hsfsts { + uint16_t flcdone :1; /* bit 0 Flash Cycle Done */ + uint16_t flcerr :1; /* bit 1 Flash Cycle Error */ + uint16_t dael :1; /* bit 2 Direct Access error Log */ + uint16_t berasesz :2; /* bit 4:3 Block/Sector Erase Size */ + uint16_t flcinprog :1; /* bit 5 flash SPI cycle in Progress */ + uint16_t reserved1 :2; /* bit 13:6 Reserved */ + uint16_t reserved2 :6; /* bit 13:6 Reserved */ + uint16_t fldesvalid :1; /* bit 14 Flash Descriptor Valid */ + uint16_t flockdn :1; /* bit 15 Flash Configuration Lock-Down */ + } hsf_status; + uint16_t regval; +}; + +/* ICH8 GbE Flash Hardware Sequencing Flash control Register bit breakdown */ +/* Offset 06h FLCTL */ +union ich8_hws_flash_ctrl { + struct ich8_hsflctl { + uint16_t flcgo :1; /* 0 Flash Cycle Go */ + uint16_t flcycle :2; /* 2:1 Flash Cycle */ + uint16_t reserved :5; /* 7:3 Reserved */ + uint16_t fldbcount :2; /* 9:8 Flash Data Byte Count */ + uint16_t flockdn :6; /* 15:10 Reserved */ + } hsf_ctrl; + uint16_t regval; +}; + +/* ICH8 Flash Region Access Permissions */ +union ich8_hws_flash_regacc { + struct ich8_flracc { + uint32_t grra :8; /* 0:7 GbE region Read Access */ + uint32_t grwa :8; /* 8:15 GbE region Write Access */ + uint32_t gmrag :8; /* 23:16 GbE Master Read Access Grant */ + uint32_t gmwag :8; /* 31:24 GbE Master Write Access Grant */ + } hsf_flregacc; + uint16_t regval; +}; + +/* Miscellaneous PHY bit definitions. */ +#define PHY_PREAMBLE 0xFFFFFFFF +#define PHY_SOF 0x01 +#define PHY_OP_READ 0x02 +#define PHY_OP_WRITE 0x01 +#define PHY_TURNAROUND 0x02 +#define PHY_PREAMBLE_SIZE 32 +#define MII_CR_SPEED_1000 0x0040 +#define MII_CR_SPEED_100 0x2000 +#define MII_CR_SPEED_10 0x0000 +#define E1000_PHY_ADDRESS 0x01 +#define PHY_AUTO_NEG_TIME 45 /* 4.5 Seconds */ +#define PHY_FORCE_TIME 20 /* 2.0 Seconds */ +#define PHY_REVISION_MASK 0xFFFFFFF0 +#define DEVICE_SPEED_MASK 0x00000300 /* Device Ctrl Reg Speed Mask */ +#define REG4_SPEED_MASK 0x01E0 +#define REG9_SPEED_MASK 0x0300 +#define ADVERTISE_10_HALF 0x0001 +#define ADVERTISE_10_FULL 0x0002 +#define ADVERTISE_100_HALF 0x0004 +#define ADVERTISE_100_FULL 0x0008 +#define ADVERTISE_1000_HALF 0x0010 +#define ADVERTISE_1000_FULL 0x0020 +#define AUTONEG_ADVERTISE_SPEED_DEFAULT 0x002F /* Everything but 1000-Half */ +#define AUTONEG_ADVERTISE_10_100_ALL 0x000F /* All 10/100 speeds*/ +#define AUTONEG_ADVERTISE_10_ALL 0x0003 /* 10Mbps Full & Half speeds*/ + +#endif /* _EM_HW_H_ */ + + diff --git a/src/add-ons/kernel/drivers/network/ipro1000/dev/em/if_em_osdep.h b/src/add-ons/kernel/drivers/network/ipro1000/dev/em/if_em_osdep.h new file mode 100644 index 0000000000..6d30c72605 --- /dev/null +++ b/src/add-ons/kernel/drivers/network/ipro1000/dev/em/if_em_osdep.h @@ -0,0 +1,171 @@ +/************************************************************************** + +Copyright (c) 2001-2006, Intel Corporation +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. + +***************************************************************************/ + +/*$FreeBSD: src/sys/dev/em/if_em_osdep.h,v 1.14.2.3 2006/10/28 01:37:14 jfv Exp $*/ + +#ifndef _FREEBSD_OS_H_ +#define _FREEBSD_OS_H_ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + + +#define ASSERT(x) if(!(x)) panic("EM: x") + +/* The happy-fun DELAY macro is defined in /usr/src/sys/i386/include/clock.h */ +#define usec_delay(x) DELAY(x) +#define msec_delay(x) DELAY(1000*(x)) +/* TODO: Should we be paranoid about delaying in interrupt context? */ +#define msec_delay_irq(x) DELAY(1000*(x)) + +#define MSGOUT(S, A, B) printf(S "\n", A, B) +#define DEBUGFUNC(F) DEBUGOUT(F); +#if DBG + #define DEBUGOUT(S) printf(S "\n") + #define DEBUGOUT1(S,A) printf(S "\n",A) + #define DEBUGOUT2(S,A,B) printf(S "\n",A,B) + #define DEBUGOUT3(S,A,B,C) printf(S "\n",A,B,C) + #define DEBUGOUT7(S,A,B,C,D,E,F,G) printf(S "\n",A,B,C,D,E,F,G) +#else + #define DEBUGOUT(S) + #define DEBUGOUT1(S,A) + #define DEBUGOUT2(S,A,B) + #define DEBUGOUT3(S,A,B,C) + #define DEBUGOUT7(S,A,B,C,D,E,F,G) +#endif + +#define FALSE 0 +#define TRUE 1 +#define CMD_MEM_WRT_INVALIDATE 0x0010 /* BIT_4 */ +#define PCI_COMMAND_REGISTER PCIR_COMMAND + +struct em_osdep +{ + bus_space_tag_t mem_bus_space_tag; + bus_space_handle_t mem_bus_space_handle; + bus_space_tag_t io_bus_space_tag; + bus_space_handle_t io_bus_space_handle; + bus_space_tag_t flash_bus_space_tag; + bus_space_handle_t flash_bus_space_handle; + struct device *dev; +}; + +#define E1000_WRITE_FLUSH(a) E1000_READ_REG(a, STATUS) + +/* Read from an absolute offset in the adapter's memory space */ +#define E1000_READ_OFFSET(hw, offset) \ + bus_space_read_4(((struct em_osdep *)(hw)->back)->mem_bus_space_tag, \ + ((struct em_osdep *)(hw)->back)->mem_bus_space_handle, offset) + +/* Write to an absolute offset in the adapter's memory space */ +#define E1000_WRITE_OFFSET(hw, offset, value) \ + bus_space_write_4(((struct em_osdep *)(hw)->back)->mem_bus_space_tag, \ + ((struct em_osdep *)(hw)->back)->mem_bus_space_handle, offset, value) + +/* Convert a register name to its offset in the adapter's memory space */ +#define E1000_REG_OFFSET(hw, reg) \ + ((hw)->mac_type >= em_82543 ? E1000_##reg : E1000_82542_##reg) + +/* Register READ/WRITE macros */ + +#define E1000_READ_REG(hw, reg) \ + bus_space_read_4(((struct em_osdep *)(hw)->back)->mem_bus_space_tag, \ + ((struct em_osdep *)(hw)->back)->mem_bus_space_handle, \ + ((hw)->mac_type >= em_82543 ? E1000_##reg : E1000_82542_##reg)) + +#define E1000_WRITE_REG(hw, reg, value) \ + bus_space_write_4(((struct em_osdep *)(hw)->back)->mem_bus_space_tag, \ + ((struct em_osdep *)(hw)->back)->mem_bus_space_handle, \ + ((hw)->mac_type >= em_82543 ? E1000_##reg : E1000_82542_##reg), \ + value) + +#define E1000_READ_REG_ARRAY(hw, reg, index) \ + bus_space_read_4(((struct em_osdep *)(hw)->back)->mem_bus_space_tag, \ + ((struct em_osdep *)(hw)->back)->mem_bus_space_handle, \ + ((hw)->mac_type >= em_82543 ? E1000_##reg : E1000_82542_##reg) \ + + ((index) << 2)) + +#define E1000_WRITE_REG_ARRAY(hw, reg, index, value) \ + bus_space_write_4(((struct em_osdep *)(hw)->back)->mem_bus_space_tag, \ + ((struct em_osdep *)(hw)->back)->mem_bus_space_handle, \ + ((hw)->mac_type >= em_82543 ? E1000_##reg : E1000_82542_##reg) \ + + ((index) << 2), value) + +#define E1000_READ_REG_ARRAY_DWORD E1000_READ_REG_ARRAY +#define E1000_WRITE_REG_ARRAY_DWORD E1000_WRITE_REG_ARRAY + +#define E1000_WRITE_REG_ARRAY_BYTE(hw, reg, index, value) \ + bus_space_write_1( ((struct em_osdep *)(hw)->back)->mem_bus_space_tag, \ + ((struct em_osdep *)(hw)->back)->mem_bus_space_handle, \ + ((hw)->mac_type >= em_82543 ? E1000_##reg : E1000_82542_##reg \ + + index), value) + +#define E1000_WRITE_REG_ARRAY_WORD(hw, reg, index, value) \ + bus_space_write_2( ((struct em_osdep *)(hw)->back)->mem_bus_space_tag, \ + ((struct em_osdep *)(hw)->back)->mem_bus_space_handle, \ + ((hw)->mac_type >= em_82543 ? E1000_##reg : E1000_82542_##reg \ + + (index << 1)), value) + +#define E1000_READ_ICH_FLASH_REG(hw, reg) \ + bus_space_read_4(((struct em_osdep *)(hw)->back)->flash_bus_space_tag, \ + ((struct em_osdep *)(hw)->back)->flash_bus_space_handle, reg) + +#define E1000_READ_ICH_FLASH_REG16(hw, reg) \ + bus_space_read_2(((struct em_osdep *)(hw)->back)->flash_bus_space_tag, \ + ((struct em_osdep *)(hw)->back)->flash_bus_space_handle, reg) + +#define E1000_WRITE_ICH_FLASH_REG(hw, reg, value) \ + bus_space_write_4(((struct em_osdep *)(hw)->back)->flash_bus_space_tag, \ + ((struct em_osdep *)(hw)->back)->flash_bus_space_handle, reg, value) + +#define E1000_WRITE_ICH_FLASH_REG16(hw, reg, value) \ + bus_space_write_2(((struct em_osdep *)(hw)->back)->flash_bus_space_tag, \ + ((struct em_osdep *)(hw)->back)->flash_bus_space_handle, reg, value) + +#endif /* _FREEBSD_OS_H_ */ +