Code to read and write the RTC, copied from the x86 version.

git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@28056 a95241bf-73f2-0310-859d-f6bbb57e9c96
This commit is contained in:
François Revol 2008-10-13 23:04:49 +00:00
parent 057f999da6
commit 5088b34272

View File

@ -1,17 +1,166 @@
/*
* Copyright 2007, François Revol, revol@free.fr.
* Distributed under the terms of the MIT License.
* Copyright 2006, Ingo Weinhold <bonefish@cs.tu-berlin.de>. All rights reserved.
* Copyright 2005-2007, Axel Dörfler, axeld@pinc-software.de
* Copyright 2003, Jeff Ward, jeff@r2d2.stcloudstate.edu. All rights reserved.
*
* Copyright 2006, Ingo Weinhold <bonefish@cs.tu-berlin.de>.
* All rights reserved. Distributed under the terms of the MIT License.
* Distributed under the terms of the MIT License.
*/
#include <arch/real_time_clock.h>
#include <arch_platform.h>
#include <real_time_clock.h>
#include <real_time_data.h>
#include <smp.h>
typedef struct {
uint8 second;
uint8 minute;
uint8 hour;
uint8 day;
uint8 month;
uint8 year;
uint8 century;
} cmos_time;
static uint32
bcd_to_int(uint8 bcd)
{
uint32 numl;
uint32 numh;
numl = bcd & 0x0f;
numh = (bcd & 0xf0) >> 4;
return numh * 10 + numl;
}
static uint8
int_to_bcd(uint32 number)
{
uint8 low;
uint8 high;
if (number > 99)
return 0;
high = number / 10;
low = number % 10;
return (high << 4) | low;
}
static int
same_time(const cmos_time *time1, const cmos_time *time2)
{
return time1->second == time2->second
&& time1->minute == time2->minute
&& time1->hour == time2->hour
&& time1->day == time2->day
&& time1->month == time2->month
&& time1->year == time2->year
&& time1->century == time2->century;
}
static uint8
cmos_read(uint8 addr)
{
return M68KPlatform::Default()->ReadRTCReg(reg);
}
static void
cmos_write(uint8 addr, uint8 data)
{
M68KPlatform::Default()->WriteRTCReg(reg, data);
}
static void
set_24_hour_mode(void)
{
uint8 status_b;
status_b = cmos_read(0x0b);
status_b |= 0x02;
cmos_write(0x0b, status_b);
}
static void
read_cmos_clock(cmos_time *cmos)
{
set_24_hour_mode();
cmos->century = cmos_read(0x32);
cmos->year = cmos_read(0x09);
cmos->month = cmos_read(0x08);
cmos->day = cmos_read(0x07);
cmos->hour = cmos_read(0x04);
cmos->minute = cmos_read(0x02);
cmos->second = cmos_read(0x00);
}
static void
write_cmos_clock(cmos_time *cmos)
{
set_24_hour_mode();
cmos_write(0x32, cmos->century);
cmos_write(0x09, cmos->year);
cmos_write(0x08, cmos->month);
cmos_write(0x07, cmos->day);
cmos_write(0x04, cmos->hour);
cmos_write(0x02, cmos->minute);
cmos_write(0x00, cmos->second);
}
static uint32
cmos_to_secs(const cmos_time *cmos)
{
struct tm t;
t.tm_year = bcd_to_int(cmos->century) * 100 + bcd_to_int(cmos->year)
- RTC_EPOCH_BASE_YEAR;
t.tm_mon = bcd_to_int(cmos->month) - 1;
t.tm_mday = bcd_to_int(cmos->day);
t.tm_hour = bcd_to_int(cmos->hour);
t.tm_min = bcd_to_int(cmos->minute);
t.tm_sec = bcd_to_int(cmos->second);
return rtc_tm_to_secs(&t);
}
static void
secs_to_cmos(uint32 seconds, cmos_time *cmos)
{
int wholeYear;
struct tm t;
rtc_secs_to_tm(seconds, &t);
wholeYear = t.tm_year + RTC_EPOCH_BASE_YEAR;
cmos->century = int_to_bcd(wholeYear / 100);
cmos->year = int_to_bcd(wholeYear % 100);
cmos->month = int_to_bcd(t.tm_mon + 1);
cmos->day = int_to_bcd(t.tm_mday);
cmos->hour = int_to_bcd(t.tm_hour);
cmos->minute = int_to_bcd(t.tm_min);
cmos->second = int_to_bcd(t.tm_sec);
}
// #pragma mark -
static spinlock sSetArchDataLock;