RWLocker: Move to kits/shared.

As requested by looncraz. A lot of stuff in IOM/MediaPlayer's
'support' directories probably should be moved to 'shared' anyway.
This commit is contained in:
Augustin Cavalier 2015-12-15 21:15:06 -05:00
parent ea74aafd98
commit 485f533935
7 changed files with 6 additions and 615 deletions

View File

@ -199,7 +199,6 @@ Application Icon-O-Matic :
Selection.cpp
# generic/support
RWLocker.cpp
support.cpp
support_ui.cpp
support_settings.cpp
@ -309,9 +308,9 @@ Application Icon-O-Matic :
Includes [ FGristFiles SVGParser.cpp ]
: [ BuildFeatureAttribute expat : headers ] ;
DoCatalogs Icon-O-Matic :
DoCatalogs Icon-O-Matic :
x-vnd.haiku-icon_o_matic
:
:
MainWindow.cpp
IconEditorApp.cpp
SetPropertiesCommand.cpp

View File

@ -101,7 +101,6 @@ Application MediaPlayer :
ListenerAdapter.cpp
MessageEvent.cpp
Notifier.cpp
RWLocker.cpp
SettingsMessage.cpp
StackBlurFilter.cpp
@ -114,14 +113,14 @@ Application MediaPlayer :
MainWin.cpp
VideoView.cpp
: be game media tracker translation textencoding [ TargetLibstdc++ ]
: be game media tracker translation textencoding [ TargetLibstdc++ ]
localestub libshared.a
: MediaPlayer.rdef
;
DoCatalogs MediaPlayer :
DoCatalogs MediaPlayer :
x-vnd.Haiku-MediaPlayer
:
:
CopyPLItemsCommand.cpp
ImportPLItemsCommand.cpp
InfoWin.cpp

View File

@ -1,471 +0,0 @@
/*
* Copyright 2006, Haiku.
* Distributed under the terms of the MIT License.
*
* Authors:
* IngoWeinhold <bonefish@cs.tu-berlin.de>
*/
#include "RWLocker.h"
#include <String.h>
// info about a read lock owner
struct RWLocker::ReadLockInfo {
thread_id reader;
int32 count;
};
// constructor
RWLocker::RWLocker()
: fLock(),
fMutex(),
fQueue(),
fReaderCount(0),
fWriterCount(0),
fReadLockInfos(8),
fWriter(B_ERROR),
fWriterWriterCount(0),
fWriterReaderCount(0)
{
_Init(NULL);
}
// constructor
RWLocker::RWLocker(const char* name)
: fLock(name),
fMutex(),
fQueue(),
fReaderCount(0),
fWriterCount(0),
fReadLockInfos(8),
fWriter(B_ERROR),
fWriterWriterCount(0),
fWriterReaderCount(0)
{
_Init(name);
}
// destructor
RWLocker::~RWLocker()
{
fLock.Lock();
delete_sem(fMutex.semaphore);
delete_sem(fQueue.semaphore);
for (int32 i = 0; ReadLockInfo* info = _ReadLockInfoAt(i); i++)
delete info;
}
// ReadLock
bool
RWLocker::ReadLock()
{
status_t error = _ReadLock(B_INFINITE_TIMEOUT);
return (error == B_OK);
}
// ReadLockWithTimeout
status_t
RWLocker::ReadLockWithTimeout(bigtime_t timeout)
{
bigtime_t absoluteTimeout = system_time() + timeout;
// take care of overflow
if (timeout > 0 && absoluteTimeout < 0)
absoluteTimeout = B_INFINITE_TIMEOUT;
return _ReadLock(absoluteTimeout);
}
// ReadUnlock
void
RWLocker::ReadUnlock()
{
if (fLock.Lock()) {
thread_id thread = find_thread(NULL);
if (thread == fWriter) {
// We (also) have a write lock.
if (fWriterReaderCount > 0)
fWriterReaderCount--;
// else: error: unmatched ReadUnlock()
} else {
int32 index = _IndexOf(thread);
if (ReadLockInfo* info = _ReadLockInfoAt(index)) {
fReaderCount--;
if (--info->count == 0) {
// The outer read lock bracket for the thread has been
// reached. Dispose the info.
_DeleteReadLockInfo(index);
}
if (fReaderCount == 0) {
// The last reader needs to unlock the mutex.
_ReleaseBenaphore(fMutex);
}
} // else: error: caller has no read lock
}
fLock.Unlock();
} // else: we are probably going to be destroyed
}
// IsReadLocked
//
// Returns whether or not the calling thread owns a read lock or even a
// write lock.
bool
RWLocker::IsReadLocked() const
{
bool result = false;
if (fLock.Lock()) {
thread_id thread = find_thread(NULL);
result = (thread == fWriter || _IndexOf(thread) >= 0);
fLock.Unlock();
}
return result;
}
// WriteLock
bool
RWLocker::WriteLock()
{
status_t error = _WriteLock(B_INFINITE_TIMEOUT);
return (error == B_OK);
}
// WriteLockWithTimeout
status_t
RWLocker::WriteLockWithTimeout(bigtime_t timeout)
{
bigtime_t absoluteTimeout = system_time() + timeout;
// take care of overflow
if (timeout > 0 && absoluteTimeout < 0)
absoluteTimeout = B_INFINITE_TIMEOUT;
return _WriteLock(absoluteTimeout);
}
// WriteUnlock
void
RWLocker::WriteUnlock()
{
if (fLock.Lock()) {
thread_id thread = find_thread(NULL);
if (thread == fWriter) {
fWriterCount--;
if (--fWriterWriterCount == 0) {
// The outer write lock bracket for the thread has been
// reached.
fWriter = B_ERROR;
if (fWriterReaderCount > 0) {
// We still own read locks.
_NewReadLockInfo(thread, fWriterReaderCount);
// A reader that expects to be the first reader may wait
// at the mutex semaphore. We need to wake it up.
if (fReaderCount > 0)
_ReleaseBenaphore(fMutex);
fReaderCount += fWriterReaderCount;
fWriterReaderCount = 0;
} else {
// We don't own any read locks. So we have to release the
// mutex benaphore.
_ReleaseBenaphore(fMutex);
}
}
} // else: error: unmatched WriteUnlock()
fLock.Unlock();
} // else: We're probably going to die.
}
// IsWriteLocked
//
// Returns whether or not the calling thread owns a write lock.
bool
RWLocker::IsWriteLocked() const
{
return (fWriter == find_thread(NULL));
}
// _Init
void
RWLocker::_Init(const char* name)
{
// init the mutex benaphore
BString mutexName(name);
mutexName += "_RWLocker_mutex";
fMutex.semaphore = create_sem(0, mutexName.String());
fMutex.counter = 0;
// init the queueing benaphore
BString queueName(name);
queueName += "_RWLocker_queue";
fQueue.semaphore = create_sem(0, queueName.String());
fQueue.counter = 0;
}
// _ReadLock
//
// /timeout/ -- absolute timeout
status_t
RWLocker::_ReadLock(bigtime_t timeout)
{
status_t error = B_OK;
thread_id thread = find_thread(NULL);
bool locked = false;
if (fLock.Lock()) {
// Check, if we already own a read (or write) lock. In this case we
// can skip the usual locking procedure.
if (thread == fWriter) {
// We already own a write lock.
fWriterReaderCount++;
locked = true;
} else if (ReadLockInfo* info = _ReadLockInfoAt(_IndexOf(thread))) {
// We already own a read lock.
info->count++;
fReaderCount++;
locked = true;
}
fLock.Unlock();
} else // failed to lock the data
error = B_ERROR;
// Usual locking, i.e. we do not already own a read or write lock.
if (error == B_OK && !locked) {
error = _AcquireBenaphore(fQueue, timeout);
if (error == B_OK) {
if (fLock.Lock()) {
bool firstReader = false;
if (++fReaderCount == 1) {
// We are the first reader.
_NewReadLockInfo(thread);
firstReader = true;
} else
_NewReadLockInfo(thread);
fLock.Unlock();
// The first reader needs to lock the mutex.
if (firstReader) {
error = _AcquireBenaphore(fMutex, timeout);
switch (error) {
case B_OK:
// fine
break;
case B_TIMED_OUT: {
// clean up
if (fLock.Lock()) {
_DeleteReadLockInfo(_IndexOf(thread));
fReaderCount--;
fLock.Unlock();
}
break;
}
default:
// Probably we are going to be destroyed.
break;
}
}
// Let the next candidate enter the game.
_ReleaseBenaphore(fQueue);
} else {
// We couldn't lock the data, which can only happen, if
// we're going to be destroyed.
error = B_ERROR;
}
}
}
return error;
}
// _WriteLock
//
// /timeout/ -- absolute timeout
status_t
RWLocker::_WriteLock(bigtime_t timeout)
{
status_t error = B_ERROR;
if (fLock.Lock()) {
bool infiniteTimeout = (timeout == B_INFINITE_TIMEOUT);
bool locked = false;
int32 readerCount = 0;
thread_id thread = find_thread(NULL);
int32 index = _IndexOf(thread);
if (ReadLockInfo* info = _ReadLockInfoAt(index)) {
// We already own a read lock.
if (fWriterCount > 0) {
// There are writers before us.
if (infiniteTimeout) {
// Timeout is infinite and there are writers before us.
// Unregister the read locks and lock as usual.
readerCount = info->count;
fWriterCount++;
fReaderCount -= readerCount;
_DeleteReadLockInfo(index);
error = B_OK;
} else {
// The timeout is finite and there are readers before us:
// let the write lock request fail.
error = B_WOULD_BLOCK;
}
} else if (info->count == fReaderCount) {
// No writers before us.
// We are the only read lock owners. Just move the read lock
// info data to the special writer fields and then we are done.
// Note: At this point we may overtake readers that already
// have acquired the queueing benaphore, but have not yet
// locked the data. But that doesn't harm.
fWriter = thread;
fWriterCount++;
fWriterWriterCount = 1;
fWriterReaderCount = info->count;
fReaderCount -= fWriterReaderCount;
_DeleteReadLockInfo(index);
locked = true;
error = B_OK;
} else {
// No writers before us, but other readers.
// Note, we're quite restrictive here. If there are only
// readers before us, we could reinstall our readers, if
// our request times out. Unfortunately it is not easy
// to ensure, that no writer overtakes us between unlocking
// the data and acquiring the queuing benaphore.
if (infiniteTimeout) {
// Unregister the readers and lock as usual.
readerCount = info->count;
fWriterCount++;
fReaderCount -= readerCount;
_DeleteReadLockInfo(index);
error = B_OK;
} else
error = B_WOULD_BLOCK;
}
} else {
// We don't own a read lock.
if (fWriter == thread) {
// ... but a write lock.
fWriterCount++;
fWriterWriterCount++;
locked = true;
error = B_OK;
} else {
// We own neither read nor write locks.
// Lock as usual.
fWriterCount++;
error = B_OK;
}
}
fLock.Unlock();
// Usual locking...
// First step: acquire the queueing benaphore.
if (!locked && error == B_OK) {
error = _AcquireBenaphore(fQueue, timeout);
switch (error) {
case B_OK:
break;
case B_TIMED_OUT: {
// clean up
if (fLock.Lock()) {
fWriterCount--;
fLock.Unlock();
} // else: failed to lock the data: we're probably going
// to die.
break;
}
default:
// Probably we're going to die.
break;
}
}
// Second step: acquire the mutex benaphore.
if (!locked && error == B_OK) {
error = _AcquireBenaphore(fMutex, timeout);
switch (error) {
case B_OK: {
// Yeah, we made it. Set the special writer fields.
fWriter = thread;
fWriterWriterCount = 1;
fWriterReaderCount = readerCount;
break;
}
case B_TIMED_OUT: {
// clean up
if (fLock.Lock()) {
fWriterCount--;
fLock.Unlock();
} // else: failed to lock the data: we're probably going
// to die.
break;
}
default:
// Probably we're going to die.
break;
}
// Whatever happened, we have to release the queueing benaphore.
_ReleaseBenaphore(fQueue);
}
} else // failed to lock the data
error = B_ERROR;
return error;
}
// _AddReadLockInfo
int32
RWLocker::_AddReadLockInfo(ReadLockInfo* info)
{
int32 index = fReadLockInfos.CountItems();
fReadLockInfos.AddItem(info, index);
return index;
}
// _NewReadLockInfo
//
// Create a new read lock info for the supplied thread and add it to the
// list. Returns the index of the info.
int32
RWLocker::_NewReadLockInfo(thread_id thread, int32 count)
{
ReadLockInfo* info = new ReadLockInfo;
info->reader = thread;
info->count = count;
return _AddReadLockInfo(info);
}
// _DeleteReadLockInfo
void
RWLocker::_DeleteReadLockInfo(int32 index)
{
if (ReadLockInfo* info = (ReadLockInfo*)fReadLockInfos.RemoveItem(index))
delete info;
}
// _ReadLockInfoAt
RWLocker::ReadLockInfo*
RWLocker::_ReadLockInfoAt(int32 index) const
{
return (ReadLockInfo*)fReadLockInfos.ItemAt(index);
}
// _IndexOf
int32
RWLocker::_IndexOf(thread_id thread) const
{
int32 count = fReadLockInfos.CountItems();
for (int32 i = 0; i < count; i++) {
if (_ReadLockInfoAt(i)->reader == thread)
return i;
}
return -1;
}
// _AcquireBenaphore
status_t
RWLocker::_AcquireBenaphore(Benaphore& benaphore, bigtime_t timeout)
{
status_t error = B_OK;
if (atomic_add(&benaphore.counter, 1) > 0) {
error = acquire_sem_etc(benaphore.semaphore, 1, B_ABSOLUTE_TIMEOUT,
timeout);
}
return error;
}
// _ReleaseBenaphore
void
RWLocker::_ReleaseBenaphore(Benaphore& benaphore)
{
if (atomic_add(&benaphore.counter, -1) > 1)
release_sem(benaphore.semaphore);
}

View File

@ -1,137 +0,0 @@
/*
* Copyright 2006, Haiku.
* Distributed under the terms of the MIT License.
*
* Authors:
* IngoWeinhold <bonefish@cs.tu-berlin.de>
*/
// This class provides a reader/writer locking mechanism:
// * A writer needs an exclusive lock.
// * For a reader a non-exclusive lock to be shared with other readers is
// sufficient.
// * The ownership of a lock is bound to the thread that requested the lock;
// the same thread has to call Unlock() later.
// * Nested locking is supported: a number of XXXLock() calls needs to be
// bracketed by the same number of XXXUnlock() calls.
// * The lock acquiration strategy is fair: a lock applicant needs to wait
// only for those threads that already own a lock or requested one before
// the current thread. No one can overtake. E.g. if a thread owns a read
// lock, another one is waiting for a write lock, then a third one
// requesting a read lock has to wait until the write locker is done.
// This does not hold for threads that already own a lock (nested locking).
// A read lock owner is immediately granted another read lock and a write
// lock owner another write or a read lock.
// * A write lock owner is allowed to request a read lock and a read lock
// owner a write lock. While the first case is not problematic, the
// second one needs some further explanation: A read lock owner requesting
// a write lock temporarily looses its read lock(s) until the write lock
// is granted. Otherwise two read lock owning threads trying to get
// write locks at the same time would dead lock each other. The only
// problem with this solution is, that the write lock acquiration must
// not fail, because in that case the thread could not be given back
// its read lock(s), since another thread may have been given a write lock
// in the mean time. Fortunately locking can fail only either, if the
// locker has been deleted, or, if a timeout occured. Therefore
// WriteLockWithTimeout() immediatlely returns with a B_WOULD_BLOCK error
// code, if the caller already owns a read lock (but no write lock) and
// another thread already owns or has requested a read or write lock.
// * Calls to read and write locking methods may interleave arbitrarily,
// e.g.: ReadLock(); WriteLock(); ReadUnlock(); WriteUnlock();
//
// Important note: Read/WriteLock() can fail only, if the locker has been
// deleted. However, it is NOT save to invoke any method on a deleted
// locker object.
//
// Implementation details:
// A locker needs three semaphores (a BLocker and two semaphores): one
// to protect the lockers data, one as a reader/writer mutex (to be
// acquired by each writer and the first reader) and one for queueing
// waiting readers and writers. The simplified locking/unlocking
// algorithm is the following:
//
// writer reader
// queue.acquire() queue.acquire()
// mutex.acquire() if (first reader) mutex.acquire()
// queue.release() queue.release()
// ... ...
// mutex.release() if (last reader) mutex.release()
//
// One thread at maximum waits at the mutex, the others at the queueing
// semaphore. Unfortunately features as nested locking and timeouts make
// things more difficult. Therefore readers as well as writers need to check
// whether they already own a lock before acquiring the queueing semaphore.
// The data for the readers are stored in a list of ReadLockInfo structures;
// the writer data are stored in some special fields. /fReaderCount/ and
// /fWriterCount/ contain the total count of unbalanced Read/WriteLock()
// calls, /fWriterReaderCount/ and /fWriterWriterCount/ only from those of
// the current write lock owner (/fWriter/). To be a bit more precise:
// /fWriterReaderCount/ is not contained in /fReaderCount/, but
// /fWriterWriterCount/ is contained in /fWriterCount/. Therefore
// /fReaderCount/ can be considered to be the count of true reader's read
// locks.
#ifndef RW_LOCKER_H
#define RW_LOCKER_H
#include <List.h>
#include <Locker.h>
#include "AutoLocker.h"
class RWLocker {
public:
RWLocker();
RWLocker(const char* name);
virtual ~RWLocker();
bool ReadLock();
status_t ReadLockWithTimeout(bigtime_t timeout);
void ReadUnlock();
bool IsReadLocked() const;
bool WriteLock();
status_t WriteLockWithTimeout(bigtime_t timeout);
void WriteUnlock();
bool IsWriteLocked() const;
private:
struct ReadLockInfo;
struct Benaphore {
sem_id semaphore;
int32 counter;
};
private:
void _Init(const char* name);
status_t _ReadLock(bigtime_t timeout);
status_t _WriteLock(bigtime_t timeout);
int32 _AddReadLockInfo(ReadLockInfo* info);
int32 _NewReadLockInfo(thread_id thread,
int32 count = 1);
void _DeleteReadLockInfo(int32 index);
ReadLockInfo* _ReadLockInfoAt(int32 index) const;
int32 _IndexOf(thread_id thread) const;
static status_t _AcquireBenaphore(Benaphore& benaphore,
bigtime_t timeout);
static void _ReleaseBenaphore(Benaphore& benaphore);
private:
mutable BLocker fLock; // data lock
Benaphore fMutex; // critical code mutex
Benaphore fQueue; // queueing semaphore
int32 fReaderCount; // total count...
int32 fWriterCount; // total count...
BList fReadLockInfos;
thread_id fWriter; // current write lock owner
int32 fWriterWriterCount; // write lock owner count
int32 fWriterReaderCount; // writer read lock owner
// count
};
typedef AutoLocker<RWLocker, AutoLockerReadLocking<RWLocker> > AutoReadLocker;
typedef AutoLocker<RWLocker, AutoLockerWriteLocking<RWLocker> > AutoWriteLocker;
#endif // RW_LOCKER_H

View File

@ -46,6 +46,7 @@ for architectureObject in [ MultiArchSubDirSetup ] {
PromptWindow.cpp
QueryFile.cpp
RegExp.cpp
RWLocker.cpp
RWLockManager.cpp
SHA256.cpp
ShakeTrackingFilter.cpp