* Fix many style issues. Quaternion and Vector3 still show some of their foreign

origin. Yes.. shame on me, i had even imported their non unix line endings :)
  Will make them BCitizens soon.


git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@33890 a95241bf-73f2-0310-859d-f6bbb57e9c96
This commit is contained in:
Alexandre Deckner 2009-11-05 09:37:45 +00:00
parent ae762f316d
commit 3904801c31
10 changed files with 877 additions and 833 deletions

View File

@ -15,43 +15,47 @@
float
MathUtils::EaseInOutCubic(float t /*time*/, float b /*begin*/, float c /*distance*/, float d /*duration*/)
MathUtils::EaseInOutCubic(float time, float start, float distance,
float duration)
{
t /= d / 2.0;
if (t < 1.0)
return c / 2.0 * t * t * t + b;
t -= 2.0;
return c / 2.0 * (t * t * t + 2.0) + b;
time /= duration / 2.0;
if (time < 1.0)
return distance / 2.0 * time * time * time + start;
time -= 2.0;
return distance / 2.0 * (time * time * time + 2.0) + start;
}
float
MathUtils::EaseInOutQuart(float t /*time*/, float b /*begin*/, float c /*distance*/, float d /*duration*/)
MathUtils::EaseInOutQuart(float time, float start, float distance,
float duration)
{
t /= d / 2;
time /= duration / 2;
if (t < 1)
return c / 2 * t * t * t * t + b;
if (time < 1)
return distance / 2 * time * time * time * time + start;
t -= 2;
time -= 2;
return -c / 2 * (t * t * t * t - 2) + b;
return -distance / 2 * (time * time * time * time - 2) + start;
}
float
MathUtils::EaseInOutQuint(float t /*time*/, float b /*begin*/, float c /*distance*/, float d /*duration*/)
MathUtils::EaseInOutQuint(float time, float start, float distance,
float duration)
{
t /= d / 2;
if (t < 1)
return c / 2 * t * t * t * t * t + b;
t -= 2;
return c / 2 *(t * t * t * t * t + 2) + b;
time /= duration / 2;
if (time < 1)
return distance / 2 * time * time * time * time * time + start;
time -= 2;
return distance / 2 *(time * time * time * time * time + 2) + start;
}
float
MathUtils::EaseInOutSine(float t /*time*/, float b /*begin*/, float c /*distance*/, float d /*duration*/)
MathUtils::EaseInOutSine(float time, float start, float distance,
float duration)
{
return -c / 2 * (cos(3.14159 * t / d) - 1) + b;
return -distance / 2 * (cos(3.14159 * time / distance) - 1) + start;
}

View File

@ -1,4 +1,4 @@
/*
/*
* Copyright 2009, Haiku Inc. All rights reserved.
* Distributed under the terms of the MIT License.
*
@ -11,11 +11,15 @@
class MathUtils
{
public:
static float EaseInOutCubic(float time, float begin, float distance, float duration);
static float EaseInOutQuart(float time, float begin, float distance, float duration);
static float EaseInOutQuint(float time, float begin, float distance, float duration);
static float EaseInOutSine(float time, float begin, float distance, float duration);
public:
static float EaseInOutCubic(float time, float begin, float distance,
float duration);
static float EaseInOutQuart(float time, float begin, float distance,
float duration);
static float EaseInOutQuint(float time, float begin, float distance,
float duration);
static float EaseInOutSine(float time, float begin, float distance,
float duration);
};
#endif /* _MATH_UTILS_H */

View File

@ -76,9 +76,8 @@ MeshInstance::Render()
glBindTexture(GL_TEXTURE_2D, fTextureReference->Id());
int lastVertexCount = 0;
//int batchCount = 0;
for(uint32 i = 0; i < fMeshReference->FaceCount(); i++) {
for (uint32 i = 0; i < fMeshReference->FaceCount(); i++) {
const Face& face = fMeshReference->GetFace(i);
@ -91,8 +90,6 @@ MeshInstance::Render()
glBegin(GL_TRIANGLES);
else
glBegin(GL_QUADS);
//batchCount++;
}
// calculate normal
@ -144,11 +141,10 @@ MeshInstance::Render()
lastVertexCount = face.vertexCount;
}
glEnd();
//printf("batchCount %d\n", batchCount);
if (fDrawNormals) {
glBegin(GL_LINES);
for(uint32 i = 0; i < fMeshReference->FaceCount(); i++) {
for (uint32 i = 0; i < fMeshReference->FaceCount(); i++) {
const Face& face = fMeshReference->GetFace(i);
@ -174,7 +170,7 @@ MeshInstance::Render()
glVertex3f(g.x(), g.y(), g.z());
glVertex3f(h.x(), h.y(), h.z());
}
}
}
glEnd();
}

View File

@ -1,407 +1,416 @@
/*
* Copyright 2008 Haiku Inc. All rights reserved.
* Distributed under the terms of the MIT License.
*
* Authors:
* Alexandre Deckner
*
*/
/*
*
* This is a refactored and stripped down version of bullet-2.66 src\LinearMath\btQuaternion.h
* The dependancies on base class btQuadWord have been removed for simplification.
* Added gl matrix conversion method.
*
*/
/*
Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef __QUATERNION_H__
#define __QUATERNION_H__
#include "Vector3.h"
#include <SupportDefs.h> //pout FLT_EPSILON
class Quaternion {
protected:
float m_x;
float m_y;
float m_z;
float m_w;
public:
Quaternion() {}
Quaternion(const Quaternion& q)
{
*((Quaternion*)this) = q;
}
Quaternion(const float& x, const float& y, const float& z,const float& w)
{
m_x = x, m_y = y, m_z = z, m_w = w;
}
Quaternion(const Vector3& axis, const float& angle)
{
setRotation(axis, angle);
}
Quaternion(const float& yaw, const float& pitch, const float& roll)
{
setEuler(yaw, pitch, roll);
}
inline const float& x() const { return m_x; }
inline const float& y() const { return m_y; }
inline const float& z() const { return m_z; }
inline const float& w() const { return m_w; }
void setValue(const float& x, const float& y, const float& z)
{
m_x=x;
m_y=y;
m_z=z;
m_w = 0.f;
}
void setValue(const float& x, const float& y, const float& z,const float& w)
{
m_x=x;
m_y=y;
m_z=z;
m_w=w;
}
void setRotation(const Vector3& axis, const float& angle)
{
float d = axis.length();
assert(d != 0.0f);
float s = sin(angle * 0.5f) / d;
setValue(axis.x() * s, axis.y() * s, axis.z() * s,
cos(angle * 0.5f));
}
void setEuler(const float& yaw, const float& pitch, const float& roll)
{
float halfYaw = yaw * 0.5f;
float halfPitch = pitch * 0.5f;
float halfRoll = roll * 0.5f;
float cosYaw = cos(halfYaw);
float sinYaw = sin(halfYaw);
float cosPitch = cos(halfPitch);
float sinPitch = sin(halfPitch);
float cosRoll = cos(halfRoll);
float sinRoll = sin(halfRoll);
setValue(cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw,
cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw,
sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw,
cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw);
}
Quaternion& operator+=(const Quaternion& q)
{
m_x += q.x(); m_y += q.y(); m_z += q.z(); m_w += q.m_w;
return *this;
}
Quaternion& operator-=(const Quaternion& q)
{
m_x -= q.x(); m_y -= q.y(); m_z -= q.z(); m_w -= q.m_w;
return *this;
}
Quaternion& operator*=(const float& s)
{
m_x *= s; m_y *= s; m_z *= s; m_w *= s;
return *this;
}
Quaternion& operator*=(const Quaternion& q)
{
setValue(m_w * q.x() + m_x * q.m_w + m_y * q.z() - m_z * q.y(),
m_w * q.y() + m_y * q.m_w + m_z * q.x() - m_x * q.z(),
m_w * q.z() + m_z * q.m_w + m_x * q.y() - m_y * q.x(),
m_w * q.m_w - m_x * q.x() - m_y * q.y() - m_z * q.z());
return *this;
}
float dot(const Quaternion& q) const
{
return m_x * q.x() + m_y * q.y() + m_z * q.z() + m_w * q.m_w;
}
float length2() const
{
return dot(*this);
}
float length() const
{
return sqrt(length2());
}
Quaternion& normalize()
{
return *this /= length();
}
inline Quaternion
operator*(const float& s) const
{
return Quaternion(x() * s, y() * s, z() * s, m_w * s);
}
Quaternion operator/(const float& s) const
{
assert(s != 0.0f);
return *this * (1.0f / s);
}
Quaternion& operator/=(const float& s)
{
assert(s != 0.0f);
return *this *= 1.0f / s;
}
Quaternion normalized() const
{
return *this / length();
}
float angle(const Quaternion& q) const
{
float s = sqrt(length2() * q.length2());
assert(s != 0.0f);
return acos(dot(q) / s);
}
float getAngle() const
{
float s = 2.0f * acos(m_w);
return s;
}
Quaternion inverse() const
{
return Quaternion(m_x, m_y, m_z, -m_w);
}
inline Quaternion
operator+(const Quaternion& q2) const
{
const Quaternion& q1 = *this;
return Quaternion(q1.x() + q2.x(), q1.y() + q2.y(), q1.z() + q2.z(), q1.m_w + q2.m_w);
}
inline Quaternion
operator-(const Quaternion& q2) const
{
const Quaternion& q1 = *this;
return Quaternion(q1.x() - q2.x(), q1.y() - q2.y(), q1.z() - q2.z(), q1.m_w - q2.m_w);
}
inline Quaternion operator-() const
{
const Quaternion& q2 = *this;
return Quaternion( - q2.x(), - q2.y(), - q2.z(), - q2.m_w);
}
inline Quaternion farthest( const Quaternion& qd) const
{
Quaternion diff,sum;
diff = *this - qd;
sum = *this + qd;
if( diff.dot(diff) > sum.dot(sum) )
return qd;
return (-qd);
}
Quaternion slerp(const Quaternion& q, const float& t) const
{
float theta = angle(q);
if (theta != 0.0f)
{
float d = 1.0f / sin(theta);
float s0 = sin((1.0f - t) * theta);
float s1 = sin(t * theta);
return Quaternion((m_x * s0 + q.x() * s1) * d,
(m_y * s0 + q.y() * s1) * d,
(m_z * s0 + q.z() * s1) * d,
(m_w * s0 + q.m_w * s1) * d);
}
else
{
return *this;
}
}
void toOpenGLMatrix(float m[4][4]){
float wx, wy, wz, xx, yy, yz, xy, xz, zz, x2, y2, z2;
// calculate coefficients
x2 = m_x + m_x; y2 = m_y + m_y;
z2 = m_z + m_z;
xx = m_x * x2; xy = m_x * y2; xz = m_x * z2;
yy = m_y * y2; yz = m_y * z2; zz = m_z * z2;
wx = m_w * x2; wy = m_w * y2; wz = m_w * z2;
m[0][0] = 1.0 - (yy + zz); m[1][0] = xy - wz;
m[2][0] = xz + wy; m[3][0] = 0.0;
m[0][1] = xy + wz; m[1][1] = 1.0 - (xx + zz);
m[2][1] = yz - wx; m[3][1] = 0.0;
m[0][2] = xz - wy; m[1][2] = yz + wx;
m[2][2] = 1.0 - (xx + yy); m[3][2] = 0.0;
m[0][3] = 0; m[1][3] = 0;
m[2][3] = 0; m[3][3] = 1;
}
};
inline Quaternion
operator-(const Quaternion& q)
{
return Quaternion(-q.x(), -q.y(), -q.z(), -q.w());
}
inline Quaternion
operator*(const Quaternion& q1, const Quaternion& q2) {
return Quaternion(q1.w() * q2.x() + q1.x() * q2.w() + q1.y() * q2.z() - q1.z() * q2.y(),
q1.w() * q2.y() + q1.y() * q2.w() + q1.z() * q2.x() - q1.x() * q2.z(),
q1.w() * q2.z() + q1.z() * q2.w() + q1.x() * q2.y() - q1.y() * q2.x(),
q1.w() * q2.w() - q1.x() * q2.x() - q1.y() * q2.y() - q1.z() * q2.z());
}
inline Quaternion
operator*(const Quaternion& q, const Vector3& w)
{
return Quaternion( q.w() * w.x() + q.y() * w.z() - q.z() * w.y(),
q.w() * w.y() + q.z() * w.x() - q.x() * w.z(),
q.w() * w.z() + q.x() * w.y() - q.y() * w.x(),
-q.x() * w.x() - q.y() * w.y() - q.z() * w.z());
}
inline Quaternion
operator*(const Vector3& w, const Quaternion& q)
{
return Quaternion( w.x() * q.w() + w.y() * q.z() - w.z() * q.y(),
w.y() * q.w() + w.z() * q.x() - w.x() * q.z(),
w.z() * q.w() + w.x() * q.y() - w.y() * q.x(),
-w.x() * q.x() - w.y() * q.y() - w.z() * q.z());
}
inline float
dot(const Quaternion& q1, const Quaternion& q2)
{
return q1.dot(q2);
}
inline float
length(const Quaternion& q)
{
return q.length();
}
inline float
angle(const Quaternion& q1, const Quaternion& q2)
{
return q1.angle(q2);
}
inline Quaternion
inverse(const Quaternion& q)
{
return q.inverse();
}
inline Quaternion
slerp(const Quaternion& q1, const Quaternion& q2, const float& t)
{
return q1.slerp(q2, t);
}
inline Quaternion
shortestArcQuat(const Vector3& v0, const Vector3& v1) // Game Programming Gems 2.10. make sure v0,v1 are normalized
{
Vector3 c = v0.cross(v1);
float d = v0.dot(v1);
if (d < -1.0 + FLT_EPSILON)
return Quaternion(0.0f, 1.0f, 0.0f, 0.0f); // just pick any vector
float s = sqrt((1.0f + d) * 2.0f);
float rs = 1.0f / s;
return Quaternion(c.x() * rs, c.y() * rs, c.z() * rs, s * 0.5f);
}
inline Quaternion
shortestArcQuatNormalize2(Vector3& v0, Vector3& v1)
{
v0.normalize();
v1.normalize();
return shortestArcQuat(v0, v1);
}
#endif
/*
* Copyright 2008 Haiku Inc. All rights reserved.
* Distributed under the terms of the MIT License.
*
* Authors:
* Alexandre Deckner
*
*/
/*
*
* This is a refactored and stripped down version of
* bullet-2.66 src\LinearMath\btQuaternion.h
* The dependancies on base class btQuadWord have been removed for
* simplification.
* Added gl matrix conversion method.
*
*/
/*
Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans
http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the
use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim
that you wrote the original software. If you use this software in a product,
an acknowledgment in the product documentation would be appreciated but is
not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef __QUATERNION_H__
#define __QUATERNION_H__
#include "Vector3.h"
#include <SupportDefs.h>
class Quaternion {
protected:
float m_x;
float m_y;
float m_z;
float m_w;
public:
Quaternion() {}
Quaternion(const Quaternion& q)
{
*((Quaternion*)this) = q;
}
Quaternion(const float& x, const float& y, const float& z, const float& w)
{
m_x = x, m_y = y, m_z = z, m_w = w;
}
Quaternion(const Vector3& axis, const float& angle)
{
setRotation(axis, angle);
}
Quaternion(const float& yaw, const float& pitch, const float& roll)
{
setEuler(yaw, pitch, roll);
}
inline const float& x() const { return m_x; }
inline const float& y() const { return m_y; }
inline const float& z() const { return m_z; }
inline const float& w() const { return m_w; }
void setValue(const float& x, const float& y, const float& z)
{
m_x = x;
m_y = y;
m_z = z;
m_w = 0.f;
}
void setValue(const float& x, const float& y, const float& z, const float& w)
{
m_x = x;
m_y = y;
m_z = z;
m_w = w;
}
void setRotation(const Vector3& axis, const float& angle)
{
float d = axis.length();
assert(d != 0.0f);
float s = sin(angle * 0.5f) / d;
setValue(axis.x() * s, axis.y() * s, axis.z() * s,
cos(angle * 0.5f));
}
void setEuler(const float& yaw, const float& pitch, const float& roll)
{
float halfYaw = yaw * 0.5f;
float halfPitch = pitch * 0.5f;
float halfRoll = roll * 0.5f;
float cosYaw = cos(halfYaw);
float sinYaw = sin(halfYaw);
float cosPitch = cos(halfPitch);
float sinPitch = sin(halfPitch);
float cosRoll = cos(halfRoll);
float sinRoll = sin(halfRoll);
setValue(cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw,
cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw,
sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw,
cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw);
}
Quaternion& operator+=(const Quaternion& q)
{
m_x += q.x(); m_y += q.y(); m_z += q.z(); m_w += q.m_w;
return *this;
}
Quaternion& operator-=(const Quaternion& q)
{
m_x -= q.x(); m_y -= q.y(); m_z -= q.z(); m_w -= q.m_w;
return *this;
}
Quaternion& operator*=(const float& s)
{
m_x *= s; m_y *= s; m_z *= s; m_w *= s;
return *this;
}
Quaternion& operator*=(const Quaternion& q)
{
setValue(m_w * q.x() + m_x * q.m_w + m_y * q.z() - m_z * q.y(),
m_w * q.y() + m_y * q.m_w + m_z * q.x() - m_x * q.z(),
m_w * q.z() + m_z * q.m_w + m_x * q.y() - m_y * q.x(),
m_w * q.m_w - m_x * q.x() - m_y * q.y() - m_z * q.z());
return *this;
}
float dot(const Quaternion& q) const
{
return m_x * q.x() + m_y * q.y() + m_z * q.z() + m_w * q.m_w;
}
float length2() const
{
return dot(*this);
}
float length() const
{
return sqrt(length2());
}
Quaternion& normalize()
{
return *this /= length();
}
inline Quaternion
operator*(const float& s) const
{
return Quaternion(x() * s, y() * s, z() * s, m_w * s);
}
Quaternion operator/(const float& s) const
{
assert(s != 0.0f);
return *this * (1.0f / s);
}
Quaternion& operator/=(const float& s)
{
assert(s != 0.0f);
return *this *= 1.0f / s;
}
Quaternion normalized() const
{
return *this / length();
}
float angle(const Quaternion& q) const
{
float s = sqrt(length2() * q.length2());
assert(s != 0.0f);
return acos(dot(q) / s);
}
float getAngle() const
{
float s = 2.0f * acos(m_w);
return s;
}
Quaternion inverse() const
{
return Quaternion(m_x, m_y, m_z, -m_w);
}
inline Quaternion
operator+(const Quaternion& q2) const
{
const Quaternion& q1 = *this;
return Quaternion(q1.x() + q2.x(), q1.y() + q2.y(), q1.z() + q2.z(),
q1.m_w + q2.m_w);
}
inline Quaternion
operator-(const Quaternion& q2) const
{
const Quaternion& q1 = *this;
return Quaternion(q1.x() - q2.x(), q1.y() - q2.y(), q1.z() - q2.z(),
q1.m_w - q2.m_w);
}
inline Quaternion operator-() const
{
const Quaternion& q2 = *this;
return Quaternion( - q2.x(), - q2.y(), - q2.z(), - q2.m_w);
}
inline Quaternion farthest( const Quaternion& qd) const
{
Quaternion diff, sum;
diff = *this - qd;
sum = *this + qd;
if (diff.dot(diff) > sum.dot(sum))
return qd;
return (-qd);
}
Quaternion slerp(const Quaternion& q, const float& t) const
{
float theta = angle(q);
if (theta != 0.0f) {
float d = 1.0f / sin(theta);
float s0 = sin((1.0f - t) * theta);
float s1 = sin(t * theta);
return Quaternion((m_x * s0 + q.x() * s1) * d,
(m_y * s0 + q.y() * s1) * d,
(m_z * s0 + q.z() * s1) * d,
(m_w * s0 + q.m_w * s1) * d);
} else {
return *this;
}
}
void toOpenGLMatrix(float m[4][4])
{
float wx, wy, wz, xx, yy, yz, xy, xz, zz, x2, y2, z2;
// calculate coefficients
x2 = m_x + m_x; y2 = m_y + m_y;
z2 = m_z + m_z;
xx = m_x * x2; xy = m_x * y2; xz = m_x * z2;
yy = m_y * y2; yz = m_y * z2; zz = m_z * z2;
wx = m_w * x2; wy = m_w * y2; wz = m_w * z2;
m[0][0] = 1.0 - (yy + zz); m[1][0] = xy - wz;
m[2][0] = xz + wy; m[3][0] = 0.0;
m[0][1] = xy + wz; m[1][1] = 1.0 - (xx + zz);
m[2][1] = yz - wx; m[3][1] = 0.0;
m[0][2] = xz - wy; m[1][2] = yz + wx;
m[2][2] = 1.0 - (xx + yy); m[3][2] = 0.0;
m[0][3] = 0; m[1][3] = 0;
m[2][3] = 0; m[3][3] = 1;
}
};
inline Quaternion
operator-(const Quaternion& q)
{
return Quaternion(-q.x(), -q.y(), -q.z(), -q.w());
}
inline Quaternion
operator*(const Quaternion& q1, const Quaternion& q2) {
return Quaternion(
q1.w() * q2.x() + q1.x() * q2.w() + q1.y() * q2.z() - q1.z() * q2.y(),
q1.w() * q2.y() + q1.y() * q2.w() + q1.z() * q2.x() - q1.x() * q2.z(),
q1.w() * q2.z() + q1.z() * q2.w() + q1.x() * q2.y() - q1.y() * q2.x(),
q1.w() * q2.w() - q1.x() * q2.x() - q1.y() * q2.y() - q1.z() * q2.z());
}
inline Quaternion
operator*(const Quaternion& q, const Vector3& w)
{
return Quaternion( q.w() * w.x() + q.y() * w.z() - q.z() * w.y(),
q.w() * w.y() + q.z() * w.x() - q.x() * w.z(),
q.w() * w.z() + q.x() * w.y() - q.y() * w.x(),
-q.x() * w.x() - q.y() * w.y() - q.z() * w.z());
}
inline Quaternion
operator*(const Vector3& w, const Quaternion& q)
{
return Quaternion( w.x() * q.w() + w.y() * q.z() - w.z() * q.y(),
w.y() * q.w() + w.z() * q.x() - w.x() * q.z(),
w.z() * q.w() + w.x() * q.y() - w.y() * q.x(),
-w.x() * q.x() - w.y() * q.y() - w.z() * q.z());
}
inline float
dot(const Quaternion& q1, const Quaternion& q2)
{
return q1.dot(q2);
}
inline float
length(const Quaternion& q)
{
return q.length();
}
inline float
angle(const Quaternion& q1, const Quaternion& q2)
{
return q1.angle(q2);
}
inline Quaternion
inverse(const Quaternion& q)
{
return q.inverse();
}
inline Quaternion
slerp(const Quaternion& q1, const Quaternion& q2, const float& t)
{
return q1.slerp(q2, t);
}
// Game Programming Gems 2.10. make sure v0,v1 are normalized
inline Quaternion
shortestArcQuat(const Vector3& v0, const Vector3& v1)
{
Vector3 c = v0.cross(v1);
float d = v0.dot(v1);
if (d < -1.0 + FLT_EPSILON)
return Quaternion(0.0f, 1.0f, 0.0f, 0.0f); // just pick any vector
float s = sqrt((1.0f + d) * 2.0f);
float rs = 1.0f / s;
return Quaternion(c.x() * rs, c.y() * rs, c.z() * rs, s * 0.5f);
}
inline Quaternion
shortestArcQuatNormalize2(Vector3& v0, Vector3& v1)
{
v0.normalize();
v1.normalize();
return shortestArcQuat(v0, v1);
}
#endif

View File

@ -186,7 +186,7 @@ void
RenderView::_DeleteScene()
{
MeshInstanceList::iterator it = fMeshInstances.begin();
for(; it != fMeshInstances.end(); it++) {
for (; it != fMeshInstances.end(); it++) {
delete (*it);
}
fMeshInstances.clear();
@ -231,7 +231,7 @@ RenderView::_Render()
fLastFrameTime = time;
MeshInstanceList::iterator it = fMeshInstances.begin();
for(; it != fMeshInstances.end(); it++) {
for (; it != fMeshInstances.end(); it++) {
(*it)->Update(deltaTime);
(*it)->Render();
}

View File

@ -18,7 +18,7 @@ public:
Texture();
virtual ~Texture();
GLuint Id();
GLuint Id();
virtual void Update(float dt);

View File

@ -1,353 +1,384 @@
/*
* Copyright 2008 Haiku Inc. All rights reserved.
* Distributed under the terms of the MIT License.
*
* Authors:
* Alexandre Deckner
*
*/
/*
*
* This is a refactored and stripped down version of bullet-2.66 src\LinearMath\btVector3.h
* The dependancies on base class btQuadWord have been removed for simplification.
*
*/
/*
Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef __VECTOR3_H__
#define __VECTOR3_H__
#include "assert.h"
#include "math.h"
///Vector3 can be used to represent 3D points and vectors.
class Vector3 {
protected:
float m_x;
float m_y;
float m_z;
public:
inline Vector3() {}
inline Vector3(const Vector3& v)
{
*((Vector3*)this) = v;
}
inline Vector3(const float& x, const float& y, const float& z)
{
m_x = x, m_y = y, m_z = z;
}
inline const float& x() const { return m_x; }
inline const float& y() const { return m_y; }
inline const float& z() const { return m_z; }
inline void setValue(const float& x, const float& y, const float& z)
{
m_x=x;
m_y=y;
m_z=z;
}
inline Vector3& operator+=(const Vector3& v)
{
m_x += v.x(); m_y += v.y(); m_z += v.z();
return *this;
}
inline Vector3& operator-=(const Vector3& v)
{
m_x -= v.x(); m_y -= v.y(); m_z -= v.z();
return *this;
}
inline Vector3& operator*=(const float& s)
{
m_x *= s; m_y *= s; m_z *= s;
return *this;
}
inline Vector3& operator/=(const float& s)
{
assert(s != 0.0f);
return *this *= 1.0f / s;
}
inline float dot(const Vector3& v) const
{
return m_x * v.x() + m_y * v.y() + m_z * v.z();
}
inline float length2() const
{
return dot(*this);
}
inline float length() const
{
return sqrt(length2());
}
inline float distance2(const Vector3& v) const;
inline float distance(const Vector3& v) const;
inline Vector3& normalize()
{
return *this /= length();
}
inline Vector3 normalized() const;
inline Vector3 rotate( const Vector3& wAxis, const float angle );
inline float angle(const Vector3& v) const
{
float s = sqrt(length2() * v.length2());
assert(s != 0.0f);
return acos(dot(v) / s);
}
inline Vector3 absolute() const
{
return Vector3(
fabs(m_x),
fabs(m_y),
fabs(m_z));
}
inline Vector3 cross(const Vector3& v) const
{
return Vector3(
m_y * v.z() - m_z * v.y(),
m_z * v.x() - m_x * v.z(),
m_x * v.y() - m_y * v.x());
}
inline float triple(const Vector3& v1, const Vector3& v2) const
{
return m_x * (v1.y() * v2.z() - v1.z() * v2.y()) +
m_y * (v1.z() * v2.x() - v1.x() * v2.z()) +
m_z * (v1.x() * v2.y() - v1.y() * v2.x());
}
inline int minAxis() const
{
return m_x < m_y ? (m_x < m_z ? 0 : 2) : (m_y < m_z ? 1 : 2);
}
inline int maxAxis() const
{
return m_x < m_y ? (m_y < m_z ? 2 : 1) : (m_x < m_z ? 2 : 0);
}
inline int furthestAxis() const
{
return absolute().minAxis();
}
inline int closestAxis() const
{
return absolute().maxAxis();
}
inline void setInterpolate3(const Vector3& v0, const Vector3& v1, float rt)
{
float s = 1.0f - rt;
m_x = s * v0.x() + rt * v1.x();
m_y = s * v0.y() + rt * v1.y();
m_z = s * v0.z() + rt * v1.z();
//don't do the unused w component
// m_co[3] = s * v0[3] + rt * v1[3];
}
inline Vector3 lerp(const Vector3& v, const float& t) const
{
return Vector3(m_x + (v.x() - m_x) * t,
m_y + (v.y() - m_y) * t,
m_z + (v.z() - m_z) * t);
}
inline Vector3& operator*=(const Vector3& v)
{
m_x *= v.x(); m_y *= v.y(); m_z *= v.z();
return *this;
}
};
inline Vector3
operator+(const Vector3& v1, const Vector3& v2)
{
return Vector3(v1.x() + v2.x(), v1.y() + v2.y(), v1.z() + v2.z());
}
inline Vector3
operator*(const Vector3& v1, const Vector3& v2)
{
return Vector3(v1.x() * v2.x(), v1.y() * v2.y(), v1.z() * v2.z());
}
inline Vector3
operator-(const Vector3& v1, const Vector3& v2)
{
return Vector3(v1.x() - v2.x(), v1.y() - v2.y(), v1.z() - v2.z());
}
inline Vector3
operator-(const Vector3& v)
{
return Vector3(-v.x(), -v.y(), -v.z());
}
inline Vector3
operator*(const Vector3& v, const float& s)
{
return Vector3(v.x() * s, v.y() * s, v.z() * s);
}
inline Vector3
operator*(const float& s, const Vector3& v)
{
return v * s;
}
inline Vector3
operator/(const Vector3& v, const float& s)
{
assert(s != 0.0f);
return v * (1.0f / s);
}
inline Vector3
operator/(const Vector3& v1, const Vector3& v2)
{
return Vector3(v1.x() / v2.x(),v1.y() / v2.y(),v1.z() / v2.z());
}
inline float
dot(const Vector3& v1, const Vector3& v2)
{
return v1.dot(v2);
}
inline float
distance2(const Vector3& v1, const Vector3& v2)
{
return v1.distance2(v2);
}
inline float
distance(const Vector3& v1, const Vector3& v2)
{
return v1.distance(v2);
}
inline float
angle(const Vector3& v1, const Vector3& v2)
{
return v1.angle(v2);
}
inline Vector3
cross(const Vector3& v1, const Vector3& v2)
{
return v1.cross(v2);
}
inline float
triple(const Vector3& v1, const Vector3& v2, const Vector3& v3)
{
return v1.triple(v2, v3);
}
inline Vector3
lerp(const Vector3& v1, const Vector3& v2, const float& t)
{
return v1.lerp(v2, t);
}
inline bool operator==(const Vector3& p1, const Vector3& p2)
{
return p1.x() == p2.x() && p1.y() == p2.y() && p1.z() == p2.z();
}
inline float Vector3::distance2(const Vector3& v) const
{
return (v - *this).length2();
}
inline float Vector3::distance(const Vector3& v) const
{
return (v - *this).length();
}
inline Vector3 Vector3::normalized() const
{
return *this / length();
}
inline Vector3 Vector3::rotate( const Vector3& wAxis, const float angle )
{
// wAxis must be a unit lenght vector
Vector3 o = wAxis * wAxis.dot( *this );
Vector3 x = *this - o;
Vector3 y;
y = wAxis.cross( *this );
return ( o + x * cos( angle ) + y * sin( angle ) );
}
#endif //__VECTOR3_H__
/*
* Copyright 2008 Haiku Inc. All rights reserved.
* Distributed under the terms of the MIT License.
*
* Authors:
* Alexandre Deckner
*
*/
/*
*
* This is a refactored and stripped down version of bullet-2.66
* src\LinearMath\btVector3.h
* The dependancies on base class btQuadWord have been removed for
* simplification.
*
*/
/*
Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans
http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the
use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim
that you wrote the original software. If you use this software in a product,
an acknowledgment in the product documentation would be appreciated but is
not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef __VECTOR3_H__
#define __VECTOR3_H__
#include "assert.h"
#include "math.h"
///Vector3 can be used to represent 3D points and vectors.
class Vector3 {
protected:
float m_x;
float m_y;
float m_z;
public:
inline Vector3() {}
inline Vector3(const Vector3& v)
{
*((Vector3*)this) = v;
}
inline Vector3(const float& x, const float& y, const float& z)
{
m_x = x, m_y = y, m_z = z;
}
inline const float& x() const { return m_x; }
inline const float& y() const { return m_y; }
inline const float& z() const { return m_z; }
inline void setValue(const float& x, const float& y, const float& z)
{
m_x = x;
m_y = y;
m_z = z;
}
inline Vector3& operator+=(const Vector3& v)
{
m_x += v.x(); m_y += v.y(); m_z += v.z();
return *this;
}
inline Vector3& operator-=(const Vector3& v)
{
m_x -= v.x(); m_y -= v.y(); m_z -= v.z();
return *this;
}
inline Vector3& operator*=(const float& s)
{
m_x *= s; m_y *= s; m_z *= s;
return *this;
}
inline Vector3& operator/=(const float& s)
{
assert(s != 0.0f);
return *this *= 1.0f / s;
}
inline float dot(const Vector3& v) const
{
return m_x * v.x() + m_y * v.y() + m_z * v.z();
}
inline float length2() const
{
return dot(*this);
}
inline float length() const
{
return sqrt(length2());
}
inline float distance2(const Vector3& v) const;
inline float distance(const Vector3& v) const;
inline Vector3& normalize()
{
return *this /= length();
}
inline Vector3 normalized() const;
inline Vector3 rotate( const Vector3& wAxis, const float angle );
inline float angle(const Vector3& v) const
{
float s = sqrt(length2() * v.length2());
assert(s != 0.0f);
return acos(dot(v) / s);
}
inline Vector3 absolute() const
{
return Vector3(
fabs(m_x),
fabs(m_y),
fabs(m_z));
}
inline Vector3 cross(const Vector3& v) const
{
return Vector3(
m_y * v.z() - m_z * v.y(),
m_z * v.x() - m_x * v.z(),
m_x * v.y() - m_y * v.x());
}
inline float triple(const Vector3& v1, const Vector3& v2) const
{
return m_x * (v1.y() * v2.z() - v1.z() * v2.y())
+ m_y * (v1.z() * v2.x() - v1.x() * v2.z())
+ m_z * (v1.x() * v2.y() - v1.y() * v2.x());
}
inline int minAxis() const
{
return m_x < m_y ? (m_x < m_z ? 0 : 2) : (m_y < m_z ? 1 : 2);
}
inline int maxAxis() const
{
return m_x < m_y ? (m_y < m_z ? 2 : 1) : (m_x < m_z ? 2 : 0);
}
inline int furthestAxis() const
{
return absolute().minAxis();
}
inline int closestAxis() const
{
return absolute().maxAxis();
}
inline void setInterpolate3(const Vector3& v0, const Vector3& v1, float rt)
{
float s = 1.0f - rt;
m_x = s * v0.x() + rt * v1.x();
m_y = s * v0.y() + rt * v1.y();
m_z = s * v0.z() + rt * v1.z();
// don't do the unused w component
// m_co[3] = s * v0[3] + rt * v1[3];
}
inline Vector3 lerp(const Vector3& v, const float& t) const
{
return Vector3(m_x + (v.x() - m_x) * t,
m_y + (v.y() - m_y) * t,
m_z + (v.z() - m_z) * t);
}
inline Vector3& operator*=(const Vector3& v)
{
m_x *= v.x(); m_y *= v.y(); m_z *= v.z();
return *this;
}
};
inline Vector3
operator+(const Vector3& v1, const Vector3& v2)
{
return Vector3(v1.x() + v2.x(), v1.y() + v2.y(), v1.z() + v2.z());
}
inline Vector3
operator*(const Vector3& v1, const Vector3& v2)
{
return Vector3(v1.x() * v2.x(), v1.y() * v2.y(), v1.z() * v2.z());
}
inline Vector3
operator-(const Vector3& v1, const Vector3& v2)
{
return Vector3(v1.x() - v2.x(), v1.y() - v2.y(), v1.z() - v2.z());
}
inline Vector3
operator-(const Vector3& v)
{
return Vector3(-v.x(), -v.y(), -v.z());
}
inline Vector3
operator*(const Vector3& v, const float& s)
{
return Vector3(v.x() * s, v.y() * s, v.z() * s);
}
inline Vector3
operator*(const float& s, const Vector3& v)
{
return v * s;
}
inline Vector3
operator/(const Vector3& v, const float& s)
{
assert(s != 0.0f);
return v * (1.0f / s);
}
inline Vector3
operator/(const Vector3& v1, const Vector3& v2)
{
return Vector3(v1.x() / v2.x(),v1.y() / v2.y(),v1.z() / v2.z());
}
inline float
dot(const Vector3& v1, const Vector3& v2)
{
return v1.dot(v2);
}
inline float
distance2(const Vector3& v1, const Vector3& v2)
{
return v1.distance2(v2);
}
inline float
distance(const Vector3& v1, const Vector3& v2)
{
return v1.distance(v2);
}
inline float
angle(const Vector3& v1, const Vector3& v2)
{
return v1.angle(v2);
}
inline Vector3
cross(const Vector3& v1, const Vector3& v2)
{
return v1.cross(v2);
}
inline float
triple(const Vector3& v1, const Vector3& v2, const Vector3& v3)
{
return v1.triple(v2, v3);
}
inline Vector3
lerp(const Vector3& v1, const Vector3& v2, const float& t)
{
return v1.lerp(v2, t);
}
inline bool
operator==(const Vector3& p1, const Vector3& p2)
{
return p1.x() == p2.x() && p1.y() == p2.y() && p1.z() == p2.z();
}
inline float
Vector3::distance2(const Vector3& v) const
{
return (v - *this).length2();
}
inline float
Vector3::distance(const Vector3& v) const
{
return (v - *this).length();
}
inline Vector3
Vector3::normalized() const
{
return *this / length();
}
inline Vector3
Vector3::rotate( const Vector3& wAxis, const float angle )
{
// wAxis must be a unit lenght vector
Vector3 o = wAxis * wAxis.dot( *this );
Vector3 x = *this - o;
Vector3 y;
y = wAxis.cross( *this );
return ( o + x * cos( angle ) + y * sin( angle ) );
}
#endif //__VECTOR3_H__

View File

@ -43,11 +43,11 @@ StaticMesh::~StaticMesh()
void
StaticMesh::_ReadText(const char* fileName)
{
FILE* f = fopen(fileName, "r");
if (f == NULL) {
printf("Mesh::_ReadText, error accessing %s\n", fileName);
return;
}
FILE* f = fopen(fileName, "r");
if (f == NULL) {
printf("Mesh::_ReadText, error accessing %s\n", fileName);
return;
}
fscanf(f, "%lu", &fFaceCount);
fFaces = new Face[fFaceCount];
@ -98,10 +98,10 @@ StaticMesh::_ReadBinary(const char* fileName)
{
BFile file(fileName, B_READ_ONLY);
if (file.InitCheck() != B_OK) {
printf("Mesh::_ReadBinary, error accessing %s\n", fileName);
return;
}
if (file.InitCheck() != B_OK) {
printf("Mesh::_ReadBinary, error accessing %s\n", fileName);
return;
}
file.Read(&fFaceCount, sizeof(uint32));
fFaces = new Face[fFaceCount];
@ -119,7 +119,7 @@ void
StaticMesh::_ReadResource(const char* resourceName)
{
// TODO: factorize with _ReadBinary
app_info info;
app_info info;
be_app->GetAppInfo(&info);
BFile file(&info.ref, B_READ_ONLY);

View File

@ -30,23 +30,23 @@ BitmapTexture::~BitmapTexture()
void
BitmapTexture::_Load(BBitmap* bitmap) {
if (bitmap == NULL)
return;
if (bitmap == NULL)
return;
glGenTextures(1, &fId);
glBindTexture(GL_TEXTURE_2D, fId);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexImage2D(GL_TEXTURE_2D, 0, 4,
(int) bitmap->Bounds().Width() + 1,
(int) bitmap->Bounds().Height() + 1,
0, GL_BGRA, GL_UNSIGNED_BYTE,
bitmap->Bits());
glGenTextures(1, &fId);
glBindTexture(GL_TEXTURE_2D, fId);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexImage2D(GL_TEXTURE_2D, 0, 4,
(int) bitmap->Bounds().Width() + 1,
(int) bitmap->Bounds().Height() + 1,
0, GL_BGRA, GL_UNSIGNED_BYTE,
bitmap->Bits());
printf("BitmapTexture::_Load, loaded texture %u (%li, %li, %libits)\n",
fId, (int32) bitmap->Bounds().Width(),
(int32) bitmap->Bounds().Height(),
8 * bitmap->BytesPerRow() / (int)bitmap->Bounds().Width());
printf("BitmapTexture::_Load, loaded texture %u (%li, %li, %libits)\n",
fId, (int32) bitmap->Bounds().Width(),
(int32) bitmap->Bounds().Height(),
8 * bitmap->BytesPerRow() / (int)bitmap->Bounds().Width());
delete bitmap;
}

View File

@ -91,8 +91,8 @@ VideoFileTexture::_Load(const char* fileName)
format.u.raw_video.display.format = fVideoBitmap->ColorSpace();
format.u.raw_video.display.line_width = (int32) bounds.Width();
format.u.raw_video.display.line_count = (int32) bounds.Height();
format.u.raw_video.display.bytes_per_row =
fVideoBitmap->BytesPerRow();
format.u.raw_video.display.bytes_per_row
= fVideoBitmap->BytesPerRow();
err = fVideoTrack->DecodedFormat(&format);
if (err != B_OK) {
@ -102,14 +102,14 @@ VideoFileTexture::_Load(const char* fileName)
}
// Create Texture
glGenTextures(1, &fId);
glBindTexture(GL_TEXTURE_2D, fId);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexImage2D(GL_TEXTURE_2D, 0, 4,
(int) fVideoBitmap->Bounds().Width() + 1,
(int) fVideoBitmap->Bounds().Height() + 1,
0, GL_BGRA, GL_UNSIGNED_BYTE, fVideoBitmap->Bits());
glGenTextures(1, &fId);
glBindTexture(GL_TEXTURE_2D, fId);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexImage2D(GL_TEXTURE_2D, 0, 4,
(int) fVideoBitmap->Bounds().Width() + 1,
(int) fVideoBitmap->Bounds().Height() + 1,
0, GL_BGRA, GL_UNSIGNED_BYTE, fVideoBitmap->Bits());
}
}
}
@ -120,8 +120,8 @@ VideoFileTexture::Update(float /*dt*/) {
// TODO loop
int64 frameCount = 0;
media_header mh;
status_t err =
fVideoTrack->ReadFrames(fVideoBitmap->Bits(), &frameCount, &mh);
status_t err
= fVideoTrack->ReadFrames(fVideoBitmap->Bits(), &frameCount, &mh);
if (err) {
printf("BMediaTrack::ReadFrames error -- %s\n", strerror(err));
return;