Big cleanup, rearranged code, removed unused/superfluous stuff, removed portability

defines (this code is supposed to run under BeOS only). Moved to our coding style guidelines.
Fixed all warnings.


git-svn-id: file:///srv/svn/repos/haiku/trunk/current@5209 a95241bf-73f2-0310-859d-f6bbb57e9c96
This commit is contained in:
Axel Dörfler 2003-10-28 22:57:39 +00:00
parent 3312e2a1e0
commit 211e612940

View File

@ -4,197 +4,249 @@
*/
/* Made into a BeOS /dev/random and /dev/urandom by Daniel Berlin */
/* Adapted for OpenBeOS by david reid */
/* To compile on Sun: gcc -m32 -msupersparc -mcpu=v8 -g -O3 -finline-functions -Wa,-xarch=
v8plusc -Winline -lrt */
/* To compile on Intel, MSVC with /G6 /Gr /O2 and with either /MT or /MD is recommended */
/* If you want to export any of the following functions, you know what to do */
/* Adapted for OpenBeOS by David Reid, Axel Doerfler */
#include <stdio.h>
#include <malloc.h>
#include <OS.h>
#include <Drivers.h>
#include <Errors.h>
#include <string.h>
#include <debug.h>
#include <stdlib.h>
#include <stdio.h>
#define thread_yield() snooze(10)
#define _rmtmp()
#define __int8 char
#define __int16 short
#define __int32 long
#define __int64 long long
//#define __cdecl
#define __fastcall
#define __forceinline __inline__
#define ASM __asm__
#define _lrotr(x, n) ((((unsigned __int32)(x)) >> ((int) ((n) & 31))) | (((unsigned __int32)(x)) << ((int) ((32 - ((n) & 31))))))
#define _lrotl(x, n) ((((unsigned __int32)(x)) << ((int) ((n) & 31))) | (((unsigned __int32)(x)) >> ((int) ((32 - ((n) & 31))))))
#if defined (_M_IX86) || defined (__i386__) && defined (__GNUC__)
static __inline__ unsigned long long clock_counter (void)
{
return system_time(); /* eventually real_time_clock_usecs() ? */
}
#elif defined (sparc) || defined (__sparc) || defined (sun) || defined (__sun) && defined (__GNUC__)
static __inline unsigned long long clock_counter (void)
{
register unsigned long x, y;
__asm__ __volatile__ ("rd %%tick, %0; clruw %0, %1; srlx %0, 32, %0" : "=r" (x), "=r" (y) : "0" (x), "1" (y));
return ((unsigned long long) x << 32) | y;
}
#else
extern unsigned __int64 clock_counter (void); /* one of the above or any other clock
counter function compiled separately */
#define TRACE_DRIVER 0
#if TRACE_DRIVER
# define TRACE(x) dprintf x
#else
# define TRACE(x) ;
#endif
#define rotr32(x, n) _lrotr (x, n)
#define rotl32(x, n) _lrotl (x, n)
int32 api_version = B_CUR_DRIVER_API_VERSION;
#define bswap32(x) ((rotl32 ((unsigned __int32)(x), 8) & 0x00ff00ff) | (rotr32 ((unsigned __int32)(x), 8) & 0xff00ff00))
#define DRIVER_NAME "random"
#ifndef _OCTET_
#define _OCTET_
typedef union _OCTET
{
unsigned __int64 Q[1];
unsigned __int32 D[2];
unsigned __int16 W[4];
unsigned __int8 B[8];
} OCTET;
#endif
static const char *sRandomNames[] = {
"random",
"urandom",
NULL
};
static status_t random_open(const char *name, uint32 flags, void **cookie);
static ssize_t random_read(void *cookie, off_t position, void *_buffer, size_t *_numBytes);
static ssize_t random_write(void *cookie, off_t position, const void *buffer, size_t *_numBytes);
static status_t random_control(void *cookie, uint32 op, void *arg, size_t length);
static status_t random_close(void *cookie);
static status_t random_free(void *cookie);
static device_hooks sRandomHooks = {
random_open,
random_close,
random_free,
random_control,
random_read,
random_write,
NULL,
NULL,
NULL,
NULL
};
// The number generator itself
#define rotr32(x, n) ((((uint32)(x)) >> ((int) ((n) & 31))) | (((uint32)(x)) << ((int) ((32 - ((n) & 31))))))
#define rotl32(x, n) ((((uint32)(x)) << ((int) ((n) & 31))) | (((uint32)(x)) >> ((int) ((32 - ((n) & 31))))))
#define bswap32(x) \
((rotl32((uint32)(x), 8) & 0x00ff00ff) | (rotr32((uint32)(x), 8) & 0xff00ff00))
typedef union _OCTET {
uint64 Q[1];
uint32 D[2];
uint16 W[4];
uint8 B[8];
} OCTET;
#define NK 257 /* internal state size */
#define NI 120 /* seed in increment */
#define NA 70 /* rand out increment A */
#define NB 139 /* rand out increment B */
typedef struct _ch_randgen {
OCTET ira[NK]; /* numbers live here */
OCTET *seedptr; /* next seed pointer */
OCTET *rndptrA; /* randomizing pointer #1 */
OCTET *rndptrB; /* randomizing pointer #2 */
OCTET *rndptrX; /* main randout pointer */
OCTET rndLeft; /* left rand accumulator */
OCTET rndRite; /* rite rand accumulator */
} ch_randgen;
static ch_randgen *sRandomEnv;
static unsigned int randcount=0;
static sem_id sRandomSem;
#define NK 257 /* internal state size */
#define NI 120 /* seed in increment */
#define NA 70 /* rand out increment A */
#define NB 139 /* rand out increment B */
typedef struct _ch_randgen
{
OCTET ira[NK]; /* numbers live here */
OCTET *seedptr; /* next seed pointer */
OCTET *rndptrA; /* randomizing pointer #1 */
OCTET *rndptrB; /* randomizing pointer #2 */
OCTET *rndptrX; /* main randout pointer */
OCTET rndLeft; /* left rand accumulator */
OCTET rndRite; /* rite rand accumulator */
} ch_randgen;
extern void hash_block(const unsigned char *block, const unsigned int block_byte_size, unsigned char *md);
#define HASH_BITS 160 /* I use Tiger. Modify it to match your HASH */
#define HASH_BLOCK_BITS 512 /* I use Tiger. Modify it to match your HASH */
#define HASH_BYTES (HASH_BITS / 8)
#define HASH_BLOCK_BYTES (HASH_BLOCK_BITS / 8)
#define HASH_OCTETS (HASH_BITS / 64)
#define HASH_BLOCK_OCTETS (HASH_BLOCK_BITS / 64)
/* attach by Yarrow Charnot. attaches x to y. can be seen as about 2-3 rounds of RC6 encryption
#define HASH_BITS 160 /* I use Tiger. Modify it to match your HASH */
#define HASH_BLOCK_BITS 512 /* I use Tiger. Modify it to match your HASH */
#define HASH_BYTES (HASH_BITS / 8)
#define HASH_BLOCK_BYTES (HASH_BLOCK_BITS / 8)
#define HASH_OCTETS (HASH_BITS / 64)
#define HASH_BLOCK_OCTETS (HASH_BLOCK_BITS / 64)
/* attach by Yarrow Charnot. attaches x to y. can be seen as about 2-3 rounds of RC6 encryption
*/
static inline void
attach(OCTET *y, const OCTET *x, const uint32 anyA, const uint32 anyB,
const uint32 oddC, const uint32 oddD)
{
register OCTET _x;
register OCTET _y;
_x.D[0] = x->D[0];
_x.D[1] = x->D[1];
_y.D[0] = y->D[0];
_y.D[1] = y->D[1];
_x.D[0] = rotl32(((bswap32(_x.D[0]) | 1) * x->D[1]), 5);
_x.D[1] = rotl32((bswap32(_x.D[1]) | 1) * x->D[0], 5);
_y.D[0] = (bswap32(rotl32(_y.D[0] ^ _x.D[0], _x.D[1])) + anyA) * oddC;
_y.D[1] = (bswap32(rotl32(_y.D[1] ^ _x.D[1], _x.D[0])) + anyB) * oddD;
y->D[1] = _y.D[0];
y->D[0] = _y.D[1];
}
/** detach by Yarrow Charnot. detaches x from y. can be seen as about
* 2-3 rounds of RC6 decryption.
*/
static inline void
detach(OCTET *y, const OCTET *x, const uint32 sameA, const uint32 sameB,
const uint32 invoddC, const uint32 invoddD)
{
register OCTET _x;
register OCTET _y;
_x.D[0] = x->D[0];
_x.D[1] = x->D[1];
_y.D[0] = y->D[1];
_y.D[1] = y->D[0];
_x.D[0] = rotl32((bswap32(_x.D[0]) | 1) * x->D[1], 5);
_x.D[1] = rotl32((bswap32(_x.D[1]) | 1) * x->D[0], 5);
_y.D[0] = rotr32(bswap32(_y.D[0] * invoddC - sameA), _x.D[1]) ^ _x.D[0];
_y.D[1] = rotr32(bswap32(_y.D[1] * invoddD - sameB), _x.D[0]) ^ _x.D[1];
y->D[0] = _y.D[0];
y->D[1] = _y.D[1];
}
/** QUICKLY seeds in a 64 bit number, modified so that a subsequent call really
* "stirs" in another seed value (no bullshit XOR here!)
*/
static inline void
chseed(ch_randgen *prandgen, const uint64 seed)
{
prandgen->seedptr += NI;
if (prandgen->seedptr >= (prandgen->ira + NK))
prandgen->seedptr -= NK;
attach(prandgen->seedptr, (OCTET *) &seed, 0x213D42F6U, 0x6552DAF9U,
0x2E496B7BU, 0x1749A255U);
}
/** The heart of Yarrow 2000 Chuma Random Number Generator: fast and reliable
* randomness collection.
* Thread yielding function is the most OPTIMAL source of randomness combined
* with a clock counter (editor's note: thread_yield() is not properly done in BeOS).
* It doesn't have to switch to another thread, the call itself is random enough.
* Test it yourself.
* This FASTEST way to collect minimal randomness on each step couldn't use the
* processor any LESS. Even functions based on just creation of threads and their
* destruction can not compare by speed.
* Temporary file creation is just a little extra thwart to bewilder the processor
* cache and pipes.
* If you make clock_counter() (system_time()) return all 0's, still produces a
* stream indistinguishable from random.
*/
__inline__ void __fastcall attach (OCTET *y, const OCTET *x, const unsigned __int32 anyA, const unsigned __int32 anyB, const unsigned __int32 oddC, const unsigned __int32
oddD)
{
register OCTET _x;
register OCTET _y;
_x.D[0] = x->D[0];
_x.D[1] = x->D[1];
_y.D[0] = y->D[0];
_y.D[1] = y->D[1];
_x.D[0] = rotl32 (((bswap32(_x.D[0]) | 1) * x->D[1]), 5);
_x.D[1] = rotl32 ((bswap32 (_x.D[1]) | 1) * x->D[0], 5);
_y.D[0] = (bswap32 (rotl32 (_y.D[0] ^ _x.D[0], _x.D[1])) + anyA) * oddC;
_y.D[1] = (bswap32 (rotl32 (_y.D[1] ^ _x.D[1], _x.D[0])) + anyB) * oddD;
y->D[1] = _y.D[0];
y->D[0] = _y.D[1];
}
/* detach by Yarrow Charnot. detaches x from y. can be seen as about 2-3 rounds of RC6
decryption */
__forceinline void __fastcall detach (OCTET *y, const OCTET *x, const unsigned __int32
sameA, const unsigned __int32 sameB, const unsigned __int32 invoddC, const unsigned __int32
invoddD)
{
register OCTET _x;
register OCTET _y;
_x.D[0] = x->D[0];
_x.D[1] = x->D[1];
_y.D[0] = y->D[1];
_y.D[1] = y->D[0];
_x.D[0] = rotl32 ((bswap32 (_x.D[0]) | 1) * x->D[1], 5);
_x.D[1] = rotl32 ((bswap32 (_x.D[1]) | 1) * x->D[0], 5);
_y.D[0] = rotr32 (bswap32 (_y.D[0] * invoddC - sameA), _x.D[1]) ^ _x.D[0];
_y.D[1] = rotr32 (bswap32 (_y.D[1] * invoddD - sameB), _x.D[0]) ^ _x.D[1];
y->D[0] = _y.D[0];
y->D[1] = _y.D[1];
}
/* QUICKLY seeds in a 64 bit number, modified so that a subsequent call really "stirs" in another
seed value (no bullshit XOR here!) */
__inline void chseed (ch_randgen *prandgen, const unsigned __int64 seed)
{
prandgen->seedptr += NI;
if (prandgen->seedptr >= (prandgen->ira + NK)) prandgen->seedptr -= NK;
attach (prandgen->seedptr, (OCTET *) &seed, 0x213D42F6U, 0x6552DAF9U,
0x2E496B7BU, 0x1749A255U);
}
/* The heart of Yarrow 2000 Chuma Random Number Generator: fast and reliable randomness
collection. */
/* thread yielding function is the most OPTIMAL source of randomness combined with a clock
counter. */
/* it doesn't have to switch to another thread, the call itself is random enough. test it yourself. */
/* this FASTEST way to collect minimal randomness on each step couldn't use the processor
any LESS. */
/* even functions based on just creation of threads and their destruction can not compare by
speed. */
/* temporary file creation is just a little extra thwart to bewilder the processor cache and pipes. */ /* if you make clock_counter return all 0's, still produces a stream indistinguishable from
random. */
void reseed (ch_randgen *prandgen, const unsigned int inittimes)
{
volatile unsigned int i, j;
OCTET x, y;
for (j = inittimes; j; j--)
{
for (i = NK * inittimes; i; i--)
{
thread_yield ();
y.Q[0] += clock_counter ();
attach (&x, &y, 0x52437EFFU, 0x026A4CEBU, 0xD9E66AC9U, 0x56E5A975U);
attach (&y, &x, 0xC70B8B41U, 0x9126B036U, 0x36CC6FDBU, 0x31D477F7U);
chseed (prandgen, y.Q[0]);
}
}
}
static void
reseed(ch_randgen *prandgen, const uint32 initTimes)
{
volatile uint32 i, j;
OCTET x, y;
for (j = initTimes; j; j--) {
for (i = NK * initTimes; i; i--) {
// Note: there is no yield() in BeOS - we use snooze as an approximation,
// although it might not work as good as this one (especially, it's not
// as cheap as).
//thread_yield();
snooze(5);
y.Q[0] += system_time();
attach(&x, &y, 0x52437EFFU, 0x026A4CEBU, 0xD9E66AC9U, 0x56E5A975U);
attach(&y, &x, 0xC70B8B41U, 0x9126B036U, 0x36CC6FDBU, 0x31D477F7U);
chseed(prandgen, y.Q[0]);
}
}
}
/* returns a 64 bit of Yarrow 2000 Chuma RNG random number */
__inline unsigned __int64 chrand (ch_randgen *prandgen)
{
prandgen->rndptrX ++;
prandgen->rndptrA += NA;
prandgen->rndptrB += NB;
if (prandgen->rndptrX >= (prandgen->ira + NK))
{
prandgen->rndptrX -= NK;
reseed (prandgen, 1);
}
if (prandgen->rndptrA >= (prandgen->ira + NK)) prandgen->rndptrA -= NK;
if (prandgen->rndptrB >= (prandgen->ira + NK)) prandgen->rndptrB -= NK;
attach (&prandgen->rndLeft, prandgen->rndptrX, prandgen->rndptrA->D[0], prandgen
->rndptrA->D[1], 0x49A3BC71UL, 0x60E285FDUL);
attach (&prandgen->rndRite, &prandgen->rndLeft, prandgen->rndptrB->D[0], prandgen
->rndptrB->D[1], 0xC366A5FDUL, 0x20C763EFUL);
chseed (prandgen, prandgen->rndRite.Q[0]);
return prandgen->rndRite.Q[0] ^ prandgen->rndLeft.Q[0];
}
/* returns a 32 bit random number */
__inline unsigned __int32 chrand32 (ch_randgen *prandgen)
{
OCTET r = {{chrand (prandgen)}};
return r.D[0] ^ r.D[1];
}
/* returns an 8 bit random number */
__inline unsigned __int8 chrand8 (ch_randgen *prandgen)
static inline uint64
chrand(ch_randgen *prandgen)
{
prandgen->rndptrX++;
prandgen->rndptrA += NA;
prandgen->rndptrB += NB;
if (prandgen->rndptrX >= (prandgen->ira + NK)) {
prandgen->rndptrX -= NK;
reseed (prandgen, 1);
}
if (prandgen->rndptrA >= (prandgen->ira + NK))
prandgen->rndptrA -= NK;
if (prandgen->rndptrB >= (prandgen->ira + NK))
prandgen->rndptrB -= NK;
attach(&prandgen->rndLeft, prandgen->rndptrX, prandgen->rndptrA->D[0],
prandgen->rndptrA->D[1], 0x49A3BC71UL, 0x60E285FDUL);
attach(&prandgen->rndRite, &prandgen->rndLeft, prandgen->rndptrB->D[0],
prandgen->rndptrB->D[1], 0xC366A5FDUL, 0x20C763EFUL);
chseed(prandgen, prandgen->rndRite.Q[0]);
return prandgen->rndRite.Q[0] ^ prandgen->rndLeft.Q[0];
}
/** returns a 32 bit random number */
static inline uint32
chrand32(ch_randgen *prandgen)
{
OCTET r = {{chrand(prandgen)}};
return r.B[0] ^ r.B[1] ^ r.B[2] ^ r.B[3] ^ r.B[4] ^ r.B[5] ^ r.B[6] ^ r.B[7] ;
return r.D[0] ^ r.D[1];
}
/** returns an 8 bit random number */
static inline uint8
chrand8(ch_randgen *prandgen)
{
OCTET r = {{chrand(prandgen)}};
return r.B[0] ^ r.B[1] ^ r.B[2] ^ r.B[3] ^ r.B[4] ^ r.B[5] ^ r.B[6] ^ r.B[7];
}
/* generates a cryptographically secure random big number 0 <= x < 32^n */
@ -220,231 +272,169 @@ __inline unsigned __int8 chrand8 (ch_randgen *prandgen)
}
}
*/
/* Initializes Yarrow 2000 Chuma Random Number Generator */
/* reseeding about 8 times prior to the first use is recommended. */
/* more than 16 will probably be a bit too much as time increases by n^2 */
__inline ch_randgen *
new_chrand(const unsigned int inittimes)
{
ch_randgen *prandgen;
prandgen = (ch_randgen *)malloc(sizeof(ch_randgen));
prandgen->seedptr = prandgen->ira;
prandgen->rndptrX = prandgen->ira;
prandgen->rndptrA = prandgen->ira;
prandgen->rndptrB = prandgen->ira;
prandgen->rndLeft.Q[0] = 0x1A4B385C72D69E0FUL;
prandgen->rndRite.Q[0] = 0x9C805FE7361A42DBUL;
reseed (prandgen, inittimes);
prandgen->seedptr = prandgen->ira + chrand (prandgen) % NK;
prandgen->rndptrX = prandgen->ira + chrand (prandgen) % NK;
prandgen->rndptrA = prandgen->ira + chrand (prandgen) % NK;
prandgen->rndptrB = prandgen->ira + chrand (prandgen) % NK;
return prandgen;
}
/* Clean up after chuma */
__inline void
kill_chrand(ch_randgen *randgen)
{
memset(randgen, 0, sizeof (ch_randgen));
free(randgen);
}
/* ++++++++++
driver.c
A skeletal device driver
+++++ */
//#include <drivers/KernelExport.h>
#include <Drivers.h>
#include <Errors.h>
#include <string.h>
#include <stdlib.h>
static ch_randgen *rng;
static unsigned int randcount=0;
static sem_id rand_mutex;
#define DRIVER_NAME "random"
#define DEVICE_NAME "random"
#define DEVICE_NAME2 "urandom"
int32 api_version = B_CUR_DRIVER_API_VERSION;
/* ----------
init_hardware - called once the first time the driver is loaded
----- */
status_t init_hardware (void)
/** Initializes Yarrow 2000 Chuma Random Number Generator.
* Reseeding about 8 times prior to the first use is recommended.
* More than 16 will probably be a bit too much as time increases
* by n^2.
*/
static ch_randgen *
new_chrand(const unsigned int inittimes)
{
// dprintf (DRIVER_NAME ": init_hardware()\n");
ch_randgen *prandgen;
prandgen = (ch_randgen *)malloc(sizeof(ch_randgen));
if (prandgen == NULL)
return NULL;
prandgen->seedptr = prandgen->ira;
prandgen->rndptrX = prandgen->ira;
prandgen->rndptrA = prandgen->ira;
prandgen->rndptrB = prandgen->ira;
prandgen->rndLeft.Q[0] = 0x1A4B385C72D69E0FUL;
prandgen->rndRite.Q[0] = 0x9C805FE7361A42DBUL;
reseed (prandgen, inittimes);
prandgen->seedptr = prandgen->ira + chrand (prandgen) % NK;
prandgen->rndptrX = prandgen->ira + chrand (prandgen) % NK;
prandgen->rndptrA = prandgen->ira + chrand (prandgen) % NK;
prandgen->rndptrB = prandgen->ira + chrand (prandgen) % NK;
return prandgen;
}
/** Clean up after chuma */
static void
kill_chrand(ch_randgen *randgen)
{
memset(randgen, 0, sizeof (ch_randgen));
free(randgen);
}
// #pragma mark -
// device driver
status_t
init_hardware(void)
{
TRACE((DRIVER_NAME ": init_hardware()\n"));
return B_OK;
}
/* ----------
init_driver - optional function - called every time the driver
is loaded.
----- */
status_t init_driver (void)
status_t
init_driver(void)
{
rng = new_chrand(8);
rand_mutex = create_sem(1, "RNG semaphore");
// dprintf (DRIVER_NAME ": init_driver()\n");
TRACE((DRIVER_NAME ": init_driver()\n"));
sRandomEnv = new_chrand(8);
sRandomSem = create_sem(1, "RNG semaphore");
return B_OK;
}
/* ----------
uninit_driver - optional function - called every time the driver
is unloaded
----- */
void uninit_driver (void)
void
uninit_driver(void)
{
kill_chrand(rng);
delete_sem(rand_mutex);
// dprintf (DRIVER_NAME ": uninit_driver()\n");
TRACE((DRIVER_NAME ": uninit_driver()\n"));
kill_chrand(sRandomEnv);
delete_sem(sRandomSem);
}
/* ----------
my_device_open - handle open() calls
----- */
static status_t my_device_open (const char *name, uint32 flags, void** cookie)
const char **
publish_devices(void)
{
// dprintf (DRIVER_NAME ": open(\"%s\")\n", name);
TRACE((DRIVER_NAME ": publish_devices()\n"));
return sRandomNames;
}
device_hooks *
find_device(const char* name)
{
int i;
TRACE((DRIVER_NAME ": find_device(\"%s\")\n", name));
for (i = 0; sRandomNames[i] != NULL; i++)
if (strcmp(name, sRandomNames[i]) == 0)
return &sRandomHooks;
return NULL;
}
// #pragma mark -
// device functions
static status_t
random_open(const char *name, uint32 flags, void **cookie)
{
TRACE((DRIVER_NAME ": open(\"%s\")\n", name));
return B_OK;
}
/* ----------
my_device_read - handle read() calls
----- */
static ssize_t my_device_read (void* cookie, off_t position, void *buf, size_t* num_bytes)
static ssize_t
random_read(void *cookie, off_t position, void *_buffer, size_t *_numBytes)
{
int32* buffer = (int32 *)buf;
unsigned char *buf8 = (unsigned char *)buf;
int i,j;
acquire_sem(rand_mutex);
randcount += *num_bytes;
int32 *buffer = (int32 *)_buffer;
uint8 *buffer8 = (uint8 *)_buffer;
uint32 i, j;
acquire_sem(sRandomSem);
randcount += *_numBytes;
/* Reseed if we have or are gonna use up > 1/16th the entropy around */
if (randcount >= NK/8) {
randcount = 0;
reseed (rng, 1);
reseed(sRandomEnv, 1);
}
/* Yes, i know this is not the way we should do it. What we really should do is
* take the md5 or sha1 hash of the state of the pool, and return that. Someday. */
for(i = 0 ; i < (*num_bytes)/4 ; i++)
buffer[i] = chrand32(rng);
for(j = 0 ; j < (*num_bytes) % 4; j++)
buf8[(i*4)+j] = chrand8(rng);
release_sem(rand_mutex);
* take the md5 or sha1 hash of the state of the pool, and return that. Someday.
*/
for (i = 0; i < (*_numBytes)/4; i++)
buffer[i] = chrand32(sRandomEnv);
for (j = 0; j < (*_numBytes) % 4; j++)
buffer8[(i*4) + j] = chrand8(sRandomEnv);
release_sem(sRandomSem);
return B_OK;
}
/* ----------
my_device_write - handle write() calls
----- */
static ssize_t my_device_write (void* cookie, off_t position, const void* buf, size_t* num_bytes)
static ssize_t
random_write(void *cookie, off_t position, const void *buffer, size_t *_numBytes)
{
return B_OK;
}
/* ----------
my_device_control - handle ioctl calls
----- */
static status_t my_device_control (void* cookie, uint32 op, void* arg, size_t len)
static status_t
random_control(void *cookie, uint32 op, void *arg, size_t length)
{
/*dprintf (DRIVER_NAME ": ioctl(%d)\n", op);*/
TRACE((DRIVER_NAME ": ioctl(%d)\n", op));
return B_ERROR;
}
/* ----------
my_device_close - handle close() calls
----- */
static status_t my_device_close (void* cookie)
static status_t
random_close(void *cookie)
{
// dprintf (DRIVER_NAME ": close()\n");
TRACE((DRIVER_NAME ": close()\n"));
return B_OK;
}
/* -----
my_device_free - called after the last device is closed, and after
all i/o is complete.
----- */
static status_t my_device_free (void* cookie)
static status_t
random_free(void *cookie)
{
// dprintf (DRIVER_NAME ": free()\n");
TRACE((DRIVER_NAME ": free()\n"));
return B_OK;
}
/* -----
null-terminated array of device names supported by this driver
----- */
static const char *my_device_name[] = {
DEVICE_NAME,
DEVICE_NAME2,
NULL
};
/* -----
function pointers for the device hooks entry points
----- */
static device_hooks my_device_hooks = {
my_device_open, /* -> open entry point */
my_device_close, /* -> close entry point */
my_device_free, /* -> free cookie */
my_device_control, /* -> control entry point */
my_device_read, /* -> read entry point */
my_device_write, /* -> write entry point */
NULL,
NULL,
NULL,
NULL
};
/* ----------
publish_devices - return a null-terminated array of devices
supported by this driver.
----- */
const char **publish_devices()
{
// dprintf (DRIVER_NAME ": publish_devices()\n");
return my_device_name;
}
/* ----------
find_device - return ptr to device hooks structure for a
given device name
----- */
device_hooks *find_device(const char* name)
{
int i;
// dprintf (DRIVER_NAME ": find_device(\"%s\")\n", name);
for (i = 0; my_device_name[i] != NULL; i++)
if (strcmp (name, my_device_name [i]) == 0)
return &my_device_hooks;
return NULL;
}