* Moved X86VMTranslationMap32Bit to its own source file.

* Made all helper function operating on paging structures static methods of
  X86PagingMethod32Bit.


git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@37064 a95241bf-73f2-0310-859d-f6bbb57e9c96
This commit is contained in:
Ingo Weinhold 2010-06-08 20:35:53 +00:00
parent 2d192e7a80
commit 1c7fda897e
5 changed files with 1142 additions and 1082 deletions

View File

@ -52,6 +52,7 @@ KernelMergeObject kernel_arch_x86.o :
# paging/32bit
X86PagingMethod32Bit.cpp
X86PagingStructures32Bit.cpp
X86VMTranslationMap32Bit.cpp
x86_apic.cpp
x86_hpet.cpp

View File

@ -51,8 +51,40 @@ public:
static X86PagingMethod32Bit* Method();
static void PutPageTableInPageDir(
page_directory_entry* entry,
phys_addr_t pgtablePhysical,
uint32 attributes);
static void PutPageTableEntryInTable(
page_table_entry* entry,
phys_addr_t physicalAddress,
uint32 attributes, uint32 memoryType,
bool globalPage);
static page_table_entry SetPageTableEntry(page_table_entry* entry,
page_table_entry newEntry);
static page_table_entry SetPageTableEntryFlags(page_table_entry* entry,
uint32 flags);
static page_table_entry TestAndSetPageTableEntry(
page_table_entry* entry,
page_table_entry newEntry,
page_table_entry oldEntry);
static page_table_entry ClearPageTableEntry(page_table_entry* entry);
static page_table_entry ClearPageTableEntryFlags(
page_table_entry* entry, uint32 flags);
static uint32 MemoryTypeToPageTableEntryFlags(
uint32 memoryType);
private:
struct PhysicalPageSlotPool;
friend struct PhysicalPageSlotPool;
private:
static void _EarlyPreparePageTables(
page_table_entry* pageTables,
addr_t address, size_t size);
static status_t _EarlyQuery(addr_t virtualAddress,
phys_addr_t *_physicalAddress);
private:
page_table_entry* fPageHole;
@ -72,4 +104,72 @@ X86PagingMethod32Bit::Method()
}
/*static*/ inline page_table_entry
X86PagingMethod32Bit::SetPageTableEntry(page_table_entry* entry,
page_table_entry newEntry)
{
return atomic_set((int32*)entry, newEntry);
}
/*static*/ inline page_table_entry
X86PagingMethod32Bit::SetPageTableEntryFlags(page_table_entry* entry,
uint32 flags)
{
return atomic_or((int32*)entry, flags);
}
/*static*/ inline page_table_entry
X86PagingMethod32Bit::TestAndSetPageTableEntry(page_table_entry* entry,
page_table_entry newEntry, page_table_entry oldEntry)
{
return atomic_test_and_set((int32*)entry, newEntry, oldEntry);
}
/*static*/ inline page_table_entry
X86PagingMethod32Bit::ClearPageTableEntry(page_table_entry* entry)
{
return SetPageTableEntry(entry, 0);
}
/*static*/ inline page_table_entry
X86PagingMethod32Bit::ClearPageTableEntryFlags(page_table_entry* entry, uint32 flags)
{
return atomic_and((int32*)entry, ~flags);
}
/*static*/ inline uint32
X86PagingMethod32Bit::MemoryTypeToPageTableEntryFlags(uint32 memoryType)
{
// ATM we only handle the uncacheable and write-through type explicitly. For
// all other types we rely on the MTRRs to be set up correctly. Since we set
// the default memory type to write-back and since the uncacheable type in
// the PTE overrides any MTRR attribute (though, as per the specs, that is
// not recommended for performance reasons), this reduces the work we
// actually *have* to do with the MTRRs to setting the remaining types
// (usually only write-combining for the frame buffer).
switch (memoryType) {
case B_MTR_UC:
return X86_PTE_CACHING_DISABLED | X86_PTE_WRITE_THROUGH;
case B_MTR_WC:
// X86_PTE_WRITE_THROUGH would be closer, but the combination with
// MTRR WC is "implementation defined" for Pentium Pro/II.
return 0;
case B_MTR_WT:
return X86_PTE_WRITE_THROUGH;
case B_MTR_WP:
case B_MTR_WB:
default:
return 0;
}
}
#endif // KERNEL_ARCH_X86_PAGING_32_BIT_X86_PAGING_METHOD_32_BIT_H

View File

@ -0,0 +1,943 @@
/*
* Copyright 2008-2010, Ingo Weinhold, ingo_weinhold@gmx.de.
* Copyright 2002-2007, Axel Dörfler, axeld@pinc-software.de. All rights reserved.
* Distributed under the terms of the MIT License.
*
* Copyright 2001-2002, Travis Geiselbrecht. All rights reserved.
* Distributed under the terms of the NewOS License.
*/
#include "paging/32bit/X86VMTranslationMap32Bit.h"
#include <stdlib.h>
#include <string.h>
#include <int.h>
#include <thread.h>
#include <slab/Slab.h>
#include <smp.h>
#include <util/AutoLock.h>
#include <util/queue.h>
#include <vm/vm_page.h>
#include <vm/vm_priv.h>
#include <vm/VMAddressSpace.h>
#include <vm/VMCache.h>
#include "paging/32bit/X86PagingMethod32Bit.h"
#include "paging/32bit/X86PagingStructures32Bit.h"
#include "paging/x86_physical_page_mapper.h"
//#define TRACE_X86_VM_TRANSLATION_MAP_32_BIT
#ifdef TRACE_X86_VM_TRANSLATION_MAP_32_BIT
# define TRACE(x...) dprintf(x)
#else
# define TRACE(x...) ;
#endif
X86VMTranslationMap32Bit::X86VMTranslationMap32Bit()
:
fPagingStructures(NULL)
{
}
X86VMTranslationMap32Bit::~X86VMTranslationMap32Bit()
{
if (fPagingStructures == NULL)
return;
if (fPageMapper != NULL)
fPageMapper->Delete();
if (fPagingStructures->pgdir_virt != NULL) {
// cycle through and free all of the user space pgtables
for (uint32 i = VADDR_TO_PDENT(USER_BASE);
i <= VADDR_TO_PDENT(USER_BASE + (USER_SIZE - 1)); i++) {
if ((fPagingStructures->pgdir_virt[i] & X86_PDE_PRESENT) != 0) {
addr_t address = fPagingStructures->pgdir_virt[i]
& X86_PDE_ADDRESS_MASK;
vm_page* page = vm_lookup_page(address / B_PAGE_SIZE);
if (!page)
panic("destroy_tmap: didn't find pgtable page\n");
DEBUG_PAGE_ACCESS_START(page);
vm_page_set_state(page, PAGE_STATE_FREE);
}
}
}
fPagingStructures->RemoveReference();
}
status_t
X86VMTranslationMap32Bit::Init(bool kernel)
{
TRACE("X86VMTranslationMap32Bit::Init()\n");
X86VMTranslationMap::Init(kernel);
fPagingStructures = new(std::nothrow) X86PagingStructures32Bit;
if (fPagingStructures == NULL)
return B_NO_MEMORY;
X86PagingMethod32Bit* method = X86PagingMethod32Bit::Method();
if (!kernel) {
// user
// allocate a physical page mapper
status_t error = method->PhysicalPageMapper()
->CreateTranslationMapPhysicalPageMapper(&fPageMapper);
if (error != B_OK)
return error;
// allocate the page directory
page_directory_entry* virtualPageDir = (page_directory_entry*)memalign(
B_PAGE_SIZE, B_PAGE_SIZE);
if (virtualPageDir == NULL)
return B_NO_MEMORY;
// look up the page directory's physical address
phys_addr_t physicalPageDir;
vm_get_page_mapping(VMAddressSpace::KernelID(),
(addr_t)virtualPageDir, &physicalPageDir);
fPagingStructures->Init(virtualPageDir, physicalPageDir,
method->KernelVirtualPageDirectory());
} else {
// kernel
// get the physical page mapper
fPageMapper = method->KernelPhysicalPageMapper();
// we already know the kernel pgdir mapping
fPagingStructures->Init(method->KernelVirtualPageDirectory(),
method->KernelPhysicalPageDirectory(), NULL);
}
return B_OK;
}
size_t
X86VMTranslationMap32Bit::MaxPagesNeededToMap(addr_t start, addr_t end) const
{
// If start == 0, the actual base address is not yet known to the caller and
// we shall assume the worst case.
if (start == 0) {
// offset the range so it has the worst possible alignment
start = 1023 * B_PAGE_SIZE;
end += 1023 * B_PAGE_SIZE;
}
return VADDR_TO_PDENT(end) + 1 - VADDR_TO_PDENT(start);
}
status_t
X86VMTranslationMap32Bit::Map(addr_t va, phys_addr_t pa, uint32 attributes,
uint32 memoryType, vm_page_reservation* reservation)
{
TRACE("map_tmap: entry pa 0x%lx va 0x%lx\n", pa, va);
/*
dprintf("pgdir at 0x%x\n", pgdir);
dprintf("index is %d\n", va / B_PAGE_SIZE / 1024);
dprintf("final at 0x%x\n", &pgdir[va / B_PAGE_SIZE / 1024]);
dprintf("value is 0x%x\n", *(int *)&pgdir[va / B_PAGE_SIZE / 1024]);
dprintf("present bit is %d\n", pgdir[va / B_PAGE_SIZE / 1024].present);
dprintf("addr is %d\n", pgdir[va / B_PAGE_SIZE / 1024].addr);
*/
page_directory_entry* pd = fPagingStructures->pgdir_virt;
// check to see if a page table exists for this range
uint32 index = VADDR_TO_PDENT(va);
if ((pd[index] & X86_PDE_PRESENT) == 0) {
phys_addr_t pgtable;
vm_page *page;
// we need to allocate a pgtable
page = vm_page_allocate_page(reservation,
PAGE_STATE_WIRED | VM_PAGE_ALLOC_CLEAR);
DEBUG_PAGE_ACCESS_END(page);
pgtable = (phys_addr_t)page->physical_page_number * B_PAGE_SIZE;
TRACE("map_tmap: asked for free page for pgtable. 0x%lx\n", pgtable);
// put it in the pgdir
X86PagingMethod32Bit::PutPageTableInPageDir(&pd[index], pgtable,
attributes
| ((attributes & B_USER_PROTECTION) != 0
? B_WRITE_AREA : B_KERNEL_WRITE_AREA));
// update any other page directories, if it maps kernel space
if (index >= FIRST_KERNEL_PGDIR_ENT
&& index < (FIRST_KERNEL_PGDIR_ENT + NUM_KERNEL_PGDIR_ENTS)) {
X86PagingStructures32Bit::UpdateAllPageDirs(index, pd[index]);
}
fMapCount++;
}
// now, fill in the pentry
struct thread* thread = thread_get_current_thread();
ThreadCPUPinner pinner(thread);
page_table_entry* pt = (page_table_entry*)fPageMapper->GetPageTableAt(
pd[index] & X86_PDE_ADDRESS_MASK);
index = VADDR_TO_PTENT(va);
ASSERT_PRINT((pt[index] & X86_PTE_PRESENT) == 0,
"virtual address: %#" B_PRIxADDR ", existing pte: %#" B_PRIx32, va,
pt[index]);
X86PagingMethod32Bit::PutPageTableEntryInTable(&pt[index], pa, attributes,
memoryType, fIsKernelMap);
pinner.Unlock();
// Note: We don't need to invalidate the TLB for this address, as previously
// the entry was not present and the TLB doesn't cache those entries.
fMapCount++;
return 0;
}
status_t
X86VMTranslationMap32Bit::Unmap(addr_t start, addr_t end)
{
page_directory_entry *pd = fPagingStructures->pgdir_virt;
start = ROUNDDOWN(start, B_PAGE_SIZE);
end = ROUNDUP(end, B_PAGE_SIZE);
TRACE("unmap_tmap: asked to free pages 0x%lx to 0x%lx\n", start, end);
restart:
if (start >= end)
return B_OK;
int index = VADDR_TO_PDENT(start);
if ((pd[index] & X86_PDE_PRESENT) == 0) {
// no pagetable here, move the start up to access the next page table
start = ROUNDUP(start + 1, B_PAGE_SIZE * 1024);
if (start == 0)
return B_OK;
goto restart;
}
struct thread* thread = thread_get_current_thread();
ThreadCPUPinner pinner(thread);
page_table_entry* pt = (page_table_entry*)fPageMapper->GetPageTableAt(
pd[index] & X86_PDE_ADDRESS_MASK);
for (index = VADDR_TO_PTENT(start); (index < 1024) && (start < end);
index++, start += B_PAGE_SIZE) {
if ((pt[index] & X86_PTE_PRESENT) == 0) {
// page mapping not valid
continue;
}
TRACE("unmap_tmap: removing page 0x%lx\n", start);
page_table_entry oldEntry
= X86PagingMethod32Bit::ClearPageTableEntryFlags(&pt[index],
X86_PTE_PRESENT);
fMapCount--;
if ((oldEntry & X86_PTE_ACCESSED) != 0) {
// Note, that we only need to invalidate the address, if the
// accessed flags was set, since only then the entry could have been
// in any TLB.
if (fInvalidPagesCount < PAGE_INVALIDATE_CACHE_SIZE)
fInvalidPages[fInvalidPagesCount] = start;
fInvalidPagesCount++;
}
}
pinner.Unlock();
goto restart;
}
/*! Caller must have locked the cache of the page to be unmapped.
This object shouldn't be locked.
*/
status_t
X86VMTranslationMap32Bit::UnmapPage(VMArea* area, addr_t address,
bool updatePageQueue)
{
ASSERT(address % B_PAGE_SIZE == 0);
page_directory_entry* pd = fPagingStructures->pgdir_virt;
TRACE("X86VMTranslationMap32Bit::UnmapPage(%#" B_PRIxADDR ")\n", address);
RecursiveLocker locker(fLock);
int index = VADDR_TO_PDENT(address);
if ((pd[index] & X86_PDE_PRESENT) == 0)
return B_ENTRY_NOT_FOUND;
ThreadCPUPinner pinner(thread_get_current_thread());
page_table_entry* pt = (page_table_entry*)fPageMapper->GetPageTableAt(
pd[index] & X86_PDE_ADDRESS_MASK);
index = VADDR_TO_PTENT(address);
page_table_entry oldEntry = X86PagingMethod32Bit::ClearPageTableEntry(
&pt[index]);
pinner.Unlock();
if ((oldEntry & X86_PTE_PRESENT) == 0) {
// page mapping not valid
return B_ENTRY_NOT_FOUND;
}
fMapCount--;
if ((oldEntry & X86_PTE_ACCESSED) != 0) {
// Note, that we only need to invalidate the address, if the
// accessed flags was set, since only then the entry could have been
// in any TLB.
if (fInvalidPagesCount < PAGE_INVALIDATE_CACHE_SIZE)
fInvalidPages[fInvalidPagesCount] = address;
fInvalidPagesCount++;
Flush();
// NOTE: Between clearing the page table entry and Flush() other
// processors (actually even this processor with another thread of the
// same team) could still access the page in question via their cached
// entry. We can obviously lose a modified flag in this case, with the
// effect that the page looks unmodified (and might thus be recycled),
// but is actually modified.
// In most cases this is harmless, but for vm_remove_all_page_mappings()
// this is actually a problem.
// Interestingly FreeBSD seems to ignore this problem as well
// (cf. pmap_remove_all()), unless I've missed something.
}
if (area->cache_type == CACHE_TYPE_DEVICE)
return B_OK;
// get the page
vm_page* page = vm_lookup_page(
(oldEntry & X86_PTE_ADDRESS_MASK) / B_PAGE_SIZE);
ASSERT(page != NULL);
// transfer the accessed/dirty flags to the page
if ((oldEntry & X86_PTE_ACCESSED) != 0)
page->accessed = true;
if ((oldEntry & X86_PTE_DIRTY) != 0)
page->modified = true;
// remove the mapping object/decrement the wired_count of the page
vm_page_mapping* mapping = NULL;
if (area->wiring == B_NO_LOCK) {
vm_page_mappings::Iterator iterator = page->mappings.GetIterator();
while ((mapping = iterator.Next()) != NULL) {
if (mapping->area == area) {
area->mappings.Remove(mapping);
page->mappings.Remove(mapping);
break;
}
}
ASSERT(mapping != NULL);
} else
page->wired_count--;
locker.Unlock();
if (page->wired_count == 0 && page->mappings.IsEmpty()) {
atomic_add(&gMappedPagesCount, -1);
if (updatePageQueue) {
if (page->Cache()->temporary)
vm_page_set_state(page, PAGE_STATE_INACTIVE);
else if (page->modified)
vm_page_set_state(page, PAGE_STATE_MODIFIED);
else
vm_page_set_state(page, PAGE_STATE_CACHED);
}
}
if (mapping != NULL) {
bool isKernelSpace = area->address_space == VMAddressSpace::Kernel();
object_cache_free(gPageMappingsObjectCache, mapping,
CACHE_DONT_WAIT_FOR_MEMORY
| (isKernelSpace ? CACHE_DONT_LOCK_KERNEL_SPACE : 0));
}
return B_OK;
}
void
X86VMTranslationMap32Bit::UnmapPages(VMArea* area, addr_t base, size_t size,
bool updatePageQueue)
{
page_directory_entry* pd = fPagingStructures->pgdir_virt;
addr_t start = base;
addr_t end = base + size;
TRACE("X86VMTranslationMap32Bit::UnmapPages(%p, %#" B_PRIxADDR ", %#"
B_PRIxADDR ")\n", area, start, end);
VMAreaMappings queue;
RecursiveLocker locker(fLock);
while (start < end) {
int index = VADDR_TO_PDENT(start);
if ((pd[index] & X86_PDE_PRESENT) == 0) {
// no page table here, move the start up to access the next page
// table
start = ROUNDUP(start + 1, B_PAGE_SIZE * 1024);
if (start == 0)
break;
continue;
}
struct thread* thread = thread_get_current_thread();
ThreadCPUPinner pinner(thread);
page_table_entry* pt = (page_table_entry*)fPageMapper->GetPageTableAt(
pd[index] & X86_PDE_ADDRESS_MASK);
for (index = VADDR_TO_PTENT(start); (index < 1024) && (start < end);
index++, start += B_PAGE_SIZE) {
page_table_entry oldEntry
= X86PagingMethod32Bit::ClearPageTableEntry(&pt[index]);
if ((oldEntry & X86_PTE_PRESENT) == 0)
continue;
fMapCount--;
if ((oldEntry & X86_PTE_ACCESSED) != 0) {
// Note, that we only need to invalidate the address, if the
// accessed flags was set, since only then the entry could have
// been in any TLB.
if (fInvalidPagesCount < PAGE_INVALIDATE_CACHE_SIZE)
fInvalidPages[fInvalidPagesCount] = start;
fInvalidPagesCount++;
}
if (area->cache_type != CACHE_TYPE_DEVICE) {
// get the page
vm_page* page = vm_lookup_page(
(oldEntry & X86_PTE_ADDRESS_MASK) / B_PAGE_SIZE);
ASSERT(page != NULL);
DEBUG_PAGE_ACCESS_START(page);
// transfer the accessed/dirty flags to the page
if ((oldEntry & X86_PTE_ACCESSED) != 0)
page->accessed = true;
if ((oldEntry & X86_PTE_DIRTY) != 0)
page->modified = true;
// remove the mapping object/decrement the wired_count of the
// page
if (area->wiring == B_NO_LOCK) {
vm_page_mapping* mapping = NULL;
vm_page_mappings::Iterator iterator
= page->mappings.GetIterator();
while ((mapping = iterator.Next()) != NULL) {
if (mapping->area == area)
break;
}
ASSERT(mapping != NULL);
area->mappings.Remove(mapping);
page->mappings.Remove(mapping);
queue.Add(mapping);
} else
page->wired_count--;
if (page->wired_count == 0 && page->mappings.IsEmpty()) {
atomic_add(&gMappedPagesCount, -1);
if (updatePageQueue) {
if (page->Cache()->temporary)
vm_page_set_state(page, PAGE_STATE_INACTIVE);
else if (page->modified)
vm_page_set_state(page, PAGE_STATE_MODIFIED);
else
vm_page_set_state(page, PAGE_STATE_CACHED);
}
}
DEBUG_PAGE_ACCESS_END(page);
}
}
Flush();
// flush explicitly, since we directly use the lock
pinner.Unlock();
}
// TODO: As in UnmapPage() we can lose page dirty flags here. ATM it's not
// really critical here, as in all cases this method is used, the unmapped
// area range is unmapped for good (resized/cut) and the pages will likely
// be freed.
locker.Unlock();
// free removed mappings
bool isKernelSpace = area->address_space == VMAddressSpace::Kernel();
uint32 freeFlags = CACHE_DONT_WAIT_FOR_MEMORY
| (isKernelSpace ? CACHE_DONT_LOCK_KERNEL_SPACE : 0);
while (vm_page_mapping* mapping = queue.RemoveHead())
object_cache_free(gPageMappingsObjectCache, mapping, freeFlags);
}
void
X86VMTranslationMap32Bit::UnmapArea(VMArea* area, bool deletingAddressSpace,
bool ignoreTopCachePageFlags)
{
if (area->cache_type == CACHE_TYPE_DEVICE || area->wiring != B_NO_LOCK) {
X86VMTranslationMap32Bit::UnmapPages(area, area->Base(), area->Size(),
true);
return;
}
bool unmapPages = !deletingAddressSpace || !ignoreTopCachePageFlags;
page_directory_entry* pd = fPagingStructures->pgdir_virt;
RecursiveLocker locker(fLock);
VMAreaMappings mappings;
mappings.MoveFrom(&area->mappings);
for (VMAreaMappings::Iterator it = mappings.GetIterator();
vm_page_mapping* mapping = it.Next();) {
vm_page* page = mapping->page;
page->mappings.Remove(mapping);
VMCache* cache = page->Cache();
bool pageFullyUnmapped = false;
if (page->wired_count == 0 && page->mappings.IsEmpty()) {
atomic_add(&gMappedPagesCount, -1);
pageFullyUnmapped = true;
}
if (unmapPages || cache != area->cache) {
addr_t address = area->Base()
+ ((page->cache_offset * B_PAGE_SIZE) - area->cache_offset);
int index = VADDR_TO_PDENT(address);
if ((pd[index] & X86_PDE_PRESENT) == 0) {
panic("page %p has mapping for area %p (%#" B_PRIxADDR "), but "
"has no page dir entry", page, area, address);
continue;
}
ThreadCPUPinner pinner(thread_get_current_thread());
page_table_entry* pt
= (page_table_entry*)fPageMapper->GetPageTableAt(
pd[index] & X86_PDE_ADDRESS_MASK);
page_table_entry oldEntry
= X86PagingMethod32Bit::ClearPageTableEntry(
&pt[VADDR_TO_PTENT(address)]);
pinner.Unlock();
if ((oldEntry & X86_PTE_PRESENT) == 0) {
panic("page %p has mapping for area %p (%#" B_PRIxADDR "), but "
"has no page table entry", page, area, address);
continue;
}
// transfer the accessed/dirty flags to the page and invalidate
// the mapping, if necessary
if ((oldEntry & X86_PTE_ACCESSED) != 0) {
page->accessed = true;
if (!deletingAddressSpace) {
if (fInvalidPagesCount < PAGE_INVALIDATE_CACHE_SIZE)
fInvalidPages[fInvalidPagesCount] = address;
fInvalidPagesCount++;
}
}
if ((oldEntry & X86_PTE_DIRTY) != 0)
page->modified = true;
if (pageFullyUnmapped) {
DEBUG_PAGE_ACCESS_START(page);
if (cache->temporary)
vm_page_set_state(page, PAGE_STATE_INACTIVE);
else if (page->modified)
vm_page_set_state(page, PAGE_STATE_MODIFIED);
else
vm_page_set_state(page, PAGE_STATE_CACHED);
DEBUG_PAGE_ACCESS_END(page);
}
}
fMapCount--;
}
Flush();
// flush explicitely, since we directly use the lock
locker.Unlock();
bool isKernelSpace = area->address_space == VMAddressSpace::Kernel();
uint32 freeFlags = CACHE_DONT_WAIT_FOR_MEMORY
| (isKernelSpace ? CACHE_DONT_LOCK_KERNEL_SPACE : 0);
while (vm_page_mapping* mapping = mappings.RemoveHead())
object_cache_free(gPageMappingsObjectCache, mapping, freeFlags);
}
status_t
X86VMTranslationMap32Bit::Query(addr_t va, phys_addr_t *_physical,
uint32 *_flags)
{
// default the flags to not present
*_flags = 0;
*_physical = 0;
int index = VADDR_TO_PDENT(va);
page_directory_entry *pd = fPagingStructures->pgdir_virt;
if ((pd[index] & X86_PDE_PRESENT) == 0) {
// no pagetable here
return B_OK;
}
struct thread* thread = thread_get_current_thread();
ThreadCPUPinner pinner(thread);
page_table_entry* pt = (page_table_entry*)fPageMapper->GetPageTableAt(
pd[index] & X86_PDE_ADDRESS_MASK);
page_table_entry entry = pt[VADDR_TO_PTENT(va)];
*_physical = entry & X86_PDE_ADDRESS_MASK;
// read in the page state flags
if ((entry & X86_PTE_USER) != 0) {
*_flags |= ((entry & X86_PTE_WRITABLE) != 0 ? B_WRITE_AREA : 0)
| B_READ_AREA;
}
*_flags |= ((entry & X86_PTE_WRITABLE) != 0 ? B_KERNEL_WRITE_AREA : 0)
| B_KERNEL_READ_AREA
| ((entry & X86_PTE_DIRTY) != 0 ? PAGE_MODIFIED : 0)
| ((entry & X86_PTE_ACCESSED) != 0 ? PAGE_ACCESSED : 0)
| ((entry & X86_PTE_PRESENT) != 0 ? PAGE_PRESENT : 0);
pinner.Unlock();
TRACE("query_tmap: returning pa 0x%lx for va 0x%lx\n", *_physical, va);
return B_OK;
}
status_t
X86VMTranslationMap32Bit::QueryInterrupt(addr_t va, phys_addr_t *_physical,
uint32 *_flags)
{
*_flags = 0;
*_physical = 0;
int index = VADDR_TO_PDENT(va);
page_directory_entry* pd = fPagingStructures->pgdir_virt;
if ((pd[index] & X86_PDE_PRESENT) == 0) {
// no pagetable here
return B_OK;
}
// map page table entry
page_table_entry* pt = (page_table_entry*)X86PagingMethod32Bit::Method()
->PhysicalPageMapper()->InterruptGetPageTableAt(
pd[index] & X86_PDE_ADDRESS_MASK);
page_table_entry entry = pt[VADDR_TO_PTENT(va)];
*_physical = entry & X86_PDE_ADDRESS_MASK;
// read in the page state flags
if ((entry & X86_PTE_USER) != 0) {
*_flags |= ((entry & X86_PTE_WRITABLE) != 0 ? B_WRITE_AREA : 0)
| B_READ_AREA;
}
*_flags |= ((entry & X86_PTE_WRITABLE) != 0 ? B_KERNEL_WRITE_AREA : 0)
| B_KERNEL_READ_AREA
| ((entry & X86_PTE_DIRTY) != 0 ? PAGE_MODIFIED : 0)
| ((entry & X86_PTE_ACCESSED) != 0 ? PAGE_ACCESSED : 0)
| ((entry & X86_PTE_PRESENT) != 0 ? PAGE_PRESENT : 0);
return B_OK;
}
status_t
X86VMTranslationMap32Bit::Protect(addr_t start, addr_t end, uint32 attributes,
uint32 memoryType)
{
page_directory_entry *pd = fPagingStructures->pgdir_virt;
start = ROUNDDOWN(start, B_PAGE_SIZE);
TRACE("protect_tmap: pages 0x%lx to 0x%lx, attributes %lx\n", start, end,
attributes);
// compute protection flags
uint32 newProtectionFlags = 0;
if ((attributes & B_USER_PROTECTION) != 0) {
newProtectionFlags = X86_PTE_USER;
if ((attributes & B_WRITE_AREA) != 0)
newProtectionFlags |= X86_PTE_WRITABLE;
} else if ((attributes & B_KERNEL_WRITE_AREA) != 0)
newProtectionFlags = X86_PTE_WRITABLE;
restart:
if (start >= end)
return B_OK;
int index = VADDR_TO_PDENT(start);
if ((pd[index] & X86_PDE_PRESENT) == 0) {
// no pagetable here, move the start up to access the next page table
start = ROUNDUP(start + 1, B_PAGE_SIZE * 1024);
if (start == 0)
return B_OK;
goto restart;
}
struct thread* thread = thread_get_current_thread();
ThreadCPUPinner pinner(thread);
page_table_entry* pt = (page_table_entry*)fPageMapper->GetPageTableAt(
pd[index] & X86_PDE_ADDRESS_MASK);
for (index = VADDR_TO_PTENT(start); index < 1024 && start < end;
index++, start += B_PAGE_SIZE) {
page_table_entry entry = pt[index];
if ((entry & X86_PTE_PRESENT) == 0) {
// page mapping not valid
continue;
}
TRACE("protect_tmap: protect page 0x%lx\n", start);
// set the new protection flags -- we want to do that atomically,
// without changing the accessed or dirty flag
page_table_entry oldEntry;
while (true) {
oldEntry = X86PagingMethod32Bit::TestAndSetPageTableEntry(
&pt[index],
(entry & ~(X86_PTE_PROTECTION_MASK | X86_PTE_MEMORY_TYPE_MASK))
| newProtectionFlags
| X86PagingMethod32Bit::MemoryTypeToPageTableEntryFlags(
memoryType),
entry);
if (oldEntry == entry)
break;
entry = oldEntry;
}
if ((oldEntry & X86_PTE_ACCESSED) != 0) {
// Note, that we only need to invalidate the address, if the
// accessed flag was set, since only then the entry could have been
// in any TLB.
if (fInvalidPagesCount < PAGE_INVALIDATE_CACHE_SIZE)
fInvalidPages[fInvalidPagesCount] = start;
fInvalidPagesCount++;
}
}
pinner.Unlock();
goto restart;
}
status_t
X86VMTranslationMap32Bit::ClearFlags(addr_t va, uint32 flags)
{
int index = VADDR_TO_PDENT(va);
page_directory_entry* pd = fPagingStructures->pgdir_virt;
if ((pd[index] & X86_PDE_PRESENT) == 0) {
// no pagetable here
return B_OK;
}
uint32 flagsToClear = ((flags & PAGE_MODIFIED) ? X86_PTE_DIRTY : 0)
| ((flags & PAGE_ACCESSED) ? X86_PTE_ACCESSED : 0);
struct thread* thread = thread_get_current_thread();
ThreadCPUPinner pinner(thread);
page_table_entry* pt = (page_table_entry*)fPageMapper->GetPageTableAt(
pd[index] & X86_PDE_ADDRESS_MASK);
index = VADDR_TO_PTENT(va);
// clear out the flags we've been requested to clear
page_table_entry oldEntry
= X86PagingMethod32Bit::ClearPageTableEntryFlags(&pt[index],
flagsToClear);
pinner.Unlock();
if ((oldEntry & flagsToClear) != 0) {
if (fInvalidPagesCount < PAGE_INVALIDATE_CACHE_SIZE)
fInvalidPages[fInvalidPagesCount] = va;
fInvalidPagesCount++;
}
return B_OK;
}
bool
X86VMTranslationMap32Bit::ClearAccessedAndModified(VMArea* area, addr_t address,
bool unmapIfUnaccessed, bool& _modified)
{
ASSERT(address % B_PAGE_SIZE == 0);
page_directory_entry* pd = fPagingStructures->pgdir_virt;
TRACE("X86VMTranslationMap32Bit::ClearAccessedAndModified(%#" B_PRIxADDR
")\n", address);
RecursiveLocker locker(fLock);
int index = VADDR_TO_PDENT(address);
if ((pd[index] & X86_PDE_PRESENT) == 0)
return false;
ThreadCPUPinner pinner(thread_get_current_thread());
page_table_entry* pt = (page_table_entry*)fPageMapper->GetPageTableAt(
pd[index] & X86_PDE_ADDRESS_MASK);
index = VADDR_TO_PTENT(address);
// perform the deed
page_table_entry oldEntry;
if (unmapIfUnaccessed) {
while (true) {
oldEntry = pt[index];
if ((oldEntry & X86_PTE_PRESENT) == 0) {
// page mapping not valid
return false;
}
if (oldEntry & X86_PTE_ACCESSED) {
// page was accessed -- just clear the flags
oldEntry = X86PagingMethod32Bit::ClearPageTableEntryFlags(
&pt[index], X86_PTE_ACCESSED | X86_PTE_DIRTY);
break;
}
// page hasn't been accessed -- unmap it
if (X86PagingMethod32Bit::TestAndSetPageTableEntry(&pt[index], 0,
oldEntry) == oldEntry) {
break;
}
// something changed -- check again
}
} else {
oldEntry = X86PagingMethod32Bit::ClearPageTableEntryFlags(&pt[index],
X86_PTE_ACCESSED | X86_PTE_DIRTY);
}
pinner.Unlock();
_modified = (oldEntry & X86_PTE_DIRTY) != 0;
if ((oldEntry & X86_PTE_ACCESSED) != 0) {
// Note, that we only need to invalidate the address, if the
// accessed flags was set, since only then the entry could have been
// in any TLB.
if (fInvalidPagesCount < PAGE_INVALIDATE_CACHE_SIZE)
fInvalidPages[fInvalidPagesCount] = address;
fInvalidPagesCount++;
Flush();
return true;
}
if (!unmapIfUnaccessed)
return false;
// We have unmapped the address. Do the "high level" stuff.
fMapCount--;
if (area->cache_type == CACHE_TYPE_DEVICE)
return false;
// get the page
vm_page* page = vm_lookup_page(
(oldEntry & X86_PTE_ADDRESS_MASK) / B_PAGE_SIZE);
ASSERT(page != NULL);
// remove the mapping object/decrement the wired_count of the page
vm_page_mapping* mapping = NULL;
if (area->wiring == B_NO_LOCK) {
vm_page_mappings::Iterator iterator = page->mappings.GetIterator();
while ((mapping = iterator.Next()) != NULL) {
if (mapping->area == area) {
area->mappings.Remove(mapping);
page->mappings.Remove(mapping);
break;
}
}
ASSERT(mapping != NULL);
} else
page->wired_count--;
locker.Unlock();
if (page->wired_count == 0 && page->mappings.IsEmpty())
atomic_add(&gMappedPagesCount, -1);
if (mapping != NULL) {
object_cache_free(gPageMappingsObjectCache, mapping,
CACHE_DONT_WAIT_FOR_MEMORY | CACHE_DONT_LOCK_KERNEL_SPACE);
// Since this is called by the page daemon, we never want to lock
// the kernel address space.
}
return false;
}
X86PagingStructures*
X86VMTranslationMap32Bit::PagingStructures() const
{
return fPagingStructures;
}

View File

@ -64,46 +64,4 @@ typedef uint32 page_table_entry;
typedef uint32 page_directory_entry;
void x86_early_prepare_page_tables(page_table_entry* pageTables, addr_t address,
size_t size);
void x86_put_pgtable_in_pgdir(page_directory_entry* entry,
phys_addr_t physicalPageTable, uint32 attributes);
static inline page_table_entry
set_page_table_entry(page_table_entry* entry, page_table_entry newEntry)
{
return atomic_set((int32*)entry, newEntry);
}
static inline page_table_entry
test_and_set_page_table_entry(page_table_entry* entry,
page_table_entry newEntry, page_table_entry oldEntry)
{
return atomic_test_and_set((int32*)entry, newEntry, oldEntry);
}
static inline page_table_entry
clear_page_table_entry(page_table_entry* entry)
{
return set_page_table_entry(entry, 0);
}
static inline page_table_entry
clear_page_table_entry_flags(page_table_entry* entry, uint32 flags)
{
return atomic_and((int32*)entry, ~flags);
}
static inline page_table_entry
set_page_table_entry_flags(page_table_entry* entry, uint32 flags)
{
return atomic_or((int32*)entry, flags);
}
#endif // _KERNEL_ARCH_X86_PAGING_32_BIT_PAGING_H