move kernel tracing to separate file

git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@25577 a95241bf-73f2-0310-859d-f6bbb57e9c96
This commit is contained in:
Marcus Overhagen 2008-05-20 20:31:09 +00:00
parent 5d92f82a94
commit 17321b91fb

View File

@ -0,0 +1,832 @@
/*
* Copyright 2007-2008, Marcus Overhagen. All rights reserved.
* Distributed under the terms of the MIT License.
*/
#include "ahci_port.h"
#include "ahci_controller.h"
#include "util.h"
#include "ata_cmds.h"
#include "scsi_cmds.h"
#include "sata_request.h"
#include <KernelExport.h>
#include <ByteOrder.h>
#include <new>
#include <stdio.h>
#include <string.h>
#include <tracing.h>
#define TRACE(a...) dprintf("\33[34mahci:\33[0m " a)
//#define FLOW(a...) dprintf("ahci: " a)
//#define RWTRACE(a...) dprintf("\33[34mahci:\33[0m " a)
#define FLOW(a...)
#define RWTRACE(a...)
#if AHCI_PORT_TRACING
namespace AHCIPortTracing {
class AHCIPortTraceEntry : public AbstractTraceEntry {
protected:
AHCIPortTraceEntry(AHCIController* controller, int index)
: fController(controller)
, fIndex(index)
{
}
void AddDump(TraceOutput& out, const char* name)
{
out.Print("ahci port");
out.Print(" - %s - ", name);
out.Print("controller: %p", fController);
out.Print(", index: %d", fIndex);
}
AHCIController* fController;
int fIndex;
};
class AHCIPortPrdTable : public AHCIPortTraceEntry {
public:
AHCIPortPrdTable(AHCIController* controller, int index, void* address,
size_t size)
: AHCIPortTraceEntry(controller, index)
, fAddress(address)
, fSize(size)
{
Initialized();
}
void AddDump(TraceOutput& out)
{
AHCIPortTraceEntry::AddDump(out, "prd table");
out.Print(", address: %p", fAddress);
out.Print(", size: %lu", fSize);
}
void* fAddress;
int fSize;
};
} // namespace AHCIPortTracing
# define T(x) new(std::nothrow) AHCIPortTracing::x
#else
# define T(x)
#endif // AHCI_PORT_TRACING
AHCIPort::AHCIPort(AHCIController *controller, int index)
: fController(controller)
, fIndex(index)
, fRegs(&controller->fRegs->port[index])
, fArea(-1)
, fSpinlock(0)
, fCommandsActive(0)
, fRequestSem(-1)
, fResponseSem(-1)
, fDevicePresent(false)
, fUse48BitCommands(false)
, fSectorSize(0)
, fSectorCount(0)
, fIsATAPI(false)
{
fRequestSem = create_sem(1, "ahci request");
fResponseSem = create_sem(0, "ahci response");
}
AHCIPort::~AHCIPort()
{
delete_sem(fRequestSem);
delete_sem(fResponseSem);
}
status_t
AHCIPort::Init1()
{
TRACE("AHCIPort::Init1 port %d\n", fIndex);
size_t size = sizeof(command_list_entry) * COMMAND_LIST_ENTRY_COUNT + sizeof(fis) + sizeof(command_table) + sizeof(prd) * PRD_TABLE_ENTRY_COUNT;
char *virtAddr;
char *physAddr;
fArea = alloc_mem((void **)&virtAddr, (void **)&physAddr, size, 0, "some AHCI port");
if (fArea < B_OK) {
TRACE("failed allocating memory for port %d\n", fIndex);
return fArea;
}
memset(virtAddr, 0, size);
fCommandList = (command_list_entry *)virtAddr;
virtAddr += sizeof(command_list_entry) * COMMAND_LIST_ENTRY_COUNT;
fFIS = (fis *)virtAddr;
virtAddr += sizeof(fis);
fCommandTable = (command_table *)virtAddr;
virtAddr += sizeof(command_table);
fPRDTable = (prd *)virtAddr;
TRACE("PRD table is at %p\n", fPRDTable);
fRegs->clb = LO32(physAddr);
fRegs->clbu = HI32(physAddr);
physAddr += sizeof(command_list_entry) * COMMAND_LIST_ENTRY_COUNT;
fRegs->fb = LO32(physAddr);
fRegs->fbu = HI32(physAddr);
physAddr += sizeof(fis);
fCommandList[0].ctba = LO32(physAddr);
fCommandList[0].ctbau = HI32(physAddr);
// prdt follows after command table
// disable transitions to partial or slumber state
fRegs->sctl |= 0x300;
// clear IRQ status bits
fRegs->is = fRegs->is;
// clear error bits
fRegs->serr = fRegs->serr;
// power up device
fRegs->cmd |= PORT_CMD_POD;
// spin up device
fRegs->cmd |= PORT_CMD_SUD;
// activate link
fRegs->cmd = (fRegs->cmd & ~PORT_CMD_ICC_MASK) | PORT_CMD_ICC_ACTIVE;
// enable FIS receive
fRegs->cmd |= PORT_CMD_FER;
FlushPostedWrites();
return B_OK;
}
// called with global interrupts enabled
status_t
AHCIPort::Init2()
{
TRACE("AHCIPort::Init2 port %d\n", fIndex);
// start DMA engine
fRegs->cmd |= PORT_CMD_ST;
// enable interrupts
fRegs->ie = PORT_INT_MASK;
FlushPostedWrites();
ResetDevice();
PostResetDevice();
TRACE("ie 0x%08lx\n", fRegs->ie);
TRACE("is 0x%08lx\n", fRegs->is);
TRACE("cmd 0x%08lx\n", fRegs->cmd);
TRACE("ssts 0x%08lx\n", fRegs->ssts);
TRACE("sctl 0x%08lx\n", fRegs->sctl);
TRACE("serr 0x%08lx\n", fRegs->serr);
TRACE("sact 0x%08lx\n", fRegs->sact);
TRACE("tfd 0x%08lx\n", fRegs->tfd);
fDevicePresent = (fRegs->ssts & 0xf) == 0x3;
return B_OK;
}
void
AHCIPort::Uninit()
{
TRACE("AHCIPort::Uninit port %d\n", fIndex);
// disable FIS receive
fRegs->cmd &= ~PORT_CMD_FER;
// wait for receive completition, up to 500ms
if (wait_until_clear(&fRegs->cmd, PORT_CMD_FR, 500000) < B_OK) {
TRACE("AHCIPort::Uninit port %d error FIS rx still running\n", fIndex);
}
// stop DMA engine
fRegs->cmd &= ~PORT_CMD_ST;
// wait for DMA completition
if (wait_until_clear(&fRegs->cmd, PORT_CMD_CR, 500000) < B_OK) {
TRACE("AHCIPort::Uninit port %d error DMA engine still running\n", fIndex);
}
// disable interrupts
fRegs->ie = 0;
// clear pending interrupts
fRegs->is = fRegs->is;
// invalidate DMA addresses
fRegs->clb = 0;
fRegs->clbu = 0;
fRegs->fb = 0;
fRegs->fbu = 0;
delete_area(fArea);
}
status_t
AHCIPort::ResetDevice()
{
TRACE("AHCIPort::ResetDevice port %d\n", fIndex);
// stop DMA engine
fRegs->cmd &= ~PORT_CMD_ST;
FlushPostedWrites();
if (wait_until_clear(&fRegs->cmd, PORT_CMD_CR, 500000) < B_OK) {
TRACE("AHCIPort::ResetDevice port %d error DMA engine doesn't stop\n", fIndex);
}
// perform a hard reset
fRegs->sctl = (fRegs->sctl & ~0xf) | 1;
FlushPostedWrites();
spin(1100);
fRegs->sctl &= ~0xf;
FlushPostedWrites();
if (wait_until_set(&fRegs->ssts, 0x1, 100000) < B_OK) {
TRACE("AHCIPort::ResetDevice port %d no device detected\n", fIndex);
}
// clear error bits
fRegs->serr = fRegs->serr;
FlushPostedWrites();
if (fRegs->ssts & 1) {
if (wait_until_set(&fRegs->ssts, 0x3, 500000) < B_OK) {
TRACE("AHCIPort::ResetDevice port %d device present but no phy communication\n", fIndex);
}
}
// clear error bits
fRegs->serr = fRegs->serr;
FlushPostedWrites();
// start DMA engine
fRegs->cmd |= PORT_CMD_ST;
FlushPostedWrites();
return B_OK;
}
status_t
AHCIPort::PostResetDevice()
{
TRACE("AHCIPort::PostResetDevice port %d\n", fIndex);
if ((fRegs->ssts & 0xf) != 0x3 || (fRegs->tfd & 0xff) == 0x7f) {
TRACE("AHCIPort::PostResetDevice port %d: no device\n", fIndex);
return B_OK;
}
if ((fRegs->tfd & 0xff) == 0xff)
snooze(200000);
if ((fRegs->tfd & 0xff) == 0xff) {
TRACE("AHCIPort::PostResetDevice port %d: invalid task file status 0xff\n", fIndex);
return B_ERROR;
}
wait_until_clear(&fRegs->tfd, ATA_BSY, 31000000);
fIsATAPI = fRegs->sig == 0xeb140101;
if (fIsATAPI)
fRegs->cmd |= PORT_CMD_ATAPI;
else
fRegs->cmd &= ~PORT_CMD_ATAPI;
FlushPostedWrites();
TRACE("device signature 0x%08lx (%s)\n", fRegs->sig,
(fRegs->sig == 0xeb140101) ? "ATAPI" : (fRegs->sig == 0x00000101) ? "ATA" : "unknown");
return B_OK;
}
void
AHCIPort::DumpD2HFis()
{
TRACE("D2H FIS:\n");
TRACE(" DW0 %02x %02x %02x %02x\n", fFIS->rfis[3], fFIS->rfis[2], fFIS->rfis[1], fFIS->rfis[0]);
TRACE(" DW1 %02x %02x %02x %02x\n", fFIS->rfis[7], fFIS->rfis[6], fFIS->rfis[5], fFIS->rfis[4]);
TRACE(" DW2 %02x %02x %02x %02x\n", fFIS->rfis[11], fFIS->rfis[10], fFIS->rfis[9], fFIS->rfis[8]);
TRACE(" DW3 %02x %02x %02x %02x\n", fFIS->rfis[15], fFIS->rfis[14], fFIS->rfis[13], fFIS->rfis[12]);
TRACE(" DW4 %02x %02x %02x %02x\n", fFIS->rfis[19], fFIS->rfis[18], fFIS->rfis[17], fFIS->rfis[16]);
}
void
AHCIPort::Interrupt()
{
uint32 is = fRegs->is;
uint32 ci = fRegs->ci;
fRegs->is = is; // clear interrupts
RWTRACE("AHCIPort::Interrupt port %d, fCommandsActive 0x%08lx, is 0x%08lx, ci 0x%08lx\n", fIndex, fCommandsActive, is, ci);
if (is & PORT_INT_ERROR)
TRACE("AHCIPort::Interrupt port %d, fCommandsActive 0x%08lx, is 0x%08lx, ci 0x%08lx\n", fIndex, fCommandsActive, is, ci);
if (is & PORT_INT_FATAL)
panic("ahci fatal error, is 0x%08lx", is);
int release = 0;
acquire_spinlock(&fSpinlock);
if ((fCommandsActive & 1) && !(ci & 1)) {
release = 1;
fCommandsActive &= ~1;
}
release_spinlock(&fSpinlock);
if (release)
release_sem_etc(fResponseSem, 1, B_RELEASE_IF_WAITING_ONLY | B_DO_NOT_RESCHEDULE);
}
status_t
AHCIPort::FillPrdTable(volatile prd *prdTable, int *prdCount, int prdMax, const void *data, size_t dataSize)
{
int peMax = prdMax + 1;
physical_entry pe[peMax];
if (get_memory_map(data, dataSize, pe, peMax ) < B_OK) {
TRACE("AHCIPort::FillPrdTable get_memory_map failed\n");
return B_ERROR;
}
int peUsed;
for (peUsed = 0; pe[peUsed].size; peUsed++)
;
return FillPrdTable(prdTable, prdCount, prdMax, pe, peUsed, dataSize);
}
status_t
AHCIPort::FillPrdTable(volatile prd *prdTable, int *prdCount, int prdMax, const physical_entry *sgTable, int sgCount, size_t dataSize)
{
*prdCount = 0;
while (sgCount > 0 && dataSize > 0) {
size_t size = min_c(sgTable->size, dataSize);
void *address = sgTable->address;
T(AHCIPortPrdTable(fController, fIndex, address, size));
FLOW("FillPrdTable: sg-entry addr %p, size %lu\n", address, size);
if ((uint32)address & 1) {
TRACE("AHCIPort::FillPrdTable: data alignment error\n");
return B_ERROR;
}
dataSize -= size;
while (size > 0) {
size_t bytes = min_c(size, PRD_MAX_DATA_LENGTH);
if (*prdCount == prdMax) {
TRACE("AHCIPort::FillPrdTable: prd table exhausted\n");
return B_ERROR;
}
FLOW("FillPrdTable: prd-entry %u, addr %p, size %lu\n", *prdCount, address, bytes);
prdTable->dba = LO32(address);
prdTable->dbau = HI32(address);
prdTable->res = 0;
prdTable->dbc = bytes - 1;
*prdCount += 1;
prdTable++;
address = (char *)address + bytes;
size -= bytes;
}
sgTable++;
sgCount--;
}
if (*prdCount == 0) {
TRACE("AHCIPort::FillPrdTable: count is 0\n");
return B_ERROR;
}
if (dataSize > 0) {
TRACE("AHCIPort::FillPrdTable: sg table %ld bytes too small\n", dataSize);
return B_ERROR;
}
return B_OK;
}
void
AHCIPort::StartTransfer()
{
acquire_sem(fRequestSem);
}
status_t
AHCIPort::WaitForTransfer(int *tfd, bigtime_t timeout)
{
status_t result = B_OK;
if (acquire_sem_etc(fResponseSem, 1, B_RELATIVE_TIMEOUT, timeout) < B_OK) {
fCommandsActive &= ~1;
result = B_TIMED_OUT;
} else {
*tfd = fRegs->tfd;
}
return result;
}
void
AHCIPort::FinishTransfer()
{
release_sem(fRequestSem);
}
void
AHCIPort::ScsiTestUnitReady(scsi_ccb *request)
{
TRACE("AHCIPort::ScsiTestUnitReady port %d\n", fIndex);
request->subsys_status = SCSI_REQ_CMP;
gSCSI->finished(request, 1);
}
void
AHCIPort::ScsiInquiry(scsi_ccb *request)
{
TRACE("AHCIPort::ScsiInquiry port %d\n", fIndex);
scsi_cmd_inquiry *cmd = (scsi_cmd_inquiry *)request->cdb;
scsi_res_inquiry scsiData;
ata_res_identify_device ataData;
ASSERT(sizeof(ataData) == 512);
if (cmd->evpd || cmd->page_code || request->data_length < sizeof(scsiData)) {
TRACE("invalid request\n");
request->subsys_status = SCSI_REQ_ABORTED;
gSCSI->finished(request, 1);
return;
}
sata_request sreq;
sreq.set_data(&ataData, sizeof(ataData));
sreq.set_ata_cmd(fIsATAPI ? 0xa1 : 0xec); // Identify (Packet) Device
ExecuteSataRequest(&sreq);
sreq.wait_for_completition();
if (sreq.completition_status() & ATA_ERR) {
TRACE("identify device failed\n");
request->subsys_status = SCSI_REQ_CMP_ERR;
gSCSI->finished(request, 1);
return;
}
uint8 *data = (uint8*) &ataData;
for (int i = 0; i < 512; i += 8) {
TRACE(" %02x %02x %02x %02x %02x %02x %02x %02x\n", data[i], data[i+1], data[i+2], data[i+3], data[i+4], data[i+5], data[i+6], data[i+7]);
}
scsiData.device_type = fIsATAPI ? scsi_dev_CDROM : scsi_dev_direct_access;
scsiData.device_qualifier = scsi_periph_qual_connected;
scsiData.device_type_modifier = 0;
scsiData.removable_medium = fIsATAPI;
scsiData.ansi_version = 2;
scsiData.ecma_version = 0;
scsiData.iso_version = 0;
scsiData.response_data_format = 2;
scsiData.term_iop = false;
scsiData.additional_length = sizeof(scsiData) - 4;
scsiData.soft_reset = false;
scsiData.cmd_queue = false;
scsiData.linked = false;
scsiData.sync = false;
scsiData.write_bus16 = true;
scsiData.write_bus32 = false;
scsiData.relative_address = false;
memcpy(scsiData.vendor_ident, ataData.model_number, sizeof(scsiData.vendor_ident));
memcpy(scsiData.product_ident, ataData.model_number + 8, sizeof(scsiData.product_ident));
memcpy(scsiData.product_rev, ataData.serial_number, sizeof(scsiData.product_rev));
if (!fIsATAPI) {
bool lba = (ataData.words[49] & (1 << 9)) != 0;
bool lba48 = (ataData.words[83] & (1 << 10)) != 0;
uint32 sectors = *(uint32*)&ataData.words[60];
uint64 sectors48 = *(uint64*)&ataData.words[100];
fUse48BitCommands = lba && lba48;
fSectorSize = 512;
fSectorCount = !(lba || sectors) ? 0 : lba48 ? sectors48 : sectors;
TRACE("lba %d, lba48 %d, fUse48BitCommands %d, sectors %lu, sectors48 %llu, size %llu\n",
lba, lba48, fUse48BitCommands, sectors, sectors48, fSectorCount * fSectorSize);
}
#if 0
if (fSectorCount < 0x0fffffff) {
TRACE("disabling 48 bit commands\n");
fUse48BitCommands = 0;
}
#endif
char modelNumber[sizeof(ataData.model_number) + 1];
char serialNumber[sizeof(ataData.serial_number) + 1];
char firmwareRev[sizeof(ataData.firmware_revision) + 1];
strlcpy(modelNumber, ataData.model_number, sizeof(modelNumber));
strlcpy(serialNumber, ataData.serial_number, sizeof(serialNumber));
strlcpy(firmwareRev, ataData.firmware_revision, sizeof(firmwareRev));
swap_words(modelNumber, sizeof(modelNumber) - 1);
swap_words(serialNumber, sizeof(serialNumber) - 1);
swap_words(firmwareRev, sizeof(firmwareRev) - 1);
TRACE("model number: %s\n", modelNumber);
TRACE("serial number: %s\n", serialNumber);
TRACE("firmware rev.: %s\n", firmwareRev);
if (sg_memcpy(request->sg_list, request->sg_count, &scsiData, sizeof(scsiData)) < B_OK) {
request->subsys_status = SCSI_DATA_RUN_ERR;
} else {
request->subsys_status = SCSI_REQ_CMP;
request->data_resid = request->data_length - sizeof(scsiData);
}
gSCSI->finished(request, 1);
}
void
AHCIPort::ScsiSynchronizeCache(scsi_ccb *request)
{
TRACE("AHCIPort::ScsiSynchronizeCache port %d\n", fIndex);
sata_request *sreq = new(std::nothrow) sata_request(request);
sreq->set_ata_cmd(fUse48BitCommands ? 0xea : 0xe7); // Flush Cache
ExecuteSataRequest(sreq);
}
void
AHCIPort::ScsiReadCapacity(scsi_ccb *request)
{
TRACE("AHCIPort::ScsiReadCapacity port %d\n", fIndex);
scsi_cmd_read_capacity *cmd = (scsi_cmd_read_capacity *)request->cdb;
scsi_res_read_capacity scsiData;
if (cmd->pmi || cmd->lba || request->data_length < sizeof(scsiData)) {
TRACE("invalid request\n");
return;
}
TRACE("SectorSize %lu, SectorCount 0x%llx\n", fSectorSize, fSectorCount);
if (fSectorCount > 0xffffffff)
panic("ahci: SCSI emulation doesn't support harddisks larger than 2TB");
scsiData.block_size = B_HOST_TO_BENDIAN_INT32(fSectorSize);
scsiData.lba = B_HOST_TO_BENDIAN_INT32(fSectorCount - 1);
if (sg_memcpy(request->sg_list, request->sg_count, &scsiData, sizeof(scsiData)) < B_OK) {
request->subsys_status = SCSI_DATA_RUN_ERR;
} else {
request->subsys_status = SCSI_REQ_CMP;
request->data_resid = request->data_length - sizeof(scsiData);
}
gSCSI->finished(request, 1);
}
void
AHCIPort::ScsiReadWrite(scsi_ccb *request, uint64 lba, size_t sectorCount, bool isWrite)
{
RWTRACE("ScsiReadWrite: position %llu, size %lu, isWrite %d\n", lba * 512, sectorCount * 512, isWrite);
#if 0
if (isWrite) {
TRACE("write request ignored\n");
request->subsys_status = SCSI_REQ_CMP;
request->data_resid = 0;
gSCSI->finished(request, 1);
return;
}
#endif
ASSERT(request->data_length == sectorCount * 512);
sata_request *sreq = new(std::nothrow) sata_request(request);
if (fUse48BitCommands) {
if (sectorCount > 65536)
panic("ahci: ScsiReadWrite length too large, %lu sectors", sectorCount);
if (lba > MAX_SECTOR_LBA_48)
panic("achi: ScsiReadWrite position too large for 48-bit LBA\n");
sreq->set_ata48_cmd(isWrite ? 0x35 : 0x25, lba, sectorCount);
} else {
if (sectorCount > 256)
panic("ahci: ScsiReadWrite length too large, %lu sectors", sectorCount);
if (lba > MAX_SECTOR_LBA_28)
panic("achi: ScsiReadWrite position too large for normal LBA\n");
sreq->set_ata28_cmd(isWrite ? 0xca : 0xc8, lba, sectorCount);
}
ExecuteSataRequest(sreq, isWrite);
}
void
AHCIPort::ExecuteSataRequest(sata_request *request, bool isWrite)
{
FLOW("ExecuteAtaRequest port %d\n", fIndex);
StartTransfer();
int prdEntrys;
if (request->ccb())
FillPrdTable(fPRDTable, &prdEntrys, PRD_TABLE_ENTRY_COUNT, request->ccb()->sg_list, request->ccb()->sg_count, request->ccb()->data_length);
else if (request->data() && request->size())
FillPrdTable(fPRDTable, &prdEntrys, PRD_TABLE_ENTRY_COUNT, request->data(), request->size());
else
prdEntrys = 0;
FLOW("prdEntrys %d\n", prdEntrys);
memcpy((char *)fCommandTable->cfis, request->fis(), 20);
fCommandList->prdtl_flags_cfl = 0;
fCommandList->cfl = 5; // length is 20 bytes, in DWORDS
if (isWrite)
fCommandList->w = 1;
fCommandList->prdtl = prdEntrys;
fCommandList->prdbc = 0;
if (wait_until_clear(&fRegs->tfd, ATA_BSY | ATA_DRQ, 1000000) < B_OK) {
TRACE("ExecuteAtaRequest port %d: device is busy\n", fIndex);
FinishTransfer();
request->abort();
return;
}
cpu_status cpu = disable_interrupts();
acquire_spinlock(&fSpinlock);
fRegs->ci = 1;
FlushPostedWrites();
fCommandsActive |= 1;
release_spinlock(&fSpinlock);
restore_interrupts(cpu);
int tfd;
status_t status = WaitForTransfer(&tfd, 5000000);
FLOW("tfd %#x\n", tfd);
FLOW("prdbc %ld\n", fCommandList->prdbc);
FLOW("ci 0x%08lx\n", fRegs->ci);
FLOW("is 0x%08lx\n", fRegs->is);
FLOW("serr 0x%08lx\n", fRegs->serr);
/*
TRACE("ci 0x%08lx\n", fRegs->ci);
TRACE("ie 0x%08lx\n", fRegs->ie);
TRACE("is 0x%08lx\n", fRegs->is);
TRACE("cmd 0x%08lx\n", fRegs->cmd);
TRACE("ssts 0x%08lx\n", fRegs->ssts);
TRACE("sctl 0x%08lx\n", fRegs->sctl);
TRACE("serr 0x%08lx\n", fRegs->serr);
TRACE("sact 0x%08lx\n", fRegs->sact);
TRACE("tfd 0x%08lx\n", fRegs->tfd);
*/
size_t bytesTransfered = fCommandList->prdbc;
FinishTransfer();
if (status < B_OK) {
TRACE("ExecuteAtaRequest port %d: device transfer timeout\n", fIndex);
request->abort();
} else
request->finish(tfd, bytesTransfered);
}
void
AHCIPort::ScsiExecuteRequest(scsi_ccb *request)
{
// TRACE("AHCIPort::ScsiExecuteRequest port %d, opcode 0x%02x, length %u\n", fIndex, request->cdb[0], request->cdb_length);
if (request->cdb[0] == SCSI_OP_REQUEST_SENSE) {
panic("ahci: SCSI_OP_REQUEST_SENSE not yet supported\n");
return;
}
if (!fDevicePresent) {
TRACE("no device present on port %d\n", fIndex);
request->subsys_status = SCSI_DEV_NOT_THERE;
gSCSI->finished(request, 1);
return;
}
request->subsys_status = SCSI_REQ_CMP;
switch (request->cdb[0]) {
case SCSI_OP_TEST_UNIT_READY:
ScsiTestUnitReady(request);
break;
case SCSI_OP_INQUIRY:
ScsiInquiry(request);
break;
case SCSI_OP_READ_CAPACITY:
ScsiReadCapacity(request);
break;
case SCSI_OP_SYNCHRONIZE_CACHE:
ScsiSynchronizeCache(request);
break;
case SCSI_OP_READ_6:
case SCSI_OP_WRITE_6:
{
scsi_cmd_rw_6 *cmd = (scsi_cmd_rw_6 *)request->cdb;
uint32 position = ((uint32)cmd->high_lba << 16) | ((uint32)cmd->mid_lba << 8) | (uint32)cmd->low_lba;
size_t length = cmd->length != 0 ? cmd->length : 256;
bool isWrite = request->cdb[0] == SCSI_OP_WRITE_6;
ScsiReadWrite(request, position, length, isWrite);
break;
}
case SCSI_OP_READ_10:
case SCSI_OP_WRITE_10:
{
scsi_cmd_rw_10 *cmd = (scsi_cmd_rw_10 *)request->cdb;
uint32 position = B_BENDIAN_TO_HOST_INT32(cmd->lba);
size_t length = B_BENDIAN_TO_HOST_INT16(cmd->length);
bool isWrite = request->cdb[0] == SCSI_OP_WRITE_10;
if (length) {
ScsiReadWrite(request, position, length, isWrite);
} else {
TRACE("AHCIPort::ScsiExecuteRequest error: transfer without data!\n");
request->subsys_status = SCSI_REQ_INVALID;
gSCSI->finished(request, 1);
}
break;
}
case SCSI_OP_READ_12:
case SCSI_OP_WRITE_12:
{
scsi_cmd_rw_12 *cmd = (scsi_cmd_rw_12 *)request->cdb;
uint32 position = B_BENDIAN_TO_HOST_INT32(cmd->lba);
size_t length = B_BENDIAN_TO_HOST_INT32(cmd->length);
bool isWrite = request->cdb[0] == SCSI_OP_WRITE_12;
if (length) {
ScsiReadWrite(request, position, length, isWrite);
} else {
TRACE("AHCIPort::ScsiExecuteRequest error: transfer without data!\n");
request->subsys_status = SCSI_REQ_INVALID;
gSCSI->finished(request, 1);
}
break;
}
default:
TRACE("AHCIPort::ScsiExecuteRequest port %d unsupported request opcode 0x%02x\n", fIndex, request->cdb[0]);
request->subsys_status = SCSI_REQ_ABORTED;
gSCSI->finished(request, 1);
}
}
uchar
AHCIPort::ScsiAbortRequest(scsi_ccb *request)
{
return SCSI_REQ_CMP;
}
uchar
AHCIPort::ScsiTerminateRequest(scsi_ccb *request)
{
return SCSI_REQ_CMP;
}
uchar
AHCIPort::ScsiResetDevice()
{
return SCSI_REQ_CMP;
}
void
AHCIPort::ScsiGetRestrictions(bool *isATAPI, bool *noAutoSense, uint32 *maxBlocks)
{
*isATAPI = fIsATAPI;
*noAutoSense = false;
*maxBlocks = fUse48BitCommands ? 65536 : 256;
TRACE("AHCIPort::ScsiGetRestrictions port %d: isATAPI %d, noAutoSense %d, maxBlocks %lu\n",
fIndex, *isATAPI, *noAutoSense, *maxBlocks);
}