Fleshed out most of the unimplemented methods. The kernel boots up to the

creation of the initial shell, now.


git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@37085 a95241bf-73f2-0310-859d-f6bbb57e9c96
This commit is contained in:
Ingo Weinhold 2010-06-10 13:25:36 +00:00
parent 1c01dd3be0
commit 0c4c918a3d
5 changed files with 693 additions and 66 deletions

View File

@ -1,6 +1,10 @@
/*
* Copyright 2010, Ingo Weinhold, ingo_weinhold@gmx.de.
* Copyright 2008-2010, Ingo Weinhold, ingo_weinhold@gmx.de.
* Copyright 2002-2007, Axel Dörfler, axeld@pinc-software.de. All rights reserved.
* Distributed under the terms of the MIT License.
*
* Copyright 2001-2002, Travis Geiselbrecht. All rights reserved.
* Distributed under the terms of the NewOS License.
*/
@ -57,9 +61,11 @@ struct X86PagingMethodPAE::ToPAESwitcher {
fPageHolePageDir, fPhysicalPageDir);
}
void Switch(void*& _pageStructures, size_t& _pageStructuresSize,
pae_page_directory_entry** pageDirs, phys_addr_t* physicalPageDirs,
addr_t& _freeVirtualSlot, pae_page_table_entry*& _freeVirtualSlotPTE)
void Switch(pae_page_directory_pointer_table_entry*& _virtualPDPT,
phys_addr_t& _physicalPDPT, void*& _pageStructures,
size_t& _pageStructuresSize, pae_page_directory_entry** pageDirs,
phys_addr_t* physicalPageDirs, addr_t& _freeVirtualSlot,
pae_page_table_entry*& _freeVirtualSlotPTE)
{
// count the page tables we have to translate
uint32 pageTableCount = 0;
@ -134,6 +140,8 @@ struct X86PagingMethodPAE::ToPAESwitcher {
x86_write_cr4(x86_read_cr4() | IA32_CR4_PAE | IA32_CR4_GLOBAL_PAGES);
// set return values
_virtualPDPT = pdpt;
_physicalPDPT = physicalPDPT;
_pageStructures = fAllocatedPages;
_pageStructuresSize = (size_t)fUsedPagesCount * B_PAGE_SIZE;
memcpy(pageDirs, fPageDirs, sizeof(fPageDirs));
@ -439,8 +447,12 @@ void
X86PagingMethodPAE::PhysicalPageSlotPool::Map(phys_addr_t physicalAddress,
addr_t virtualAddress)
{
// TODO: Implement!
panic("X86PagingMethodPAE::PhysicalPageSlotPool::Map(): not implemented");
pae_page_table_entry& pte = fPageTable[
(virtualAddress - fVirtualBase) / B_PAGE_SIZE];
pte = (physicalAddress & X86_PAE_PTE_ADDRESS_MASK)
| X86_PAE_PTE_WRITABLE | X86_PAE_PTE_GLOBAL | X86_PAE_PTE_PRESENT;
invalidate_TLB(virtualAddress);
}
@ -475,9 +487,10 @@ X86PagingMethodPAE::Init(kernel_args* args,
VMPhysicalPageMapper** _physicalPageMapper)
{
// switch to PAE
ToPAESwitcher(args).Switch(fEarlyPageStructures, fEarlyPageStructuresSize,
fKernelVirtualPageDirs, fKernelPhysicalPageDirs, fFreeVirtualSlot,
fFreeVirtualSlotPTE);
ToPAESwitcher(args).Switch(fKernelVirtualPageDirPointerTable,
fKernelPhysicalPageDirPointerTable, fEarlyPageStructures,
fEarlyPageStructuresSize, fKernelVirtualPageDirs,
fKernelPhysicalPageDirs, fFreeVirtualSlot, fFreeVirtualSlotPTE);
// create the initial pool for the physical page mapper
PhysicalPageSlotPool* pool
@ -502,18 +515,38 @@ X86PagingMethodPAE::Init(kernel_args* args,
status_t
X86PagingMethodPAE::InitPostArea(kernel_args* args)
{
// TODO: Implement!
panic("X86PagingMethodPAE::InitPostArea(): not implemented");
return B_UNSUPPORTED;
// wrap the kernel paging structures in an area
area_id area = create_area("kernel paging structs", &fEarlyPageStructures,
B_EXACT_ADDRESS, fEarlyPageStructuresSize, B_ALREADY_WIRED,
B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA);
if (area < B_OK)
return area;
// let the initial page pool create areas for its structures
status_t error = PhysicalPageSlotPool::sInitialPhysicalPagePool
.InitInitialPostArea(args);
if (error != B_OK)
return error;
return B_OK;
}
status_t
X86PagingMethodPAE::CreateTranslationMap(bool kernel, VMTranslationMap** _map)
{
// TODO: Implement!
panic("X86PagingMethodPAE::CreateTranslationMap(): not implemented");
return B_UNSUPPORTED;
X86VMTranslationMapPAE* map = new(std::nothrow) X86VMTranslationMapPAE;
if (map == NULL)
return B_NO_MEMORY;
status_t error = map->Init(kernel);
if (error != B_OK) {
delete map;
return error;
}
*_map = map;
return B_OK;
}
@ -533,7 +566,7 @@ X86PagingMethodPAE::MapEarly(kernel_args* args, addr_t virtualAddress,
TRACE("X86PagingMethodPAE::MapEarly(): asked for free page for "
"page table: %#" B_PRIxPHYSADDR "\n", physicalPageTable);
// put it in the pgdir
// put it in the page dir
PutPageTableInPageDir(pageDirEntry, physicalPageTable, attributes);
// zero it out

View File

@ -46,8 +46,13 @@ public:
inline TranslationMapPhysicalPageMapper* KernelPhysicalPageMapper() const
{ return fKernelPhysicalPageMapper; }
inline pae_page_directory_pointer_table_entry*
KernelVirtualPageDirPointerTable() const;
inline phys_addr_t KernelPhysicalPageDirPointerTable() const;
inline pae_page_directory_entry* const* KernelVirtualPageDirs() const
{ return fKernelVirtualPageDirs; }
inline const phys_addr_t* KernelPhysicalPageDirs() const
{ return fKernelPhysicalPageDirs; }
static X86PagingMethodPAE* Method();
@ -60,6 +65,18 @@ public:
phys_addr_t physicalAddress,
uint32 attributes, uint32 memoryType,
bool globalPage);
static pae_page_table_entry SetPageTableEntry(pae_page_table_entry* entry,
pae_page_table_entry newEntry);
static pae_page_table_entry SetPageTableEntryFlags(
pae_page_table_entry* entry, uint64 flags);
static pae_page_table_entry TestAndSetPageTableEntry(
pae_page_table_entry* entry,
pae_page_table_entry newEntry,
pae_page_table_entry oldEntry);
static pae_page_table_entry ClearPageTableEntry(
pae_page_table_entry* entry);
static pae_page_table_entry ClearPageTableEntryFlags(
pae_page_table_entry* entry, uint64 flags);
static pae_page_directory_entry* PageDirEntryForAddress(
pae_page_directory_entry* const* pdpt,
@ -84,6 +101,9 @@ private:
void* fEarlyPageStructures;
size_t fEarlyPageStructuresSize;
pae_page_directory_pointer_table_entry*
fKernelVirtualPageDirPointerTable;
phys_addr_t fKernelPhysicalPageDirPointerTable;
pae_page_directory_entry* fKernelVirtualPageDirs[4];
phys_addr_t fKernelPhysicalPageDirs[4];
addr_t fFreeVirtualSlot;
@ -91,6 +111,20 @@ private:
};
pae_page_directory_pointer_table_entry*
X86PagingMethodPAE::KernelVirtualPageDirPointerTable() const
{
return fKernelVirtualPageDirPointerTable;
}
phys_addr_t
X86PagingMethodPAE::KernelPhysicalPageDirPointerTable() const
{
return fKernelPhysicalPageDirPointerTable;
}
/*static*/ inline X86PagingMethodPAE*
X86PagingMethodPAE::Method()
{
@ -107,6 +141,45 @@ X86PagingMethodPAE::PageDirEntryForAddress(
}
/*static*/ inline pae_page_table_entry
X86PagingMethodPAE::SetPageTableEntry(pae_page_table_entry* entry,
pae_page_table_entry newEntry)
{
return atomic_set64((int64*)entry, newEntry);
}
/*static*/ inline pae_page_table_entry
X86PagingMethodPAE::SetPageTableEntryFlags(pae_page_table_entry* entry,
uint64 flags)
{
return atomic_or64((int64*)entry, flags);
}
/*static*/ inline pae_page_table_entry
X86PagingMethodPAE::TestAndSetPageTableEntry(pae_page_table_entry* entry,
pae_page_table_entry newEntry, pae_page_table_entry oldEntry)
{
return atomic_test_and_set64((int64*)entry, newEntry, oldEntry);
}
/*static*/ inline pae_page_table_entry
X86PagingMethodPAE::ClearPageTableEntry(pae_page_table_entry* entry)
{
return SetPageTableEntry(entry, 0);
}
/*static*/ inline pae_page_table_entry
X86PagingMethodPAE::ClearPageTableEntryFlags(pae_page_table_entry* entry,
uint64 flags)
{
return atomic_and64((int64*)entry, ~flags);
}
/*static*/ inline uint32
X86PagingMethodPAE::MemoryTypeToPageTableEntryFlags(uint32 memoryType)
{

View File

@ -6,6 +6,8 @@
#include "paging/pae/X86PagingStructuresPAE.h"
#include <string.h>
#include <KernelExport.h>
@ -19,14 +21,21 @@ X86PagingStructuresPAE::X86PagingStructuresPAE()
X86PagingStructuresPAE::~X86PagingStructuresPAE()
{
// TODO: Implement!
panic("X86PagingStructuresPAE::~X86PagingStructuresPAE(): not implemented");
}
void
X86PagingStructuresPAE::Init()
X86PagingStructuresPAE::Init(
pae_page_directory_pointer_table_entry* virtualPDPT,
phys_addr_t physicalPDPT, pae_page_directory_entry* const* virtualPageDirs,
const phys_addr_t* physicalPageDirs)
{
// TODO: Implement!
panic("X86PagingStructuresPAE::Init(): not implemented");
fPageDirPointerTable = virtualPDPT;
pgdir_phys = physicalPDPT;
memcpy(fVirtualPageDirs, virtualPageDirs, sizeof(fVirtualPageDirs));
memcpy(fPhysicalPageDirs, physicalPageDirs, sizeof(fPhysicalPageDirs));
}
@ -38,12 +47,4 @@ X86PagingStructuresPAE::Delete()
}
/*static*/ void
X86PagingStructuresPAE::StaticInit()
{
// TODO: Implement!
panic("X86PagingStructuresPAE::StaticInit(): not implemented");
}
#endif // B_HAIKU_PHYSICAL_BITS == 64

View File

@ -17,11 +17,22 @@ struct X86PagingStructuresPAE : X86PagingStructures {
X86PagingStructuresPAE();
virtual ~X86PagingStructuresPAE();
void Init();
void Init(pae_page_directory_pointer_table_entry*
virtualPDPT,
phys_addr_t physicalPDPT,
pae_page_directory_entry* const*
virtualPageDirs,
const phys_addr_t* physicalPageDirs);
virtual void Delete();
static void StaticInit();
pae_page_directory_entry* const* VirtualPageDirs() const
{ return fVirtualPageDirs; }
private:
pae_page_directory_pointer_table_entry* fPageDirPointerTable;
pae_page_directory_entry* fVirtualPageDirs[4];
phys_addr_t fPhysicalPageDirs[4];
};

View File

@ -1,11 +1,20 @@
/*
* Copyright 2010, Ingo Weinhold, ingo_weinhold@gmx.de.
* Copyright 2008-2010, Ingo Weinhold, ingo_weinhold@gmx.de.
* Copyright 2002-2007, Axel Dörfler, axeld@pinc-software.de. All rights reserved.
* Distributed under the terms of the MIT License.
*
* Copyright 2001-2002, Travis Geiselbrecht. All rights reserved.
* Distributed under the terms of the NewOS License.
*/
#include "paging/pae/X86VMTranslationMapPAE.h"
#include <int.h>
#include <slab/Slab.h>
#include <thread.h>
#include <util/AutoLock.h>
#include <vm/vm_page.h>
#include <vm/VMAddressSpace.h>
#include <vm/VMCache.h>
@ -45,37 +54,184 @@ X86VMTranslationMapPAE::Init(bool kernel)
X86VMTranslationMap::Init(kernel);
// TODO: Implement!
panic("unsupported");
return B_UNSUPPORTED;
fPagingStructures = new(std::nothrow) X86PagingStructuresPAE;
if (fPagingStructures == NULL)
return B_NO_MEMORY;
X86PagingMethodPAE* method = X86PagingMethodPAE::Method();
if (kernel) {
// kernel
// get the physical page mapper
fPageMapper = method->KernelPhysicalPageMapper();
// we already know the kernel pgdir mapping
fPagingStructures->Init(method->KernelVirtualPageDirPointerTable(),
method->KernelPhysicalPageDirPointerTable(),
method->KernelVirtualPageDirs(), method->KernelPhysicalPageDirs());
} else {
panic("X86VMTranslationMapPAE::Init(): user init not implemented");
#if 0
// user
// allocate a physical page mapper
status_t error = method->PhysicalPageMapper()
->CreateTranslationMapPhysicalPageMapper(&fPageMapper);
if (error != B_OK)
return error;
// allocate the page directory
page_directory_entry* virtualPageDir = (page_directory_entry*)memalign(
B_PAGE_SIZE, B_PAGE_SIZE);
if (virtualPageDir == NULL)
return B_NO_MEMORY;
// look up the page directory's physical address
phys_addr_t physicalPageDir;
vm_get_page_mapping(VMAddressSpace::KernelID(),
(addr_t)virtualPageDir, &physicalPageDir);
fPagingStructures->Init(virtualPageDir, physicalPageDir,
method->KernelVirtualPageDirectory());
#endif
}
return B_OK;
}
size_t
X86VMTranslationMapPAE::MaxPagesNeededToMap(addr_t start, addr_t end) const
{
// TODO: Implement!
panic("unsupported");
return 0;
// If start == 0, the actual base address is not yet known to the caller and
// we shall assume the worst case.
if (start == 0) {
// offset the range so it has the worst possible alignment
start = kPAEPageTableRange - B_PAGE_SIZE;
end += kPAEPageTableRange - B_PAGE_SIZE;
}
return end / kPAEPageTableRange + 1 - start / kPAEPageTableRange;
}
status_t
X86VMTranslationMapPAE::Map(addr_t va, phys_addr_t pa, uint32 attributes,
uint32 memoryType, vm_page_reservation* reservation)
X86VMTranslationMapPAE::Map(addr_t virtualAddress, phys_addr_t physicalAddress,
uint32 attributes, uint32 memoryType, vm_page_reservation* reservation)
{
// TODO: Implement!
panic("unsupported");
return B_UNSUPPORTED;
TRACE("X86VMTranslationMapPAE::Map(): %#" B_PRIxADDR " -> %#" B_PRIxPHYSADDR
"\n", virtualAddress, physicalAddress);
// check to see if a page table exists for this range
pae_page_directory_entry* pageDirEntry
= X86PagingMethodPAE::PageDirEntryForAddress(
fPagingStructures->VirtualPageDirs(), virtualAddress);
if ((*pageDirEntry & X86_PAE_PDE_PRESENT) == 0) {
// we need to allocate a page table
vm_page *page = vm_page_allocate_page(reservation,
PAGE_STATE_WIRED | VM_PAGE_ALLOC_CLEAR);
DEBUG_PAGE_ACCESS_END(page);
phys_addr_t physicalPageTable
= (phys_addr_t)page->physical_page_number * B_PAGE_SIZE;
TRACE("X86VMTranslationMapPAE::Map(): asked for free page for "
"page table: %#" B_PRIxPHYSADDR "\n", physicalPageTable);
// put it in the page dir
X86PagingMethodPAE::PutPageTableInPageDir(pageDirEntry,
physicalPageTable,
attributes
| ((attributes & B_USER_PROTECTION) != 0
? B_WRITE_AREA : B_KERNEL_WRITE_AREA));
fMapCount++;
}
// now, fill in the page table entry
struct thread* thread = thread_get_current_thread();
ThreadCPUPinner pinner(thread);
pae_page_table_entry* pageTable
= (pae_page_table_entry*)fPageMapper->GetPageTableAt(
*pageDirEntry & X86_PAE_PDE_ADDRESS_MASK);
pae_page_table_entry* entry = pageTable
+ virtualAddress / B_PAGE_SIZE % kPAEPageTableEntryCount;
ASSERT_PRINT((*entry & X86_PAE_PTE_PRESENT) == 0,
"virtual address: %#" B_PRIxADDR ", existing pte: %#" B_PRIx64,
virtualAddress, *entry);
X86PagingMethodPAE::PutPageTableEntryInTable(entry, physicalAddress,
attributes, memoryType, fIsKernelMap);
pinner.Unlock();
// Note: We don't need to invalidate the TLB for this address, as previously
// the entry was not present and the TLB doesn't cache those entries.
fMapCount++;
return 0;
}
status_t
X86VMTranslationMapPAE::Unmap(addr_t start, addr_t end)
{
// TODO: Implement!
panic("unsupported");
return B_UNSUPPORTED;
start = ROUNDDOWN(start, B_PAGE_SIZE);
if (start >= end)
return B_OK;
TRACE("X86VMTranslationMapPAE::Unmap(): %#" B_PRIxADDR " - %#" B_PRIxADDR
"\n", start, end);
do {
pae_page_directory_entry* pageDirEntry
= X86PagingMethodPAE::PageDirEntryForAddress(
fPagingStructures->VirtualPageDirs(), start);
if ((*pageDirEntry & X86_PAE_PDE_PRESENT) == 0) {
// no page table here, move the start up to access the next page
// table
start = ROUNDUP(start + 1, kPAEPageTableRange);
continue;
}
struct thread* thread = thread_get_current_thread();
ThreadCPUPinner pinner(thread);
pae_page_table_entry* pageTable
= (pae_page_table_entry*)fPageMapper->GetPageTableAt(
*pageDirEntry & X86_PAE_PDE_ADDRESS_MASK);
uint32 index = start / B_PAGE_SIZE % kPAEPageTableEntryCount;
for (; index < kPAEPageTableEntryCount && start < end;
index++, start += B_PAGE_SIZE) {
if ((pageTable[index] & X86_PAE_PTE_PRESENT) == 0) {
// page mapping not valid
continue;
}
TRACE("X86VMTranslationMapPAE::Unmap(): removing page %#"
B_PRIxADDR "\n", start);
pae_page_table_entry oldEntry
= X86PagingMethodPAE::ClearPageTableEntryFlags(
&pageTable[index], X86_PAE_PTE_PRESENT);
fMapCount--;
if ((oldEntry & X86_PAE_PTE_ACCESSED) != 0) {
// Note, that we only need to invalidate the address, if the
// accessed flags was set, since only then the entry could have
// been in any TLB.
InvalidatePage(start);
}
}
pinner.Unlock();
} while (start != 0 && start < end);
return B_OK;
}
@ -86,9 +242,113 @@ status_t
X86VMTranslationMapPAE::UnmapPage(VMArea* area, addr_t address,
bool updatePageQueue)
{
// TODO: Implement!
panic("unsupported");
return B_UNSUPPORTED;
ASSERT(address % B_PAGE_SIZE == 0);
pae_page_directory_entry* pageDirEntry
= X86PagingMethodPAE::PageDirEntryForAddress(
fPagingStructures->VirtualPageDirs(), address);
TRACE("X86VMTranslationMapPAE::UnmapPage(%#" B_PRIxADDR ")\n", address);
RecursiveLocker locker(fLock);
if ((*pageDirEntry & X86_PAE_PDE_PRESENT) == 0)
return B_ENTRY_NOT_FOUND;
ThreadCPUPinner pinner(thread_get_current_thread());
pae_page_table_entry* pageTable
= (pae_page_table_entry*)fPageMapper->GetPageTableAt(
*pageDirEntry & X86_PAE_PDE_ADDRESS_MASK);
pae_page_table_entry oldEntry = X86PagingMethodPAE::ClearPageTableEntry(
&pageTable[address / B_PAGE_SIZE % kPAEPageTableEntryCount]);
pinner.Unlock();
if ((oldEntry & X86_PAE_PTE_PRESENT) == 0) {
// page mapping not valid
return B_ENTRY_NOT_FOUND;
}
fMapCount--;
if ((oldEntry & X86_PAE_PTE_ACCESSED) != 0) {
// Note, that we only need to invalidate the address, if the
// accessed flags was set, since only then the entry could have been
// in any TLB.
InvalidatePage(address);
Flush();
// NOTE: Between clearing the page table entry and Flush() other
// processors (actually even this processor with another thread of the
// same team) could still access the page in question via their cached
// entry. We can obviously lose a modified flag in this case, with the
// effect that the page looks unmodified (and might thus be recycled),
// but is actually modified.
// In most cases this is harmless, but for vm_remove_all_page_mappings()
// this is actually a problem.
// Interestingly FreeBSD seems to ignore this problem as well
// (cf. pmap_remove_all()), unless I've missed something.
}
if (area->cache_type == CACHE_TYPE_DEVICE)
return B_OK;
// get the page
vm_page* page = vm_lookup_page(
(oldEntry & X86_PAE_PTE_ADDRESS_MASK) / B_PAGE_SIZE);
ASSERT(page != NULL);
// transfer the accessed/dirty flags to the page
if ((oldEntry & X86_PAE_PTE_ACCESSED) != 0)
page->accessed = true;
if ((oldEntry & X86_PAE_PTE_DIRTY) != 0)
page->modified = true;
// TODO: Here comes a lot of paging method and even architecture independent
// code. Refactor!
// remove the mapping object/decrement the wired_count of the page
vm_page_mapping* mapping = NULL;
if (area->wiring == B_NO_LOCK) {
vm_page_mappings::Iterator iterator = page->mappings.GetIterator();
while ((mapping = iterator.Next()) != NULL) {
if (mapping->area == area) {
area->mappings.Remove(mapping);
page->mappings.Remove(mapping);
break;
}
}
ASSERT(mapping != NULL);
} else
page->wired_count--;
locker.Unlock();
if (page->wired_count == 0 && page->mappings.IsEmpty()) {
atomic_add(&gMappedPagesCount, -1);
if (updatePageQueue) {
if (page->Cache()->temporary)
vm_page_set_state(page, PAGE_STATE_INACTIVE);
else if (page->modified)
vm_page_set_state(page, PAGE_STATE_MODIFIED);
else
vm_page_set_state(page, PAGE_STATE_CACHED);
}
}
if (mapping != NULL) {
bool isKernelSpace = area->address_space == VMAddressSpace::Kernel();
object_cache_free(gPageMappingsObjectCache, mapping,
CACHE_DONT_WAIT_FOR_MEMORY
| (isKernelSpace ? CACHE_DONT_LOCK_KERNEL_SPACE : 0));
}
return B_OK;
}
@ -96,8 +356,8 @@ void
X86VMTranslationMapPAE::UnmapPages(VMArea* area, addr_t base, size_t size,
bool updatePageQueue)
{
// TODO: Implement!
panic("unsupported");
// TODO: Implement for real!
X86VMTranslationMap::UnmapPages(area, base, size, updatePageQueue);
}
@ -105,18 +365,59 @@ void
X86VMTranslationMapPAE::UnmapArea(VMArea* area, bool deletingAddressSpace,
bool ignoreTopCachePageFlags)
{
// TODO: Implement!
panic("unsupported");
// TODO: Implement for real!
X86VMTranslationMap::UnmapArea(area, deletingAddressSpace,
ignoreTopCachePageFlags);
}
status_t
X86VMTranslationMapPAE::Query(addr_t va, phys_addr_t *_physical,
uint32 *_flags)
X86VMTranslationMapPAE::Query(addr_t virtualAddress,
phys_addr_t* _physicalAddress, uint32* _flags)
{
// TODO: Implement!
panic("unsupported");
return B_UNSUPPORTED;
// default the flags to not present
*_flags = 0;
*_physicalAddress = 0;
// get the page directory entry
pae_page_directory_entry* pageDirEntry
= X86PagingMethodPAE::PageDirEntryForAddress(
fPagingStructures->VirtualPageDirs(), virtualAddress);
if ((*pageDirEntry & X86_PAE_PDE_PRESENT) == 0) {
// no pagetable here
return B_OK;
}
// get the page table entry
struct thread* thread = thread_get_current_thread();
ThreadCPUPinner pinner(thread);
pae_page_table_entry* pageTable
= (pae_page_table_entry*)fPageMapper->GetPageTableAt(
*pageDirEntry & X86_PAE_PDE_ADDRESS_MASK);
pae_page_table_entry entry
= pageTable[virtualAddress / B_PAGE_SIZE % kPAEPageTableEntryCount];
pinner.Unlock();
*_physicalAddress = entry & X86_PAE_PTE_ADDRESS_MASK;
// translate the page state flags
if ((entry & X86_PAE_PTE_USER) != 0) {
*_flags |= ((entry & X86_PAE_PTE_WRITABLE) != 0 ? B_WRITE_AREA : 0)
| B_READ_AREA;
}
*_flags |= ((entry & X86_PAE_PTE_WRITABLE) != 0 ? B_KERNEL_WRITE_AREA : 0)
| B_KERNEL_READ_AREA
| ((entry & X86_PAE_PTE_DIRTY) != 0 ? PAGE_MODIFIED : 0)
| ((entry & X86_PAE_PTE_ACCESSED) != 0 ? PAGE_ACCESSED : 0)
| ((entry & X86_PAE_PTE_PRESENT) != 0 ? PAGE_PRESENT : 0);
TRACE("X86VMTranslationMapPAE::Query(%#" B_PRIxADDR ") -> %#"
B_PRIxPHYSADDR ":\n", *_physicalAddress, virtualAddress);
return B_OK;
}
@ -125,7 +426,7 @@ X86VMTranslationMapPAE::QueryInterrupt(addr_t va, phys_addr_t *_physical,
uint32 *_flags)
{
// TODO: Implement!
panic("unsupported");
panic("X86VMTranslationMapPAE::QueryInterrupt(): not implemented");
return B_UNSUPPORTED;
}
@ -134,18 +435,116 @@ status_t
X86VMTranslationMapPAE::Protect(addr_t start, addr_t end, uint32 attributes,
uint32 memoryType)
{
// TODO: Implement!
panic("unsupported");
return B_UNSUPPORTED;
start = ROUNDDOWN(start, B_PAGE_SIZE);
if (start >= end)
return B_OK;
TRACE("X86VMTranslationMapPAE::Protect(): %#" B_PRIxADDR " - %#" B_PRIxADDR
", attributes: %#" B_PRIx32 "\n", start, end, attributes);
// compute protection flags
uint64 newProtectionFlags = 0;
if ((attributes & B_USER_PROTECTION) != 0) {
newProtectionFlags = X86_PAE_PTE_USER;
if ((attributes & B_WRITE_AREA) != 0)
newProtectionFlags |= X86_PAE_PTE_WRITABLE;
} else if ((attributes & B_KERNEL_WRITE_AREA) != 0)
newProtectionFlags = X86_PAE_PTE_WRITABLE;
do {
pae_page_directory_entry* pageDirEntry
= X86PagingMethodPAE::PageDirEntryForAddress(
fPagingStructures->VirtualPageDirs(), start);
if ((*pageDirEntry & X86_PAE_PDE_PRESENT) == 0) {
// no page table here, move the start up to access the next page
// table
start = ROUNDUP(start + 1, kPAEPageTableRange);
continue;
}
struct thread* thread = thread_get_current_thread();
ThreadCPUPinner pinner(thread);
pae_page_table_entry* pageTable
= (pae_page_table_entry*)fPageMapper->GetPageTableAt(
*pageDirEntry & X86_PAE_PDE_ADDRESS_MASK);
uint32 index = start / B_PAGE_SIZE % kPAEPageTableEntryCount;
for (; index < kPAEPageTableEntryCount && start < end;
index++, start += B_PAGE_SIZE) {
pae_page_table_entry entry = pageTable[index];
if ((pageTable[index] & X86_PAE_PTE_PRESENT) == 0) {
// page mapping not valid
continue;
}
TRACE("X86VMTranslationMapPAE::Protect(): protect page %#"
B_PRIxADDR "\n", start);
// set the new protection flags -- we want to do that atomically,
// without changing the accessed or dirty flag
pae_page_table_entry oldEntry;
while (true) {
oldEntry = X86PagingMethodPAE::TestAndSetPageTableEntry(
&pageTable[index],
(entry & ~(X86_PAE_PTE_PROTECTION_MASK
| X86_PAE_PTE_MEMORY_TYPE_MASK))
| newProtectionFlags
| X86PagingMethodPAE::MemoryTypeToPageTableEntryFlags(
memoryType),
entry);
if (oldEntry == entry)
break;
entry = oldEntry;
}
if ((oldEntry & X86_PAE_PTE_ACCESSED) != 0) {
// Note, that we only need to invalidate the address, if the
// accessed flag was set, since only then the entry could have been
// in any TLB.
InvalidatePage(start);
}
}
pinner.Unlock();
} while (start != 0 && start < end);
return B_OK;
}
status_t
X86VMTranslationMapPAE::ClearFlags(addr_t va, uint32 flags)
X86VMTranslationMapPAE::ClearFlags(addr_t address, uint32 flags)
{
// TODO: Implement!
panic("unsupported");
return B_UNSUPPORTED;
pae_page_directory_entry* pageDirEntry
= X86PagingMethodPAE::PageDirEntryForAddress(
fPagingStructures->VirtualPageDirs(), address);
if ((*pageDirEntry & X86_PAE_PDE_PRESENT) == 0) {
// no pagetable here
return B_OK;
}
uint64 flagsToClear = ((flags & PAGE_MODIFIED) ? X86_PAE_PTE_DIRTY : 0)
| ((flags & PAGE_ACCESSED) ? X86_PAE_PTE_ACCESSED : 0);
struct thread* thread = thread_get_current_thread();
ThreadCPUPinner pinner(thread);
pae_page_table_entry* entry
= (pae_page_table_entry*)fPageMapper->GetPageTableAt(
*pageDirEntry & X86_PAE_PDE_ADDRESS_MASK)
+ address / B_PAGE_SIZE % kPAEPageTableEntryCount;
// clear out the flags we've been requested to clear
pae_page_table_entry oldEntry
= X86PagingMethodPAE::ClearPageTableEntryFlags(entry, flagsToClear);
pinner.Unlock();
if ((oldEntry & flagsToClear) != 0)
InvalidatePage(address);
return B_OK;
}
@ -153,8 +552,118 @@ bool
X86VMTranslationMapPAE::ClearAccessedAndModified(VMArea* area, addr_t address,
bool unmapIfUnaccessed, bool& _modified)
{
// TODO: Implement!
panic("unsupported");
ASSERT(address % B_PAGE_SIZE == 0);
TRACE("X86VMTranslationMap32Bit::ClearAccessedAndModified(%#" B_PRIxADDR
")\n", address);
pae_page_directory_entry* pageDirEntry
= X86PagingMethodPAE::PageDirEntryForAddress(
fPagingStructures->VirtualPageDirs(), address);
RecursiveLocker locker(fLock);
if ((*pageDirEntry & X86_PAE_PDE_PRESENT) == 0)
return false;
ThreadCPUPinner pinner(thread_get_current_thread());
pae_page_table_entry* entry
= (pae_page_table_entry*)fPageMapper->GetPageTableAt(
*pageDirEntry & X86_PAE_PDE_ADDRESS_MASK)
+ address / B_PAGE_SIZE % kPAEPageTableEntryCount;
// perform the deed
pae_page_table_entry oldEntry;
if (unmapIfUnaccessed) {
while (true) {
oldEntry = *entry;
if ((oldEntry & X86_PAE_PTE_PRESENT) == 0) {
// page mapping not valid
return false;
}
if (oldEntry & X86_PAE_PTE_ACCESSED) {
// page was accessed -- just clear the flags
oldEntry = X86PagingMethodPAE::ClearPageTableEntryFlags(entry,
X86_PAE_PTE_ACCESSED | X86_PAE_PTE_DIRTY);
break;
}
// page hasn't been accessed -- unmap it
if (X86PagingMethodPAE::TestAndSetPageTableEntry(entry, 0, oldEntry)
== oldEntry) {
break;
}
// something changed -- check again
}
} else {
oldEntry = X86PagingMethodPAE::ClearPageTableEntryFlags(entry,
X86_PAE_PTE_ACCESSED | X86_PAE_PTE_DIRTY);
}
pinner.Unlock();
_modified = (oldEntry & X86_PAE_PTE_DIRTY) != 0;
if ((oldEntry & X86_PAE_PTE_ACCESSED) != 0) {
// Note, that we only need to invalidate the address, if the
// accessed flags was set, since only then the entry could have been
// in any TLB.
InvalidatePage(address);
Flush();
return true;
}
if (!unmapIfUnaccessed)
return false;
// We have unmapped the address. Do the "high level" stuff.
fMapCount--;
if (area->cache_type == CACHE_TYPE_DEVICE)
return false;
// get the page
vm_page* page = vm_lookup_page(
(oldEntry & X86_PAE_PTE_ADDRESS_MASK) / B_PAGE_SIZE);
ASSERT(page != NULL);
// TODO: Here comes a lot of paging method and even architecture independent
// code. Refactor!
// remove the mapping object/decrement the wired_count of the page
vm_page_mapping* mapping = NULL;
if (area->wiring == B_NO_LOCK) {
vm_page_mappings::Iterator iterator = page->mappings.GetIterator();
while ((mapping = iterator.Next()) != NULL) {
if (mapping->area == area) {
area->mappings.Remove(mapping);
page->mappings.Remove(mapping);
break;
}
}
ASSERT(mapping != NULL);
} else
page->wired_count--;
locker.Unlock();
if (page->wired_count == 0 && page->mappings.IsEmpty())
atomic_add(&gMappedPagesCount, -1);
if (mapping != NULL) {
object_cache_free(gPageMappingsObjectCache, mapping,
CACHE_DONT_WAIT_FOR_MEMORY | CACHE_DONT_LOCK_KERNEL_SPACE);
// Since this is called by the page daemon, we never want to lock
// the kernel address space.
}
return false;
}