cpuidle: implement acpi cpuidle driver

we prefer intel native cpuidle driver on newer intel platforms --
sandybridge or later. we'll fall back to acpi cpuidle driver for other
platforms.

Signed-off-by: Fredrik Holmqvist <fredrik.holmqvist@gmail.com>
This commit is contained in:
Yongcong Du 2012-08-19 19:30:23 +08:00 committed by Fredrik Holmqvist
parent 0a0af8957e
commit 0138a95eba

View File

@ -19,27 +19,433 @@
#include <string.h>
#include <ACPI.h>
#include <cpuidle.h>
#include "x86_cpuidle.h"
#define ACPI_PDC_REVID 0x1
#define ACPI_OSC_QUERY (1 << 0)
#define ACPI_PDC_P_FFH (1 << 0)
#define ACPI_PDC_C_C1_HALT (1 << 1)
#define ACPI_PDC_T_FFH (1 << 2)
#define ACPI_PDC_SMP_C1PT (1 << 3)
#define ACPI_PDC_SMP_C2C3 (1 << 4)
#define ACPI_PDC_SMP_P_SW (1 << 5)
#define ACPI_PDC_SMP_C_SW (1 << 6)
#define ACPI_PDC_SMP_T_SW (1 << 7)
#define ACPI_PDC_C_C1_FFH (1 << 8)
#define ACPI_PDC_C_C2C3_FFH (1 << 9)
#define ACPI_PDC_P_HWCOORD (1 << 11)
// Bus Master check required
#define ACPI_PDC_GAS_BM (1 << 1)
#define ACPI_CSTATE_HALT 0x1
#define ACPI_CSTATE_SYSIO 0x2
#define ACPI_CSTATE_FFH 0x3
// Bus Master Check
#define ACPI_FLAG_C_BM (1 << 0)
// Bus master arbitration
#define ACPI_FLAG_C_ARB (1 << 1)
// Copied from acpica's actypes.h, where's the best place to put?
#define ACPI_BITREG_BUS_MASTER_STATUS 0x01
#define ACPI_BITREG_BUS_MASTER_RLD 0x0F
#define ACPI_BITREG_ARB_DISABLE 0x13
#define ACPI_STATE_C0 (uint8) 0
#define ACPI_STATE_C1 (uint8) 1
#define ACPI_STATE_C2 (uint8) 2
#define ACPI_STATE_C3 (uint8) 3
#define ACPI_C_STATES_MAX ACPI_STATE_C3
#define ACPI_C_STATE_COUNT 4
#define ACPI_CPUIDLE_MODULE_NAME "drivers/power/x86_cpuidle/acpi/driver_v1"
struct acpicpu_reg {
uint8 reg_desc;
uint16 reg_reslen;
uint8 reg_spaceid;
uint8 reg_bitwidth;
uint8 reg_bitoffset;
uint8 reg_accesssize;
uint64 reg_addr;
} __attribute__((packed));
struct acpi_cpuidle_driver_info {
device_node *node;
acpi_device_module_info *acpi;
acpi_device acpi_cookie;
uint32 flags;
};
struct acpi_cstate_info {
uint32 address;
uint8 skip_bm_sts;
uint8 method;
uint8 type;
};
static device_manager_info *sDeviceManager;
static acpi_cpuidle_driver_info *acpi_processor[B_MAX_CPU_COUNT];
static CpuidleModuleInfo *sIdle;
static CpuidleDevice sAcpiDevice;
static acpi_module_info *sAcpi;
static status_t
acpi_eval_pdc(acpi_cpuidle_driver_info *device)
{
acpi_objects arg;
acpi_object_type obj;
uint32 cap[3];
arg.count = 1;
arg.pointer = &obj;
cap[0] = 1;
cap[1] = 1;
cap[2] = ACPI_PDC_C_C1_HALT | ACPI_PDC_SMP_C1PT | ACPI_PDC_SMP_C2C3;
cap[2] |= ACPI_PDC_SMP_P_SW | ACPI_PDC_SMP_C_SW | ACPI_PDC_SMP_T_SW;
cap[2] |= ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH;
cap[2] |= ACPI_PDC_SMP_T_SW | ACPI_PDC_P_FFH | ACPI_PDC_P_HWCOORD | ACPI_PDC_T_FFH;
obj.object_type = ACPI_TYPE_BUFFER;
obj.data.buffer.length = sizeof(cap);
obj.data.buffer.buffer = cap;
status_t status = device->acpi->evaluate_method(device->acpi_cookie, "_PDC", &arg, NULL);
return status;
}
static status_t
acpi_eval_osc(acpi_cpuidle_driver_info *device)
{
// guid for intel platform
dprintf("%s@%p\n", __func__, device->acpi_cookie);
static uint8 uuid[] = {
0x16, 0xA6, 0x77, 0x40, 0x0C, 0x29, 0xBE, 0x47,
0x9E, 0xBD, 0xD8, 0x70, 0x58, 0x71, 0x39, 0x53
};
uint32 cap[2];
cap[0] = 0;
cap[1] = ACPI_PDC_C_C1_HALT | ACPI_PDC_SMP_C1PT | ACPI_PDC_SMP_C2C3;
cap[1] |= ACPI_PDC_SMP_P_SW | ACPI_PDC_SMP_C_SW | ACPI_PDC_SMP_T_SW;
cap[1] |= ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH;
cap[1] |= ACPI_PDC_SMP_T_SW | ACPI_PDC_P_FFH | ACPI_PDC_P_HWCOORD | ACPI_PDC_T_FFH;
acpi_objects arg;
acpi_object_type obj[4];
arg.count = 4;
arg.pointer = obj;
obj[0].object_type = ACPI_TYPE_BUFFER;
obj[0].data.buffer.length = sizeof(uuid);
obj[0].data.buffer.buffer = uuid;
obj[1].object_type = ACPI_TYPE_INTEGER;
obj[1].data.integer = ACPI_PDC_REVID;
obj[2].object_type = ACPI_TYPE_INTEGER;
obj[2].data.integer = sizeof(cap)/sizeof(cap[0]);
obj[3].object_type = ACPI_TYPE_BUFFER;
obj[3].data.buffer.length = sizeof(cap);
obj[3].data.buffer.buffer = (void *)cap;
acpi_data buf;
buf.pointer = NULL;
buf.length = ACPI_ALLOCATE_LOCAL_BUFFER;
status_t status = device->acpi->evaluate_method(device->acpi_cookie, "_OSC", &arg, &buf);
if (status != B_OK)
return status;
acpi_object_type *osc = (acpi_object_type *)buf.pointer;
if (osc->object_type != ACPI_TYPE_BUFFER)
return B_BAD_TYPE;
if (osc->data.buffer.length != sizeof(cap))
return B_BUFFER_OVERFLOW;
return status;
}
static inline bool
acpi_cstate_bm_check(void)
{
uint32 val;
sAcpi->read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &val);
if (!val)
return false;
sAcpi->write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
return true;
}
static inline void
acpi_cstate_ffh_enter(CpuidleCstate *cState)
{
cpu_ent *cpu = get_cpu_struct();
if (cpu->invoke_scheduler)
return;
x86_monitor((void *)&cpu->invoke_scheduler, 0, 0);
if (!cpu->invoke_scheduler)
x86_mwait((unsigned long)cState->pData, 1);
}
static inline void
acpi_cstate_halt(void)
{
cpu_ent *cpu = get_cpu_struct();
if (cpu->invoke_scheduler)
return;
asm("hlt");
}
static void
acpi_cstate_enter(CpuidleCstate *cState)
{
acpi_cstate_info *ci = (acpi_cstate_info *)cState->pData;
if (ci->method == ACPI_CSTATE_FFH)
acpi_cstate_ffh_enter(cState);
else if (ci->method == ACPI_CSTATE_SYSIO)
in8(ci->address);
else
acpi_cstate_halt();
}
static int32
acpi_cstate_idle(int32 state, CpuidleDevice *device)
{
CpuidleCstate *cState = &device->cStates[state];
acpi_cstate_info *ci = (acpi_cstate_info *)cState->pData;
if (!ci->skip_bm_sts) {
// we fall back to C1 if there's bus master activity
if (acpi_cstate_bm_check())
state = 1;
}
if (ci->type != ACPI_STATE_C3)
acpi_cstate_enter(cState);
// set BM_RLD for Bus Master to activity to wake the system from C3
// With Newer chipsets BM_RLD is a NOP Since DMA is automatically handled
// during C3 State
acpi_cpuidle_driver_info *pi = acpi_processor[smp_get_current_cpu()];
if (pi->flags & ACPI_FLAG_C_BM)
sAcpi->write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
// disable bus master arbitration during C3
if (pi->flags & ACPI_FLAG_C_ARB)
sAcpi->write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
acpi_cstate_enter(cState);
// clear BM_RLD and re-enable the arbiter
if (pi->flags & ACPI_FLAG_C_BM)
sAcpi->write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
if (pi->flags & ACPI_FLAG_C_ARB)
sAcpi->write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
return state;
}
static status_t
acpi_cstate_add(acpi_object_type *object, CpuidleCstate *cState)
{
acpi_cstate_info *ci = (acpi_cstate_info *)malloc(sizeof(acpi_cstate_info));
if (!ci)
return B_NO_MEMORY;
if (object->object_type != ACPI_TYPE_PACKAGE) {
dprintf("invalid _CST object\n");
return B_ERROR;
}
if (object->data.package.count != 4) {
dprintf("invalid _CST number\n");
return B_ERROR;
}
// type
acpi_object_type * pointer = &object->data.package.objects[1];
if (pointer->object_type != ACPI_TYPE_INTEGER) {
dprintf("invalid _CST elem type\n");
return B_ERROR;
}
uint32 n = pointer->data.integer;
if (n < 1 || n > 3) {
dprintf("invalid _CST elem value\n");
return B_ERROR;
}
ci->type = n;
dprintf("C%" B_PRId32 "\n", n);
snprintf(cState->name, sizeof(cState->name), "C%"B_PRId32, n);
// Latency
pointer = &object->data.package.objects[2];
if (pointer->object_type != ACPI_TYPE_INTEGER) {
dprintf("invalid _CST elem type\n");
return B_ERROR;
}
n = pointer->data.integer;
cState->latency = n;
dprintf("Latency: %" B_PRId32 "\n", n);
// power
pointer = &object->data.package.objects[3];
if (pointer->object_type != ACPI_TYPE_INTEGER) {
dprintf("invalid _CST elem type\n");
return B_ERROR;
}
n = pointer->data.integer;
dprintf("power: %" B_PRId32 "\n", n);
// register
pointer = &object->data.package.objects[0];
if (pointer->object_type != ACPI_TYPE_BUFFER) {
dprintf("invalid _CST elem type\n");
return B_ERROR;
}
if (pointer->data.buffer.length < 15) {
dprintf("invalid _CST elem length\n");
return B_ERROR;
}
struct acpicpu_reg *reg = (struct acpicpu_reg *)pointer->data.buffer.buffer;
switch (reg->reg_spaceid) {
case ACPI_ADR_SPACE_SYSTEM_IO:
dprintf("IO method\n");
if (reg->reg_addr == 0) {
dprintf("illegal address\n");
return B_ERROR;
}
if (reg->reg_bitwidth != 8) {
dprintf("invalid source length\n");
return B_ERROR;
}
ci->address = reg->reg_addr;
ci->method = ACPI_CSTATE_SYSIO;
break;
case ACPI_ADR_SPACE_FIXED_HARDWARE:
{
dprintf("FFH method\n");
ci->method = ACPI_CSTATE_FFH;
ci->address = reg->reg_addr;
// skip checking BM_STS if ACPI_PDC_GAS_BM is cleared
cpu_ent *cpu = get_cpu_struct();
if ((cpu->arch.vendor == VENDOR_INTEL) &&
!(reg->reg_accesssize & ACPI_PDC_GAS_BM))
ci->skip_bm_sts = 1;
break;
}
default:
dprintf("invalid spaceid %" B_PRId8 "\n", reg->reg_spaceid);
break;
}
cState->pData = ci;
cState->EnterIdle = acpi_cstate_idle;
return B_OK;
}
static void
acpi_cstate_quirks(acpi_cpuidle_driver_info *device)
{
cpu_ent *cpu = get_cpu_struct();
// Calculated Model Value: M = (Extended Model << 4) + Model
uint32 model = (cpu->arch.extended_model << 4) + cpu->arch.model;
// On all recent Intel platforms, ARB_DIS is not necessary
if (cpu->arch.vendor != VENDOR_INTEL)
return;
if (cpu->arch.family > 0xf || (cpu->arch.family == 6 && model >= 0xf))
device->flags &= ~ACPI_FLAG_C_ARB;
}
static status_t
acpi_cpuidle_setup(acpi_cpuidle_driver_info *device)
{
// _PDC is deprecated in the ACPI 3.0, we will try _OSC firstly
// and fall back to _PDC if _OSC fail
status_t status = acpi_eval_osc(device);
if (status != B_OK)
status = acpi_eval_pdc(device);
if (status != B_OK) {
dprintf("faile to eval _OSC and _PDC\n");
return status;
}
acpi_data buffer;
buffer.pointer = NULL;
buffer.length = ACPI_ALLOCATE_BUFFER;
dprintf("evaluate _CST @%p\n", device->acpi_cookie);
status = device->acpi->evaluate_method(device->acpi_cookie, "_CST", NULL,
&buffer);
if (status != B_OK) {
dprintf("failed to get _CST\n");
return B_IO_ERROR;
}
acpi_object_type *object = (acpi_object_type *)buffer.pointer;
if (object->object_type != ACPI_TYPE_PACKAGE)
dprintf("invalid _CST type\n");
if (object->data.package.count < 2)
dprintf("invalid _CST count\n");
acpi_object_type *pointer = object->data.package.objects;
if (pointer[0].object_type != ACPI_TYPE_INTEGER)
dprintf("invalid _CST type 2\n");
uint32 n = pointer[0].data.integer;
if (n != object->data.package.count - 1)
dprintf("invalid _CST count 2\n");
if (n > 8)
dprintf("_CST has too many states\n");
dprintf("cpuidle found %" B_PRId32 " cstates\n", n);
uint32 count = 1;
for (uint32 i = 1; i <= n; i++) {
pointer = &object->data.package.objects[i];
if (acpi_cstate_add(pointer, &sAcpiDevice.cStates[count]) == B_OK)
++count;
}
sAcpiDevice.cStateCount = count;
free(buffer.pointer);
// TODO we assume BM is a must and ARB_DIS is always available
device->flags |= ACPI_FLAG_C_ARB | ACPI_FLAG_C_BM;
acpi_cstate_quirks(device);
return B_OK;
}
static status_t
acpi_cpuidle_init(void)
{
dprintf("acpi_cpuidle_init\n");
if (get_module(B_CPUIDLE_MODULE_NAME, (module_info**)&sIdle) != B_OK)
return B_ERROR;
if (get_module(B_ACPI_MODULE_NAME, (module_info**)&sAcpi) != B_OK)
return B_ERROR;
return B_ERROR;
for (int32 i = 0; i < smp_get_num_cpus(); i++)
if (acpi_cpuidle_setup(acpi_processor[i]) != B_OK)
return B_ERROR;
status_t status = sIdle->AddDevice(&sAcpiDevice);
if (status == B_OK)
dprintf("using acpi idle\n");
else
put_module(B_CPUIDLE_MODULE_NAME);
return status;
}
@ -147,6 +553,9 @@ static void
acpi_cpuidle_uninit_driver(void *driverCookie)
{
dprintf("acpi_cpuidle_uninit_driver");
put_module(B_CPUIDLE_MODULE_NAME);
if (sAcpi)
put_module(B_ACPI_MODULE_NAME);
acpi_cpuidle_driver_info *device = (acpi_cpuidle_driver_info *)driverCookie;
free(device);
}