haiku/src/system/runtime_loader/heap.cpp

332 lines
6.5 KiB
C++
Raw Normal View History

/*
* Copyright 2003-2006, Axel Dörfler, axeld@pinc-software.de. All rights reserved.
* Distributed under the terms of the MIT License.
*/
#include "runtime_loader_private.h"
#include <syscalls.h>
#include <util/kernel_cpp.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
static const size_t kInitialHeapSize = 65536;
/* This is a very simple malloc()/free() implementation - it only
* manages a free list.
* After heap_init() is called, all free memory is contained in one
* big chunk, the only entry in the free link list (which is a single
* linked list).
* When memory is allocated, the smallest free chunk that contains
* the requested size is split (or taken as a whole if it can't be
* splitted anymore), and it's lower half will be removed from the
* free list.
* The free list is ordered by size, starting with the smallest
* free chunk available. When a chunk is freed, it will be joint
* with its predecessor or successor, if possible.
* To ease list handling, the list anchor itself is a free chunk with
* size 0 that can't be allocated.
*/
struct free_chunk {
uint32 size;
free_chunk *next;
uint32 Size() const;
free_chunk *Split(uint32 splitSize);
bool IsTouching(free_chunk *link);
free_chunk *Join(free_chunk *link);
void Remove(free_chunk *previous = NULL);
void Enqueue();
void *AllocatedAddress() const;
static free_chunk *SetToAllocated(void *allocated);
};
static uint32 sAvailable;
static free_chunk sFreeAnchor;
/** Returns the amount of bytes that can be allocated
* in this chunk.
*/
uint32
free_chunk::Size() const
{
return size - sizeof(uint32);
}
/** Splits the upper half at the requested location
* and returns it.
*/
free_chunk *
free_chunk::Split(uint32 splitSize)
{
free_chunk *chunk = (free_chunk *)((uint8 *)this + sizeof(uint32) + splitSize);
chunk->size = size - splitSize - sizeof(uint32);
chunk->next = next;
size = splitSize + sizeof(uint32);
return chunk;
}
/** Checks if the specified chunk touches this chunk, so
* that they could be joined.
*/
bool
free_chunk::IsTouching(free_chunk *chunk)
{
return chunk
&& (((uint8 *)this + size == (uint8 *)chunk)
|| (uint8 *)chunk + chunk->size == (uint8 *)this);
}
/** Joins the chunk to this chunk and returns the pointer
* to the new chunk - which will either be one of the
* two chunks.
* Note, the chunks must be joinable, or else this method
* doesn't work correctly. Use free_chunk::IsTouching()
* to check if this method can be applied.
*/
free_chunk *
free_chunk::Join(free_chunk *chunk)
{
if (chunk < this) {
chunk->size += size;
chunk->next = next;
return chunk;
}
size += chunk->size;
next = chunk->next;
return this;
}
void
free_chunk::Remove(free_chunk *previous)
{
if (previous == NULL) {
// find the previous chunk in the list
free_chunk *chunk = sFreeAnchor.next;
while (chunk != NULL && chunk != this) {
previous = chunk;
chunk = chunk->next;
}
if (chunk == NULL) {
printf("runtime_loader: try to remove chunk that's not in list");
return;
}
}
previous->next = this->next;
this->next = NULL;
}
void
free_chunk::Enqueue()
{
free_chunk *chunk = sFreeAnchor.next, *last = &sFreeAnchor;
while (chunk && chunk->Size() < size) {
last = chunk;
chunk = chunk->next;
}
this->next = chunk;
last->next = this;
}
void *
free_chunk::AllocatedAddress() const
{
return (void *)&next;
}
free_chunk *
free_chunk::SetToAllocated(void *allocated)
{
return (free_chunk *)((uint8 *)allocated - sizeof(uint32));
}
// #pragma mark - private functions
static status_t
add_area(size_t size)
{
void *base;
area_id area = _kern_create_area("rld heap", &base, B_ANY_ADDRESS, size,
B_NO_LOCK, B_READ_AREA | B_WRITE_AREA);
if (area < B_OK)
return area;
sAvailable += size - sizeof(uint32);
// declare the whole heap as one chunk, and add it
// to the free list
free_chunk *chunk = (free_chunk *)base;
chunk->size = size;
chunk->next = sFreeAnchor.next;
sFreeAnchor.next = chunk;
return B_OK;
}
static status_t
grow_heap(uint32 bytes)
{
// align the area size to an 32768 bytes boundary
bytes = (bytes + 32767) & ~32767;
return add_area(bytes);
}
// #pragma mark - public API
status_t
heap_init(void)
{
status_t status = add_area(kInitialHeapSize);
if (status < B_OK)
return status;
sFreeAnchor.size = 0;
return B_OK;
}
#ifdef HEAP_TEST
void
dump_chunks(void)
{
free_chunk *chunk = sFreeAnchor.next, *last = &sFreeAnchor;
while (chunk != NULL) {
last = chunk;
printf("\t%p: chunk size = %ld, end = %p, next = %p\n", chunk, chunk->size, (uint8 *)chunk + chunk->size, chunk->next);
chunk = chunk->next;
}
}
#endif
void *
malloc(size_t size)
{
if (size == 0)
return NULL;
// align the size requirement to an 8 bytes boundary
size = (size + 7) & ~7;
restart:
if (size > sAvailable) {
// try to enlarge heap
if (grow_heap(size) < B_OK)
return NULL;
}
free_chunk *chunk = sFreeAnchor.next, *last = &sFreeAnchor;
while (chunk && chunk->Size() < size) {
last = chunk;
chunk = chunk->next;
}
if (chunk == NULL) {
// could not find a free chunk as large as needed
if (grow_heap(size) < B_OK)
return NULL;
goto restart;
}
if (chunk->Size() > size + sizeof(free_chunk) + 4) {
// if this chunk is bigger than the requested size,
// we split it to form two chunks (with a minimal
// size of 4 allocatable bytes).
free_chunk *freeChunk = chunk->Split(size);
last->next = freeChunk;
// re-enqueue the free chunk at the correct position
freeChunk->Remove(last);
freeChunk->Enqueue();
} else {
// remove the chunk from the free list
last->next = chunk->next;
}
sAvailable -= size + sizeof(uint32);
return chunk->AllocatedAddress();
}
void
free(void *allocated)
{
if (allocated == NULL)
return;
free_chunk *freedChunk = free_chunk::SetToAllocated(allocated);
sAvailable += freedChunk->size;
// try to join the new free chunk with an existing one
// it may be joined with up to two chunks
free_chunk *chunk = sFreeAnchor.next, *last = &sFreeAnchor;
int32 joinCount = 0;
while (chunk) {
if (chunk->IsTouching(freedChunk)) {
// almost "insert" it into the list before joining
// because the next pointer is inherited by the chunk
freedChunk->next = chunk->next;
freedChunk = chunk->Join(freedChunk);
// remove the joined chunk from the list
last->next = freedChunk->next;
chunk = last;
if (++joinCount == 2)
break;
}
last = chunk;
chunk = chunk->next;
}
// enqueue the link at the right position; the
// free link queue is ordered by size
freedChunk->Enqueue();
}