haiku/src/libs/mapm/mapm_lg3.c

227 lines
6.0 KiB
C
Raw Normal View History

/*
* M_APM - mapm_lg3.c
*
* Copyright (C) 2003 - 2007 Michael C. Ring
*
* Permission to use, copy, and distribute this software and its
* documentation for any purpose with or without fee is hereby granted,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation.
*
* Permission to modify the software is granted. Permission to distribute
* the modified code is granted. Modifications are to be distributed by
* using the file 'license.txt' as a template to modify the file header.
* 'license.txt' is available in the official MAPM distribution.
*
* This software is provided "as is" without express or implied warranty.
*/
/*
* $Id: mapm_lg3.c,v 1.7 2007/12/03 01:42:59 mike Exp $
*
* This file contains the function to compute log(2), log(10),
* and 1/log(10) to the desired precision using an AGM algorithm.
*
* $Log: mapm_lg3.c,v $
* Revision 1.7 2007/12/03 01:42:59 mike
* Update license
*
* Revision 1.6 2003/12/09 01:25:06 mike
* actually compute the first term of the AGM iteration instead
* of assuming the inputs a=1 and b=10^-N.
*
* Revision 1.5 2003/12/04 03:19:16 mike
* rearrange logic in AGM to be more straight-forward
*
* Revision 1.4 2003/05/01 22:04:37 mike
* rearrange some code
*
* Revision 1.3 2003/05/01 21:58:31 mike
* remove math.h
*
* Revision 1.2 2003/03/30 22:14:58 mike
* add comments
*
* Revision 1.1 2003/03/30 21:18:04 mike
* Initial revision
*/
#include "m_apm_lc.h"
/*
* using the 'R' function (defined below) for 'N' decimal places :
*
*
* -N -N
* log(2) = R(1, 0.5 * 10 ) - R(1, 10 )
*
*
* -N -N
* log(10) = R(1, 0.1 * 10 ) - R(1, 10 )
*
*
* In general:
*
* -N -N
* log(x) = R(1, 10 / x) - R(1, 10 )
*
*
* I found this on a web site which went into considerable detail
* on the history of log(2). This formula is algebraically identical
* to the formula specified in J. Borwein and P. Borwein's book
* "PI and the AGM". (reference algorithm 7.2)
*/
/****************************************************************************/
/*
* check if our local copy of log(2) & log(10) is precise
* enough for our purpose. if not, calculate them so it's
* as precise as desired, accurate to at least 'places'.
*/
void M_check_log_places(int places)
{
M_APM tmp6, tmp7, tmp8, tmp9;
int dplaces;
dplaces = places + 4;
if (dplaces > MM_lc_log_digits)
{
MM_lc_log_digits = dplaces + 4;
tmp6 = M_get_stack_var();
tmp7 = M_get_stack_var();
tmp8 = M_get_stack_var();
tmp9 = M_get_stack_var();
dplaces += 6 + (int)log10((double)places);
m_apm_copy(tmp7, MM_One);
tmp7->m_apm_exponent = -places;
M_log_AGM_R_func(tmp8, dplaces, MM_One, tmp7);
m_apm_multiply(tmp6, tmp7, MM_0_5);
M_log_AGM_R_func(tmp9, dplaces, MM_One, tmp6);
m_apm_subtract(MM_lc_log2, tmp9, tmp8); /* log(2) */
tmp7->m_apm_exponent -= 1; /* divide by 10 */
M_log_AGM_R_func(tmp9, dplaces, MM_One, tmp7);
m_apm_subtract(MM_lc_log10, tmp9, tmp8); /* log(10) */
m_apm_reciprocal(MM_lc_log10R, dplaces, MM_lc_log10); /* 1 / log(10) */
M_restore_stack(4);
}
}
/****************************************************************************/
/*
* define a notation for a function 'R' :
*
*
*
* 1
* R (a0, b0) = ------------------------------
*
* ----
* \
* \ n-1 2 2
* 1 - | 2 * (a - b )
* / n n
* /
* ----
* n >= 0
*
*
* where a, b are the classic AGM iteration :
*
*
* a = 0.5 * (a + b )
* n+1 n n
*
*
* b = sqrt(a * b )
* n+1 n n
*
*
*
* define a variable 'c' for more efficient computation :
*
* 2 2 2
* c = 0.5 * (a - b ) , c = a - b
* n+1 n n n n n
*
*/
/****************************************************************************/
void M_log_AGM_R_func(M_APM rr, int places, M_APM aa, M_APM bb)
{
M_APM tmp1, tmp2, tmp3, tmp4, tmpC2, sum, pow_2, tmpA0, tmpB0;
int tolerance, dplaces;
tmpA0 = M_get_stack_var();
tmpB0 = M_get_stack_var();
tmpC2 = M_get_stack_var();
tmp1 = M_get_stack_var();
tmp2 = M_get_stack_var();
tmp3 = M_get_stack_var();
tmp4 = M_get_stack_var();
sum = M_get_stack_var();
pow_2 = M_get_stack_var();
tolerance = places + 8;
dplaces = places + 16;
m_apm_copy(tmpA0, aa);
m_apm_copy(tmpB0, bb);
m_apm_copy(pow_2, MM_0_5);
m_apm_multiply(tmp1, aa, aa); /* 0.5 * [ a ^ 2 - b ^ 2 ] */
m_apm_multiply(tmp2, bb, bb);
m_apm_subtract(tmp3, tmp1, tmp2);
m_apm_multiply(sum, MM_0_5, tmp3);
while (TRUE)
{
m_apm_subtract(tmp1, tmpA0, tmpB0); /* C n+1 = 0.5 * [ An - Bn ] */
m_apm_multiply(tmp4, MM_0_5, tmp1); /* C n+1 */
m_apm_multiply(tmpC2, tmp4, tmp4); /* C n+1 ^ 2 */
/* do the AGM */
m_apm_add(tmp1, tmpA0, tmpB0);
m_apm_multiply(tmp3, MM_0_5, tmp1);
m_apm_multiply(tmp2, tmpA0, tmpB0);
m_apm_sqrt(tmpB0, dplaces, tmp2);
m_apm_round(tmpA0, dplaces, tmp3);
/* end AGM */
m_apm_multiply(tmp2, MM_Two, pow_2);
m_apm_copy(pow_2, tmp2);
m_apm_multiply(tmp1, tmpC2, pow_2);
m_apm_add(tmp3, sum, tmp1);
if ((tmp1->m_apm_sign == 0) ||
((-2 * tmp1->m_apm_exponent) > tolerance))
break;
m_apm_round(sum, dplaces, tmp3);
}
m_apm_subtract(tmp4, MM_One, tmp3);
m_apm_reciprocal(rr, places, tmp4);
M_restore_stack(9);
}
/****************************************************************************/