haiku/src/kernel/core/module.c

1036 lines
24 KiB
C
Raw Normal View History

/* Module manager */
/*
** Copyright 2001, Thomas Kurschel. All rights reserved.
** Distributed under the terms of the NewOS License.
*/
#include <kernel.h>
#include <kmodule.h>
#include <lock.h>
#include <Errors.h>
#include <arch/cpu.h>
#include <debug.h>
#include <khash.h>
#include <kqueue.h>
#include <memheap.h>
#include <elf.h>
#include <stdio.h>
#include <string.h>
#include <sys/stat.h>
#include <ktypes.h>
static bool modules_disable_user_addons = false;
#define debug_level_flow 0
#define debug_level_error 1
#define debug_level_info 1
#define WAIT
#define WAIT_ERROR
#define MSG_PREFIX "MODULE -- "
#define FUNC_NAME MSG_PREFIX __FUNCTION__ ": "
#define SHOW_FLOW(seriousness, format, param...) \
do { if (debug_level_flow > seriousness ) { \
dprintf( "%s"##format, FUNC_NAME, param ); WAIT \
}} while( 0 )
#define SHOW_FLOW0(seriousness, format) \
do { if (debug_level_flow > seriousness ) { \
dprintf( "%s"##format, FUNC_NAME); WAIT \
}} while( 0 )
#define SHOW_ERROR(seriousness, format, param...) \
do { if (debug_level_error > seriousness ) { \
dprintf( "%s"##format, FUNC_NAME, param ); WAIT_ERROR \
}} while( 0 )
#define SHOW_ERROR0(seriousness, format) \
do { if (debug_level_error > seriousness ) { \
dprintf( "%s"##format, FUNC_NAME); WAIT_ERROR \
}} while( 0 )
#define SHOW_INFO(seriousness, format, param...) \
do { if (debug_level_info > seriousness ) { \
dprintf( "%s"##format, FUNC_NAME, param ); WAIT \
}} while( 0 )
#define SHOW_INFO0(seriousness, format) \
do { if (debug_level_info > seriousness ) { \
dprintf( "%s"##format, FUNC_NAME); WAIT \
}} while( 0 )
typedef enum {
MOD_QUERIED = 0,
MOD_LOADED,
MOD_INIT,
MOD_RDY,
MOD_UNINIT,
MOD_ERROR
} module_state;
/* This represents the actual loaded module. The module is loaded and
* may have more than one exported images,
* i.e. the module foo may actually have module_info structures for foo and bar
* To allow for this each module_info structure within the module loaded is represented
* by a loaded_module_info structure.
*/
typedef struct loaded_module {
struct loaded_module *next;
struct loaded_module *prev;
module_info **info; /* the module_info we use */
char *path; /* the full path for the module */
int ref_cnt; /* how many ref's to this file */
} loaded_module;
struct loaded_module loaded_modules;
/* This is used to keep a list of module and the file it's found
* in. It's used when we do searches to record that a module_info for
* a particular module is found in a particular file which covers us for
* the case where we have a single file exporting a number of modules.
*/
typedef struct module {
struct module *next;
struct module *prev;
struct loaded_module *module;
char *name;
char *file;
int ref_cnt;
module_info *ptr; /* will only be valid if ref_cnt > 0 */
int offset; /* this is the offset in the headers */
int state; /* state of module */
bool keep_loaded;
} module;
/* This is used to provide a list of modules we know about */
static struct module known_modules;
#define INC_MOD_REF_COUNT(x) \
x->ref_cnt++; \
x->module->ref_cnt++;
#define DEC_MOD_REF_COUNT(x) \
x->ref_cnt--; \
x->module->ref_cnt--;
typedef struct module_iterator {
char *prefix;
int base_path_id;
struct module_dir_iterator *base_dir;
struct module_dir_iterator *cur_dir;
int err;
int module_pos; /* This is used to keep track of which module_info
* within a module we're addressing. */
module_info **cur_header;
char *cur_path;
} module_iterator;
typedef struct module_dir_iterator {
struct module_dir_iterator *parent_dir;
struct module_dir_iterator *sub_dir;
char *name;
int file;
int hdr_prefix;
} module_dir_iterator;
/* XXX locking scheme: there is a global lock only; having several locks
* makes trouble if dependent modules get loaded concurrently ->
* they have to wait for each other, i.e. we need one lock per module;
* also we must detect circular references during init and not dead-lock
*/
static recursive_lock modules_lock;
/* These are the standard paths that we look on for mdoules to load.
* By default we only look on these plus the prefix, though we do search
* below the prefix.
* i.e. using media as the prefix will match
* /boot/user-addons/media
* /boot/addons/media
* /boot/addons/media/encoders
* but will NOT match
* /boot/addons/kernel/media
*/
const char *const module_paths[] = {
"/boot/user-addons",
"/boot/addons"
};
#define num_module_paths (sizeof( module_paths ) / sizeof( module_paths[0] ))
/* the hash tables we use */
new_hash_table *module_files = NULL;
new_hash_table *modules_list = NULL;
/* load_module_file
* Try to load the module file we've found into memory.
* This may fail if all the symbols can't be resolved.
* Returns 0 on success, -1 on failure.
*
* NB hdrs can be passed as a NULL if the modules ** header
* pointer isn't required.
*
* Returns
* NULL on failure
* pointer to modules symbol on success
*/
static module_info **
load_module_file(const char *path)
{
image_id file_image = elf_load_kspace(path, "");
loaded_module *lm;
if (file_image < 0 ) {
SHOW_FLOW( 3, "couldn't load image %s (%s)\n", path, strerror(file_image));
dprintf("load_module_file failed! returned %ld\n", file_image);
return NULL;
}
lm = (loaded_module*)kmalloc(sizeof(loaded_module));
if (!lm)
return NULL;
lm->info = (module_info**) elf_lookup_symbol(file_image, "modules");
if (!lm->info) {
dprintf("Failed to load %s due to lack of 'modules' symbol\n", path);
kfree(lm);
return NULL;
}
lm->path = (char*)kmalloc(strlen(path) + 1);
if (!lm->path) {
kfree(lm);
return NULL;
}
strcpy(lm->path, path);
lm->ref_cnt = 0;
recursive_lock_lock(&modules_lock);
insque(lm, &loaded_modules);
hash_set(module_files, path, strlen(path), lm);
recursive_lock_unlock(&modules_lock);
return lm->info;
}
static inline void
unload_module_file(const char *path)
{
loaded_module *themod;
dprintf("unload_mdoule_file: %s\n", path);
// themod = (loaded_module*)hash_get(module_files, path, strlen(path));
if ((themod = (loaded_module*)hash_get(module_files, path, strlen(path))) == NULL)
return;
if (themod->ref_cnt != 0) {
dprintf("Can't unload %s due to ref_cnt = %d\n", themod->path, themod->ref_cnt);
return;
}
recursive_lock_lock(&modules_lock);
remque(themod);
hash_set(module_files, path, strlen(path), NULL);
recursive_lock_unlock(&modules_lock);
elf_unload_kspace(themod->path);
kfree(themod);
}
/* simple_module_info()
* Extract the information from the module_info structure pointed at
* by mod and create the entries required for access to it's details.
*
* Returns
* -1 if error
* 0 if ok
*/
static int
simple_module_info(module_info *mod, const char *file, int offset)
{
module *m;
if (!mod->name)
return -1;
m = (module*)hash_get(modules_list, mod->name, strlen(mod->name));
if (m) {
dprintf("Duplicate module name (%s) detected...ignoring\n", mod->name);
return -1;
}
if ((m = (module*)kmalloc(sizeof(module))) == NULL)
return -1;
SHOW_FLOW(3, "simple_module_info(%s, %s)\n", mod->name, file);
dprintf("simple_module_info: '%s'\n", mod->name);
m->module = NULL; /* back pointer */
m->name = (char*)kmalloc(strlen(mod->name) + 1);
if (!m->name) {
kfree(m);
return -1;
}
strcpy(m->name, mod->name);
m->state = MOD_QUERIED;
/* Record where the module_info can be found */
m->offset = offset;
m->file = (char*)kstrdup(file);
m->ref_cnt = 0;
/* set the keep_loaded flag */
if (mod->flags & B_KEEP_LOADED) {
dprintf("module %s wants to be kept loaded\n", m->name);
m->keep_loaded = true;
}
recursive_lock_lock(&modules_lock);
/* Insert into linked list */
insque(m, &known_modules);
hash_set(modules_list, mod->name, strlen(mod->name), m);
recursive_lock_unlock(&modules_lock);
return 0;
}
/* recurse_check_file
* Load the file filepath and check to see if we have a module within it
* that matches module_wanted.
*
* NB module_wanted could be NULL if we're just scanning the modules.
*
* Return
* -1 on error
* 0 on no match
* 1 on match
*/
static int
recurse_check_file(const char *filepath, const char *module_wanted)
{
module_info **hdr = NULL, **chk;
int i = 0, match = 0;
if ((hdr = load_module_file(filepath)) == NULL)
return -1;
for (chk = hdr; *chk; chk++) {
/* if simple_module_info returns 0 then we have found a new
* module and added it to the hash table. The question is now
* is this new module the one we're looking for?
* module_wanted may be a NULL, which is why we check for it.
*/
if (simple_module_info((*chk), filepath, i++) == 0) {
if (module_wanted && strcmp((*chk)->name, module_wanted) == 0)
match = 1;
}
}
/* If match != 1 then the modules we've found in the file don't match
* the one we're looking for. Unload the module as we're not about to need
* anything from it.
*/
if (match != 1) {
// dprintf("unloading module file %s\n", filepath);
unload_module_file(filepath);
}
return match;
}
/* recurse_directory
* Enter the directory and try every entry, entering directories if
* we encounter them.
*
* NB match can be NULL if we're just doing a scan of the modules
* to build our cache.
*
* The recurse loop has these values
* -1 for error
* 0 for no match
* 1 for match
*/
static int
recurse_directory(const char *path, const char *match)
{
/* ToDo: should just use opendir(), readdir(), ... */
int res = 0, dir;
int bufferSize = sizeof(struct dirent) + SYS_MAX_NAME_LEN + 1;
struct dirent *dirent;
if ((dir = sys_open_dir(path)) < 0)
return -1;
dirent = kmalloc(bufferSize);
if (!dirent) {
sys_close(dir);
return -1;
}
/* loop until we have a match or we run out of entries */
while (res <= 0) {
struct stat st;
char *newpath;
size_t slen = 0;
SHOW_FLOW(3, "scanning %s\n", path);
if ((res = sys_read_dir(dir, dirent, bufferSize, 1)) <= 0)
break;
dirent->d_name[dirent->d_reclen] = '\0';
slen = strlen(path) + strlen(dirent->d_name) + 2;
newpath = (char*)kmalloc(slen);
strlcpy(newpath, path, slen);
strlcat(newpath, "/", slen);
strlcat(newpath, dirent->d_name, slen);
if ((res = stat(newpath, &st)) != B_NO_ERROR) {
kfree(newpath);
break;
}
/* If we got here, we have either a file or a directory.
* If it's a file, do we have the details on record?
* If we don't, then load the file and record it's details.
* If it matches our search path we'll return afterwards.
*/
if (S_ISREG(st.st_mode)) {
/* do we already know about this file?
* If we do res = 0 and we'll just carry on, if
* not, it's a new file so we need to read in the
* file details via recurse_file_check() function.
*/
if (hash_get(module_files, newpath, strlen(newpath)) != NULL)
res = 0;
else
res = recurse_check_file(newpath, match);
} else if (S_ISDIR(st.st_mode)) {
res = recurse_directory(newpath, match);
}
kfree(newpath);
}
kfree(dirent);
sys_close(dir);
return res;
}
/* This is only called if we fail to find a module already in our cache...saves us
* some extra checking here :)
*/
static module *
search_module(const char *name)
{
int i, res = 0;
SHOW_FLOW(3, "search_module(%s)\n", name);
for (i = 0; i < (int)num_module_paths; ++i) {
if ((res = recurse_directory(module_paths[i], name)) == 1)
break;
}
if (res != 1)
return NULL;
return (module*)hash_get(modules_list, name, strlen(name));
}
static inline int
init_module(module *module)
{
int res = 0;
switch(module->state) {
case MOD_QUERIED:
case MOD_LOADED:
module->state = MOD_INIT;
SHOW_FLOW( 3, "initing module %s... \n", module->name );
res = module->ptr->std_ops(B_MODULE_INIT);
SHOW_FLOW(3, "...done (%s)\n", strerror(res));
if (!res )
module->state = MOD_RDY;
else
module->state = MOD_LOADED;
break;
case MOD_RDY:
res = B_NO_ERROR;
break;
case MOD_INIT:
SHOW_ERROR( 0, "circular reference to %s\n", module->name );
res = B_ERROR;
break;
case MOD_UNINIT:
SHOW_ERROR( 0, "tried to load module %s which is currently unloading\n", module->name );
res = B_ERROR;
break;
case MOD_ERROR:
SHOW_INFO( 0, "cannot load module %s because its earlier unloading failed\n", module->name );
res = B_ERROR;
break;
default:
res = B_ERROR;
}
return res;
}
static inline int
uninit_module(module *module)
{
switch( module->state ) {
case MOD_QUERIED:
case MOD_LOADED:
return B_NO_ERROR;
case MOD_INIT:
panic( "Trying to unload module %s which is initializing\n",
module->name );
return B_ERROR;
case MOD_UNINIT:
panic( "Trying to unload module %s which is un-initializing\n", module->name );
return B_ERROR;
case MOD_RDY:
{
int res;
module->state = MOD_UNINIT;
SHOW_FLOW( 2, "uniniting module %s...\n", module->name );
res = module->ptr->std_ops(B_MODULE_UNINIT);
SHOW_FLOW( 2, "...done (%s)\n", strerror( res ));
if (res == B_NO_ERROR ) {
module->state = MOD_LOADED;
return 0;
}
SHOW_ERROR( 0, "Error unloading module %s (%i)\n", module->name, res );
}
module->state = MOD_ERROR;
module->keep_loaded = true;
// fall through
default:
return B_ERROR;
}
}
static int
process_module_info(module_iterator *iter, char *buf, size_t *bufsize)
{
module *m = NULL;
module_info **mod;
int res = B_NO_ERROR;
mod = iter->cur_header;
if (!mod || !(*mod)) {
res = EINVAL;
} else {
res = simple_module_info(*mod, iter->cur_path, iter->module_pos++);
m = (module*)hash_get(modules_list, (*mod)->name, strlen((*mod)->name));
if (m) {
strlcpy(buf, m->name, *bufsize);
*bufsize = strlen(m->name);
}
}
/* Deal with the header pointer!
* Basically if we have a valid pointer (mod) and the next (++mod) is NOT null,
* then we advance the cur_header pointer, otherwise we specify it as
* NULL to make sure we don't have trouble :)
*/
if (mod && *(++mod) != NULL)
iter->cur_header++;
else
iter->cur_header = NULL;
return res;
}
static inline int
module_create_dir_iterator(module_iterator *iter, int file, const char *name)
{
module_dir_iterator *dir;
/* if we're creating a dir_iterator, there is no way that the
* cur_header value can be valid, so make sure and reset it
* here.
*/
iter->cur_header = NULL;
dir = (struct module_dir_iterator *)kmalloc(sizeof(*dir));
if (dir == NULL )
return ENOMEM;
dir->name = (char *)kstrdup(name);
if (dir->name == NULL) {
kfree(dir);
return ENOMEM;
}
dir->file = file;
dir->sub_dir = NULL;
dir->parent_dir = iter->cur_dir;
if (iter->cur_dir)
iter->cur_dir->sub_dir = dir;
else
iter->base_dir = dir;
iter->cur_dir = dir;
SHOW_FLOW( 3, "created dir iterator for %s\n", name );
return B_NO_ERROR;
}
static inline int
module_enter_dir(module_iterator *iter, const char *path)
{
int dir;
int res;
dir = sys_open_dir(path);
if (dir < 0) {
SHOW_FLOW(3, "couldn't open directory %s (%s)\n", path, strerror(dir));
// there are so many errors for "not found" that we don't bother
// and always assume that the directory suddenly disappeared
return B_NO_ERROR;
}
res = module_create_dir_iterator(iter, dir, path);
if (res != B_NO_ERROR) {
sys_close(dir);
return ENOMEM;
}
SHOW_FLOW(3, "entered directory %s\n", path);
return B_NO_ERROR;
}
static inline void
destroy_dir_iterator( module_iterator *iter )
{
module_dir_iterator *dir;
dir = iter->cur_dir;
SHOW_FLOW( 3, "destroying directory iterator for sub-dir %s\n", dir->name );
if (dir->parent_dir )
dir->parent_dir->sub_dir = NULL;
iter->cur_dir = dir->parent_dir;
kfree(dir->name);
kfree(dir);
}
static inline void
module_leave_dir( module_iterator *iter )
{
module_dir_iterator *parent_dir;
SHOW_FLOW( 3, "leaving directory %s\n", iter->cur_dir->name );
parent_dir = iter->cur_dir->parent_dir;
iter->cur_header = NULL;
sys_close( iter->cur_dir->file );
destroy_dir_iterator( iter );
iter->cur_dir = parent_dir;
}
static void compose_path( char *path, module_iterator *iter, const char *name, bool full_path )
{
module_dir_iterator *dir;
if (full_path ) {
strlcpy( path, iter->base_dir->name, SYS_MAX_PATH_LEN );
strlcat( path, "/", SYS_MAX_PATH_LEN );
} else {
strlcpy( path, iter->prefix, SYS_MAX_PATH_LEN );
if (*iter->prefix )
strlcat( path, "/", SYS_MAX_PATH_LEN );
}
for( dir = iter->base_dir->sub_dir; dir; dir = dir->sub_dir ) {
strlcat( path, dir->name, SYS_MAX_PATH_LEN );
strlcat( path, "/", SYS_MAX_PATH_LEN );
}
strlcat( path, name, SYS_MAX_PATH_LEN );
SHOW_FLOW( 3, "name: %s, %s -> %s\n", name,
full_path ? "full path" : "relative path",
path );
}
/* module_traverse_directory
* Logic as follows...
* If we have a headers pointer,
* - check if the next structure is NULL, if not process that module_info structure
* - if it's null, close the file, NULL the headers pointer and fall through
*
* This function tries to find the next module filename and then set the headers
* pointer in the cur_dir structure.
*/
static inline int
module_traverse_dir(module_iterator *iter)
{
struct stat st;
char buffer[SYS_MAX_NAME_LEN + sizeof(struct dirent)];
struct dirent *dirent = (struct dirent *)buffer;
char path[SYS_MAX_PATH_LEN];
int res;
/* If (*iter->cur_header) != NULL we have another module within
* the existing file to return, so just return.
* Otherwise, actually find the next file to read.
*/
if (iter->cur_header) {
if (*iter->cur_header != NULL)
return B_OK;
unload_module_file(iter->cur_path);
}
SHOW_FLOW( 3, "scanning %s\n", iter->cur_dir->name);
if ((res = sys_read_dir(iter->cur_dir->file, dirent, sizeof(buffer), 1)) <= 0) {
SHOW_FLOW(3, "got error: %s\n", strerror(res));
module_leave_dir(iter);
return B_NO_ERROR;
}
SHOW_FLOW(3, "got %s\n", dirent->d_name);
if (strcmp(dirent->d_name, ".") == 0
|| strcmp(dirent->d_name, "..") == 0 )
return B_NO_ERROR;
compose_path(path, iter, dirent->d_name, true);
/* As we're doing a new file, reset the pointers that might get
* screwed up...
*/
iter->cur_header = NULL;
iter->module_pos = 0;
if ((res = stat(path, &st)) != B_NO_ERROR)
return res;
if (S_ISREG(st.st_mode)) {
module_info **hdrs = NULL;
if ((hdrs = load_module_file(path)) != NULL) {
iter->cur_header = hdrs;
iter->cur_path = (char*)kstrdup(path);
return B_NO_ERROR;
}
return EINVAL; /* not sure what we should return here */
}
if (S_ISDIR(st.st_mode))
return module_enter_dir(iter, path);
SHOW_FLOW(3, "entry %s not a file nor a directory - ignored\n", dirent->d_name);
return B_NO_ERROR;
}
/* module_enter_base_path
* Basically try each of the directories we have listed as module paths,
* trying each with the prefix we've been allocated.
*/
static inline int
module_enter_base_path(module_iterator *iter)
{
char path[SYS_MAX_PATH_LEN];
++iter->base_path_id;
if (iter->base_path_id >= (int)num_module_paths ) {
SHOW_FLOW0( 3, "no locations left\n" );
return ENOENT;
}
SHOW_FLOW(3, "trying base path (%s)\n", module_paths[iter->base_path_id]);
if (iter->base_path_id == 0 && modules_disable_user_addons) {
SHOW_FLOW0( 3, "ignoring user add-ons (they are disabled)\n" );
return B_NO_ERROR;
}
strcpy(path, module_paths[iter->base_path_id]);
if (*iter->prefix) {
strcat(path, "/");
strlcat(path, iter->prefix, sizeof(path));
}
return module_enter_dir(iter, path);
}
/* open_module_list
* This returns a pointer to a structure that can be used to
* iterate through a list of all modules available under
* a given prefix.
* All paths will be searched and the returned list will
* contain all modules available under the prefix.
* The structure is then used by the read_next_module_name function
* and MUST be freed or memory will be leaked.
*/
void *
open_module_list(const char *prefix)
{
module_iterator *iter;
SHOW_FLOW( 3, "prefix: %s\n", prefix );
iter = (module_iterator *)kmalloc(sizeof( module_iterator));
if (!iter)
return NULL;
iter->prefix = (char *)kstrdup( prefix );
if(iter->prefix == NULL) {
kfree(iter);
return NULL;
}
iter->base_path_id = -1;
iter->base_dir = iter->cur_dir = NULL;
iter->err = B_NO_ERROR;
iter->module_pos = 0;
return (void *)iter;
}
/* read_next_module_name
* Return the next module name from the available list, using
* a structure previously created by a call to open_module_list.
* Returns 0 if a module was available.
*/
status_t
read_next_module_name(void *cookie, char *buf, size_t *bufsize)
{
module_iterator *iter = (module_iterator *)cookie;
int res;
*buf = '\0';
if (!iter)
return EINVAL;
res = iter->err;
SHOW_FLOW0(3, "looking for next module\n");
while (res == B_NO_ERROR) {
SHOW_FLOW0(3, "searching for module\n");
if (iter->cur_dir == NULL) {
res = module_enter_base_path(iter);
} else {
if ((res = module_traverse_dir(iter)) == B_NO_ERROR) {
/* By this point we should have a valid pointer to a module_info structure
* in iter->cur_header
*/
if (process_module_info(iter, buf, bufsize) == B_NO_ERROR)
break;
}
}
}
/* did we get something?? */
if (*buf == '\0')
res = ENOENT;
iter->err = res;
SHOW_FLOW(3, "finished with status %s\n", strerror(iter->err));
return iter->err;
}
status_t
close_module_list(void *cookie)
{
module_iterator *iter = (module_iterator *)cookie;
SHOW_FLOW0( 3, "\n" );
if (!iter )
return EINVAL;
while(iter->cur_dir)
module_leave_dir(iter);
kfree(iter->prefix);
kfree(iter);
return 0;
}
/* module_init
* setup module structures and data for use
*/
status_t
module_init(kernel_args *ka, module_info **sys_module_headers)
{
SHOW_FLOW0( 0, "\n" );
recursive_lock_create( &modules_lock );
modules_list = hash_make();
module_files = hash_make();
if (modules_list == NULL || module_files == NULL)
return ENOMEM;
loaded_modules.next = loaded_modules.prev = &loaded_modules;
known_modules.next = known_modules.prev = &known_modules;
/*
if (sys_module_headers) {
if (register_module_image("", "(built-in)", 0, sys_module_headers) == NULL)
return ENOMEM;
}
*/
return B_NO_ERROR;
}
status_t
get_module(const char *path, module_info **vec)
{
module *m = (module *)hash_get(modules_list, path, strlen(path));
loaded_module *lm;
int res = B_NO_ERROR;
*vec = NULL;
dprintf("*** get_module: %s\n", path);
/* If m == NULL we didn't find any record of the module
* in our hash. We'll now call serach_mdoules which will do
* scan of the possible directories that may contain it.
*/
if (!m) {
m = search_module(path);
if (!m) {
dprintf("Search for %s failed.\n", path);
return ENOENT;
}
}
/* If we've got here then we basically have a pointer to the
* module structure representing the requested module in m;
*/
recursive_lock_lock(&modules_lock);
/* We now need to find the module_file structure. This should
* be in memory if we have just run search_modules, but may not be
* if we are used cached information.
*/
lm = (loaded_module*)hash_get(module_files, m->file, strlen(m->file));
if (!lm) {
if (load_module_file(m->file) == NULL)
return ENOENT;
lm = (loaded_module*)hash_get(module_files, m->file, strlen(m->file));
if (!lm)
return ENOENT;
}
/* We have the module file required in memory! */
m->ptr = lm->info[m->offset];
m->module = lm;
INC_MOD_REF_COUNT(m);
*vec = m->ptr;
/* The state will be adjusted by the call to init_module */
recursive_lock_unlock(&modules_lock);
if (res != B_NO_ERROR) {
vec = NULL;
return res;
}
/* Only run the init routine if we have ref_cnt == 1. This should
* indicate that we have just been loaded.
*/
if (m->ref_cnt == 1)
res = init_module(m);
return res;
}
status_t
put_module(const char *path)
{
module *m = (module *)hash_get(modules_list, path, strlen(path));
if (!m) {
dprintf("We don't seem to have a reference to module %s\n", path);
return EINVAL;
}
DEC_MOD_REF_COUNT(m);
if (m->ref_cnt == 0) {
/* We have no more references to this module. Next, do we need to
* keep_loaded? If we do just return;
*/
if (m->keep_loaded == false) {
/* so we should be OK to unload the actual module file, but just
* check first if ir provides any other modules that are still in use.
*/
uninit_module(m);
if (m->module->ref_cnt == 0)
unload_module_file(m->file);
}
}
return B_NO_ERROR;
}