haiku/headers/libs/agg/agg_rasterizer_scanline_aa.h

744 lines
23 KiB
C
Raw Normal View History

//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.2
// Copyright (C) 2002-2004 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// The author gratefully acknowleges the support of David Turner,
// Robert Wilhelm, and Werner Lemberg - the authors of the FreeType
// libray - in producing this work. See http://www.freetype.org for details.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Class rasterizer_scanline_aa
//
//
//----------------------------------------------------------------------------
#ifndef AGG_RASTERIZER_SCANLINE_AA_INCLUDED
#define AGG_RASTERIZER_SCANLINE_AA_INCLUDED
#include <string.h>
#include <math.h>
#include "agg_basics.h"
#include "agg_math.h"
#include "agg_gamma_functions.h"
#include "agg_clip_liang_barsky.h"
#include "agg_render_scanlines.h"
namespace agg
{
//------------------------------------------------------------------------
// These constants determine the subpixel accuracy, to be more precise,
// the number of bits of the fractional part of the coordinates.
// The possible coordinate capacity in bits can be calculated by formula:
// sizeof(int) * 8 - poly_base_shift * 2, i.e, for 32-bit integers and
// 8-bits fractional part the capacity is 16 bits or [-32768...32767].
enum
{
poly_base_shift = 8, //----poly_base_shift
poly_base_size = 1 << poly_base_shift, //----poly_base_size
poly_base_mask = poly_base_size - 1 //----poly_base_mask
};
//--------------------------------------------------------------poly_coord
inline int poly_coord(double c)
{
return int(c * poly_base_size);
}
//-----------------------------------------------------------------cell_aa
// A pixel cell. There're no constructors defined and it was done
// intentionally in order to avoid extra overhead when allocating an
// array of cells.
struct cell_aa
{
int16 x;
int16 y;
int packed_coord;
int cover;
int area;
void set(int x, int y, int c, int a);
void set_coord(int x, int y);
void set_cover(int c, int a);
void add_cover(int c, int a);
};
//--------------------------------------------------------------outline_aa
// An internal class that implements the main rasterization algorithm.
// Used in the rasterizer. Should not be used direcly.
class outline_aa
{
enum
{
cell_block_shift = 12,
cell_block_size = 1 << cell_block_shift,
cell_block_mask = cell_block_size - 1,
cell_block_pool = 256,
cell_block_limit = 1024
};
public:
~outline_aa();
outline_aa();
void reset();
void move_to(int x, int y);
void line_to(int x, int y);
int min_x() const { return m_min_x; }
int min_y() const { return m_min_y; }
int max_x() const { return m_max_x; }
int max_y() const { return m_max_y; }
const cell_aa* const* cells();
unsigned num_cells() { cells(); return m_num_cells; }
bool sorted() const { return m_sorted; }
private:
outline_aa(const outline_aa&);
const outline_aa& operator = (const outline_aa&);
void set_cur_cell(int x, int y);
void add_cur_cell();
void sort_cells();
void render_hline(int ey, int x1, int y1, int x2, int y2);
void render_line(int x1, int y1, int x2, int y2);
void allocate_block();
static void qsort_cells(cell_aa** start, unsigned num);
private:
unsigned m_num_blocks;
unsigned m_max_blocks;
unsigned m_cur_block;
unsigned m_num_cells;
cell_aa** m_cells;
cell_aa* m_cur_cell_ptr;
cell_aa** m_sorted_cells;
unsigned m_sorted_size;
cell_aa m_cur_cell;
int m_cur_x;
int m_cur_y;
int m_min_x;
int m_min_y;
int m_max_x;
int m_max_y;
bool m_sorted;
};
//----------------------------------------------------------filling_rule_e
enum filling_rule_e
{
fill_non_zero,
fill_even_odd
};
//==================================================rasterizer_scanline_aa
// Polygon rasterizer that is used to render filled polygons with
// high-quality Anti-Aliasing. Internally, by default, the class uses
// integer coordinates in format 24.8, i.e. 24 bits for integer part
// and 8 bits for fractional - see poly_base_shift. This class can be
// used in the following way:
//
// 1. filling_rule(filling_rule_e ft) - optional.
//
// 2. gamma() - optional.
//
// 3. reset()
//
// 4. move_to(x, y) / line_to(x, y) - make the polygon. One can create
// more than one contour, but each contour must consist of at least 3
// vertices, i.e. move_to(x1, y1); line_to(x2, y2); line_to(x3, y3);
// is the absolute minimum of vertices that define a triangle.
// The algorithm does not check either the number of vertices nor
// coincidence of their coordinates, but in the worst case it just
// won't draw anything.
// The orger of the vertices (clockwise or counterclockwise)
// is important when using the non-zero filling rule (fill_non_zero).
// In this case the vertex order of all the contours must be the same
// if you want your intersecting polygons to be without "holes".
// You actually can use different vertices order. If the contours do not
// intersect each other the order is not important anyway. If they do,
// contours with the same vertex order will be rendered without "holes"
// while the intersecting contours with different orders will have "holes".
//
// filling_rule() and gamma() can be called anytime before "sweeping".
//------------------------------------------------------------------------
template<unsigned XScale=1, unsigned AA_Shift=8> class rasterizer_scanline_aa
{
enum status
{
status_initial,
status_line_to,
status_closed
};
struct iterator
{
const cell_aa* const* cells;
int cover;
int last_y;
};
public:
enum
{
aa_shift = AA_Shift,
aa_num = 1 << aa_shift,
aa_mask = aa_num - 1,
aa_2num = aa_num * 2,
aa_2mask = aa_2num - 1
};
//--------------------------------------------------------------------
rasterizer_scanline_aa() :
m_filling_rule(fill_non_zero),
m_clipped_start_x(0),
m_clipped_start_y(0),
m_start_x(0),
m_start_y(0),
m_prev_x(0),
m_prev_y(0),
m_prev_flags(0),
m_status(status_initial),
m_clipping(false)
{
int i;
for(i = 0; i < aa_num; i++) m_gamma[i] = i;
}
//--------------------------------------------------------------------
template<class GammaF>
rasterizer_scanline_aa(const GammaF& gamma_function) :
m_filling_rule(fill_non_zero),
m_clipped_start_x(0),
m_clipped_start_y(0),
m_start_x(0),
m_start_y(0),
m_prev_x(0),
m_prev_y(0),
m_prev_flags(0),
m_status(status_initial),
m_clipping(false)
{
gamma(gamma_function);
}
//--------------------------------------------------------------------
void reset();
void filling_rule(filling_rule_e filling_rule);
void clip_box(double x1, double y1, double x2, double y2);
void reset_clipping();
//--------------------------------------------------------------------
template<class GammaF> void gamma(const GammaF& gamma_function)
{
int i;
for(i = 0; i < aa_num; i++)
{
m_gamma[i] = int(floor(gamma_function(double(i) / aa_mask) * aa_mask + 0.5));
}
}
//--------------------------------------------------------------------
unsigned apply_gamma(unsigned cover) const
{
return m_gamma[cover];
}
//--------------------------------------------------------------------
void add_vertex(double x, double y, unsigned cmd);
void move_to(int x, int y);
void line_to(int x, int y);
void close_polygon();
void move_to_d(double x, double y);
void line_to_d(double x, double y);
//--------------------------------------------------------------------
int min_x() const { return m_outline.min_x(); }
int min_y() const { return m_outline.min_y(); }
int max_x() const { return m_outline.max_x(); }
int max_y() const { return m_outline.max_y(); }
//--------------------------------------------------------------------
unsigned calculate_alpha(int area) const
{
int cover = area >> (poly_base_shift*2 + 1 - aa_shift);
if(cover < 0) cover = -cover;
if(m_filling_rule == fill_even_odd)
{
cover &= aa_2mask;
if(cover > aa_num)
{
cover = aa_2num - cover;
}
}
if(cover > aa_mask) cover = aa_mask;
return m_gamma[cover];
}
//--------------------------------------------------------------------
void sort()
{
m_outline.cells();
}
//--------------------------------------------------------------------
bool rewind_scanlines()
{
close_polygon();
m_iterator.cells = m_outline.cells();
if(m_outline.num_cells() == 0)
{
return false;
}
m_iterator.cover = 0;
m_iterator.last_y = (*m_iterator.cells)->y;
return true;
}
//--------------------------------------------------------------------
template<class Scanline> bool sweep_scanline(Scanline& sl)
{
sl.reset_spans();
for(;;)
{
const cell_aa* cur_cell = *m_iterator.cells;
if(cur_cell == 0) return false;
++m_iterator.cells;
m_iterator.last_y = cur_cell->y;
for(;;)
{
int coord = cur_cell->packed_coord;
int area = cur_cell->area;
int last_x = cur_cell->x;
m_iterator.cover += cur_cell->cover;
//accumulate all cells with the same coordinates
for(; (cur_cell = *m_iterator.cells) != 0; ++m_iterator.cells)
{
if(cur_cell->packed_coord != coord) break;
area += cur_cell->area;
m_iterator.cover += cur_cell->cover;
}
int alpha;
if(cur_cell == 0 || cur_cell->y != m_iterator.last_y)
{
if(area)
{
alpha = calculate_alpha((m_iterator.cover << (poly_base_shift + 1)) - area);
if(alpha)
{
sl.add_cell(last_x, alpha);
}
++last_x;
}
break;
}
++m_iterator.cells;
if(area)
{
alpha = calculate_alpha((m_iterator.cover << (poly_base_shift + 1)) - area);
if(alpha)
{
sl.add_cell(last_x, alpha);
}
++last_x;
}
if(cur_cell->x > last_x)
{
alpha = calculate_alpha(m_iterator.cover << (poly_base_shift + 1));
if(alpha)
{
sl.add_span(last_x, cur_cell->x - last_x, alpha);
}
}
}
if(sl.num_spans())
{
sl.finalize(m_iterator.last_y);
break;
}
}
return true;
}
//--------------------------------------------------------------------
bool hit_test(int tx, int ty);
//--------------------------------------------------------------------
void add_xy(const double* x, const double* y, unsigned n)
{
if(n > 2)
{
move_to_d(*x++, *y++);
--n;
do
{
line_to_d(*x++, *y++);
}
while(--n);
}
}
//-------------------------------------------------------------------
template<class VertexSource>
void add_path(VertexSource& vs, unsigned id=0)
{
double x;
double y;
unsigned cmd;
vs.rewind(id);
while(!is_stop(cmd = vs.vertex(&x, &y)))
{
add_vertex(x, y, cmd);
}
}
private:
//--------------------------------------------------------------------
// Disable copying
rasterizer_scanline_aa(const rasterizer_scanline_aa<XScale, AA_Shift>&);
const rasterizer_scanline_aa<XScale, AA_Shift>&
operator = (const rasterizer_scanline_aa<XScale, AA_Shift>&);
//--------------------------------------------------------------------
void move_to_no_clip(int x, int y);
void line_to_no_clip(int x, int y);
void close_polygon_no_clip();
void clip_segment(int x, int y);
private:
outline_aa m_outline;
int m_gamma[aa_num];
filling_rule_e m_filling_rule;
int m_clipped_start_x;
int m_clipped_start_y;
int m_start_x;
int m_start_y;
int m_prev_x;
int m_prev_y;
unsigned m_prev_flags;
unsigned m_status;
rect m_clip_box;
bool m_clipping;
iterator m_iterator;
};
//------------------------------------------------------------------------
template<unsigned XScale, unsigned AA_Shift>
void rasterizer_scanline_aa<XScale, AA_Shift>::reset()
{
m_outline.reset();
m_status = status_initial;
}
//------------------------------------------------------------------------
template<unsigned XScale, unsigned AA_Shift>
void rasterizer_scanline_aa<XScale, AA_Shift>::filling_rule(filling_rule_e filling_rule)
{
m_filling_rule = filling_rule;
}
//------------------------------------------------------------------------
template<unsigned XScale, unsigned AA_Shift>
void rasterizer_scanline_aa<XScale, AA_Shift>::clip_box(double x1, double y1, double x2, double y2)
{
reset();
m_clip_box = rect(poly_coord(x1), poly_coord(y1),
poly_coord(x2), poly_coord(y2));
m_clip_box.normalize();
m_clipping = true;
}
//------------------------------------------------------------------------
template<unsigned XScale, unsigned AA_Shift>
void rasterizer_scanline_aa<XScale, AA_Shift>::reset_clipping()
{
reset();
m_clipping = false;
}
//------------------------------------------------------------------------
template<unsigned XScale, unsigned AA_Shift>
void rasterizer_scanline_aa<XScale, AA_Shift>::move_to_no_clip(int x, int y)
{
if(m_status == status_line_to)
{
close_polygon_no_clip();
}
m_outline.move_to(x * XScale, y);
m_clipped_start_x = x;
m_clipped_start_y = y;
m_status = status_line_to;
}
//------------------------------------------------------------------------
template<unsigned XScale, unsigned AA_Shift>
void rasterizer_scanline_aa<XScale, AA_Shift>::line_to_no_clip(int x, int y)
{
if(m_status != status_initial)
{
m_outline.line_to(x * XScale, y);
m_status = status_line_to;
}
}
//------------------------------------------------------------------------
template<unsigned XScale, unsigned AA_Shift>
void rasterizer_scanline_aa<XScale, AA_Shift>::close_polygon_no_clip()
{
if(m_status == status_line_to)
{
m_outline.line_to(m_clipped_start_x * XScale, m_clipped_start_y);
m_status = status_closed;
}
}
//------------------------------------------------------------------------
template<unsigned XScale, unsigned AA_Shift>
void rasterizer_scanline_aa<XScale, AA_Shift>::clip_segment(int x, int y)
{
unsigned flags = clipping_flags(x, y, m_clip_box);
if(m_prev_flags == flags)
{
if(flags == 0)
{
if(m_status == status_initial)
{
move_to_no_clip(x, y);
}
else
{
line_to_no_clip(x, y);
}
}
}
else
{
int cx[4];
int cy[4];
unsigned n = clip_liang_barsky(m_prev_x, m_prev_y,
x, y,
m_clip_box,
cx, cy);
const int* px = cx;
const int* py = cy;
while(n--)
{
if(m_status == status_initial)
{
move_to_no_clip(*px++, *py++);
}
else
{
line_to_no_clip(*px++, *py++);
}
}
}
m_prev_flags = flags;
m_prev_x = x;
m_prev_y = y;
}
//------------------------------------------------------------------------
template<unsigned XScale, unsigned AA_Shift>
void rasterizer_scanline_aa<XScale, AA_Shift>::add_vertex(double x, double y, unsigned cmd)
{
if(is_close(cmd))
{
close_polygon();
}
else
{
if(is_move_to(cmd))
{
move_to(poly_coord(x), poly_coord(y));
}
else
{
if(is_vertex(cmd))
{
line_to(poly_coord(x), poly_coord(y));
}
}
}
}
//------------------------------------------------------------------------
template<unsigned XScale, unsigned AA_Shift>
void rasterizer_scanline_aa<XScale, AA_Shift>::move_to(int x, int y)
{
if(m_clipping)
{
if(m_outline.sorted())
{
reset();
}
if(m_status == status_line_to)
{
close_polygon();
}
m_prev_x = m_start_x = x;
m_prev_y = m_start_y = y;
m_status = status_initial;
m_prev_flags = clipping_flags(x, y, m_clip_box);
if(m_prev_flags == 0)
{
move_to_no_clip(x, y);
}
}
else
{
move_to_no_clip(x, y);
}
}
//------------------------------------------------------------------------
template<unsigned XScale, unsigned AA_Shift>
void rasterizer_scanline_aa<XScale, AA_Shift>::line_to(int x, int y)
{
if(m_clipping)
{
clip_segment(x, y);
}
else
{
line_to_no_clip(x, y);
}
}
//------------------------------------------------------------------------
template<unsigned XScale, unsigned AA_Shift>
void rasterizer_scanline_aa<XScale, AA_Shift>::close_polygon()
{
if(m_clipping)
{
clip_segment(m_start_x, m_start_y);
}
close_polygon_no_clip();
}
//------------------------------------------------------------------------
template<unsigned XScale, unsigned AA_Shift>
void rasterizer_scanline_aa<XScale, AA_Shift>::move_to_d(double x, double y)
{
move_to(poly_coord(x), poly_coord(y));
}
//------------------------------------------------------------------------
template<unsigned XScale, unsigned AA_Shift>
void rasterizer_scanline_aa<XScale, AA_Shift>::line_to_d(double x, double y)
{
line_to(poly_coord(x), poly_coord(y));
}
//------------------------------------------------------------------------
template<unsigned XScale, unsigned AA_Shift>
bool rasterizer_scanline_aa<XScale, AA_Shift>::hit_test(int tx, int ty)
{
close_polygon();
const cell_aa* const* cells = m_outline.cells();
if(m_outline.num_cells() == 0) return false;
int cover = 0;
const cell_aa* cur_cell = *cells++;
for(;;)
{
int alpha;
int coord = cur_cell->packed_coord;
int x = cur_cell->x;
int y = cur_cell->y;
if(y > ty) return false;
int area = cur_cell->area;
cover += cur_cell->cover;
while((cur_cell = *cells++) != 0)
{
if(cur_cell->packed_coord != coord) break;
area += cur_cell->area;
cover += cur_cell->cover;
}
if(area)
{
alpha = calculate_alpha((cover << (poly_base_shift + 1)) - area);
if(alpha)
{
if(tx == x && ty == y) return true;
}
x++;
}
if(!cur_cell) break;
if(cur_cell->x > x)
{
alpha = calculate_alpha(cover << (poly_base_shift + 1));
if(alpha)
{
if(ty == y && tx >= x && tx <= cur_cell->x) return true;
}
}
}
return false;
}
}
#endif