haiku/src/kernel/core/sem.c

1126 lines
26 KiB
C
Raw Normal View History

/*
* Copyright 2002-2005, Axel Dörfler, axeld@pinc-software.de. All rights reserved.
* Distributed under the terms of the MIT License.
*
* Copyright 2001, Travis Geiselbrecht. All rights reserved.
* Distributed under the terms of the NewOS License.
*/
/* Semaphore code */
#include <OS.h>
#include <sem.h>
#include <kernel.h>
#include <ksignal.h>
#include <smp.h>
#include <int.h>
#include <arch/int.h>
#include <debug.h>
#include <thread.h>
#include <team.h>
#include <boot/kernel_args.h>
#include <string.h>
#include <stdlib.h>
//#define TRACE_SEM
#ifdef TRACE_SEM
# define TRACE(x) dprintf x
# define TRACE_BLOCK(x) dprintf x
#else
# define TRACE(x) ;
# define TRACE_BLOCK(x) ;
#endif
struct sem_entry {
sem_id id;
spinlock lock; // protects only the id field when unused
union {
// when slot in use
struct {
int count;
struct thread_queue queue;
char *name;
team_id owner; // if set to -1, means owned by a port
} used;
// when slot unused
struct {
sem_id next_id;
struct sem_entry *next;
} unused;
} u;
};
// Todo: Compute based on the amount of available memory.
static int32 sMaxSems = 4096;
static int32 sUsedSems = 0;
static struct sem_entry *sSems = NULL;
static bool sSemsActive = false;
static struct sem_entry *sFreeSemsHead = NULL;
static struct sem_entry *sFreeSemsTail = NULL;
static spinlock sem_spinlock = 0;
#define GRAB_SEM_LIST_LOCK() acquire_spinlock(&sem_spinlock)
#define RELEASE_SEM_LIST_LOCK() release_spinlock(&sem_spinlock)
#define GRAB_SEM_LOCK(s) acquire_spinlock(&(s).lock)
#define RELEASE_SEM_LOCK(s) release_spinlock(&(s).lock)
static int remove_thread_from_sem(struct thread *thread, struct sem_entry *sem,
struct thread_queue *queue, status_t acquireStatus);
struct sem_timeout_args {
thread_id blocked_thread;
sem_id blocked_sem_id;
int sem_count;
};
static int
dump_sem_list(int argc, char **argv)
{
int i;
for (i = 0; i < sMaxSems; i++) {
if (sSems[i].id >= 0)
dprintf("%p\tid: 0x%lx\t\tname: '%s'\n", &sSems[i], sSems[i].id,
sSems[i].u.used.name);
}
return 0;
}
static void
dump_sem(struct sem_entry *sem)
{
dprintf("SEM: %p\n", sem);
dprintf("id: %ld\n", sem->id);
if (sem->id >= 0) {
dprintf("name: '%s'\n", sem->u.used.name);
dprintf("owner: 0x%lx\n", sem->u.used.owner);
dprintf("count: 0x%x\n", sem->u.used.count);
dprintf("queue: head %p tail %p\n", sem->u.used.queue.head,
sem->u.used.queue.tail);
} else {
dprintf("next: %p\n", sem->u.unused.next);
dprintf("next_id: %ld\n", sem->u.unused.next_id);
}
}
static int
dump_sem_info(int argc, char **argv)
{
int i;
if (argc < 2) {
dprintf("sem: not enough arguments\n");
return 0;
}
// if the argument looks like a hex number, treat it as such
if (strlen(argv[1]) > 2 && argv[1][0] == '0' && argv[1][1] == 'x') {
unsigned long num = strtoul(argv[1], NULL, 16);
if (num > KERNEL_BASE && num <= (KERNEL_BASE + (KERNEL_SIZE - 1))) {
// XXX semi-hack
dump_sem((struct sem_entry *)num);
return 0;
} else {
unsigned slot = num % sMaxSems;
if (sSems[slot].id != (int)num) {
dprintf("sem 0x%lx doesn't exist!\n", num);
return 0;
}
dump_sem(&sSems[slot]);
return 0;
}
}
// walk through the sem list, trying to match name
for (i = 0; i < sMaxSems; i++) {
if (sSems[i].u.used.name != NULL
&& strcmp(argv[1], sSems[i].u.used.name) == 0) {
dump_sem(&sSems[i]);
return 0;
}
}
return 0;
}
static inline void
clear_thread_queue(struct thread_queue *queue)
{
queue->head = queue->tail = NULL;
}
/** \brief Appends a semaphore slot to the free list.
*
* The semaphore list must be locked.
* The slot's id field is not changed. It should already be set to -1.
*
* \param slot The index of the semaphore slot.
* \param nextID The ID the slot will get when reused. If < 0 the \a slot
* is used.
*/
static void
free_sem_slot(int slot, sem_id nextID)
{
struct sem_entry *sem = sSems + slot;
// set next_id to the next possible value; for sanity check the current ID
if (nextID < 0)
sem->u.unused.next_id = slot;
else
sem->u.unused.next_id = nextID;
// append the entry to the list
if (sFreeSemsTail)
sFreeSemsTail->u.unused.next = sem;
else
sFreeSemsHead = sem;
sFreeSemsTail = sem;
sem->u.unused.next = NULL;
}
status_t
sem_init(kernel_args *args)
{
area_id area;
int32 i;
TRACE(("sem_init: entry\n"));
// create and initialize semaphore table
area = create_area("sem_table", (void **)&sSems, B_ANY_KERNEL_ADDRESS,
sizeof(struct sem_entry) * sMaxSems, B_FULL_LOCK, B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA);
if (area < 0)
panic("unable to allocate semaphore table!\n");
memset(sSems, 0, sizeof(struct sem_entry) * sMaxSems);
for (i = 0; i < sMaxSems; i++) {
sSems[i].id = -1;
free_sem_slot(i, i);
}
// add debugger commands
add_debugger_command("sems", &dump_sem_list, "Dump a list of all active semaphores");
add_debugger_command("sem", &dump_sem_info, "Dump info about a particular semaphore");
TRACE(("sem_init: exit\n"));
sSemsActive = true;
return 0;
}
/** Creates a semaphore with the given parameters.
* Note, the team_id is not checked, it must be correct, or else
* that semaphore might not be deleted.
* This function is only available from within the kernel, and
* should not be made public - if possible, we should remove it
* completely (and have only create_sem() exported).
*/
sem_id
create_sem_etc(int32 count, const char *name, team_id owner)
{
struct sem_entry *sem = NULL;
cpu_status state;
sem_id id = B_NO_MORE_SEMS;
char *tempName;
size_t nameLength;
if (sSemsActive == false || sUsedSems == sMaxSems)
return B_NO_MORE_SEMS;
if (name == NULL)
name = "unnamed semaphore";
nameLength = strlen(name) + 1;
nameLength = min(nameLength, B_OS_NAME_LENGTH);
tempName = (char *)malloc(nameLength);
if (tempName == NULL)
return B_NO_MEMORY;
strlcpy(tempName, name, nameLength);
state = disable_interrupts();
GRAB_SEM_LIST_LOCK();
// get the first slot from the free list
sem = sFreeSemsHead;
if (sem) {
// remove it from the free list
sFreeSemsHead = sem->u.unused.next;
if (!sFreeSemsHead)
sFreeSemsTail = NULL;
// init the slot
GRAB_SEM_LOCK(*sem);
sem->id = sem->u.unused.next_id;
sem->u.used.count = count;
clear_thread_queue(&sem->u.used.queue);
sem->u.used.name = tempName;
sem->u.used.owner = owner;
id = sem->id;
RELEASE_SEM_LOCK(*sem);
atomic_add(&sUsedSems, 1);
}
RELEASE_SEM_LIST_LOCK();
restore_interrupts(state);
if (!sem)
free(tempName);
return id;
}
sem_id
create_sem(int32 count, const char *name)
{
return create_sem_etc(count, name, team_get_kernel_team_id());
}
status_t
delete_sem(sem_id id)
{
struct thread_queue releaseQueue;
int32 releasedThreads;
struct thread *thread;
cpu_status state;
int32 slot;
char *name;
if (sSemsActive == false)
return B_NO_MORE_SEMS;
if (id < 0)
return B_BAD_SEM_ID;
slot = id % sMaxSems;
state = disable_interrupts();
GRAB_SEM_LOCK(sSems[slot]);
if (sSems[slot].id != id) {
RELEASE_SEM_LOCK(sSems[slot]);
restore_interrupts(state);
TRACE(("delete_sem: invalid sem_id %ld\n", id));
return B_BAD_SEM_ID;
}
releasedThreads = 0;
clear_thread_queue(&releaseQueue);
// free any threads waiting for this semaphore
while ((thread = thread_dequeue(&sSems[slot].u.used.queue)) != NULL) {
thread->state = B_THREAD_READY;
thread->sem.acquire_status = B_BAD_SEM_ID;
thread->sem.count = 0;
thread_enqueue(thread, &releaseQueue);
releasedThreads++;
}
sSems[slot].id = -1;
name = sSems[slot].u.used.name;
sSems[slot].u.used.name = NULL;
RELEASE_SEM_LOCK(sSems[slot]);
// append slot to the free list
GRAB_SEM_LIST_LOCK();
free_sem_slot(slot, id + sMaxSems);
atomic_add(&sUsedSems, -1);
RELEASE_SEM_LIST_LOCK();
if (releasedThreads > 0) {
GRAB_THREAD_LOCK();
while ((thread = thread_dequeue(&releaseQueue)) != NULL) {
scheduler_enqueue_in_run_queue(thread);
}
scheduler_reschedule();
RELEASE_THREAD_LOCK();
}
restore_interrupts(state);
free(name);
return B_OK;
}
/** Called from a timer handler. Wakes up a semaphore */
static int32
sem_timeout(timer *data)
{
struct sem_timeout_args *args = (struct sem_timeout_args *)data->entry.prev;
struct thread *thread;
int slot;
int state;
struct thread_queue wakeupQueue;
thread = thread_get_thread_struct(args->blocked_thread);
if (thread == NULL)
return B_HANDLED_INTERRUPT;
slot = args->blocked_sem_id % sMaxSems;
state = disable_interrupts();
GRAB_SEM_LOCK(sSems[slot]);
TRACE(("sem_timeout: called on 0x%x sem %ld, tid %ld\n", data, args->blocked_sem_id, args->blocked_thread));
if (sSems[slot].id != args->blocked_sem_id) {
// this thread was not waiting on this semaphore
panic("sem_timeout: thid %ld was trying to wait on sem %ld which doesn't exist!\n",
args->blocked_thread, args->blocked_sem_id);
}
clear_thread_queue(&wakeupQueue);
remove_thread_from_sem(thread, &sSems[slot], &wakeupQueue, B_TIMED_OUT);
RELEASE_SEM_LOCK(sSems[slot]);
GRAB_THREAD_LOCK();
// put the threads in the run q here to make sure we dont deadlock in sem_interrupt_thread
while ((thread = thread_dequeue(&wakeupQueue)) != NULL) {
scheduler_enqueue_in_run_queue(thread);
}
RELEASE_THREAD_LOCK();
restore_interrupts(state);
return B_INVOKE_SCHEDULER;
}
status_t
acquire_sem(sem_id id)
{
return switch_sem_etc(-1, id, 1, 0, 0);
}
status_t
acquire_sem_etc(sem_id id, int32 count, uint32 flags, bigtime_t timeout)
{
return switch_sem_etc(-1, id, count, flags, timeout);
}
status_t
switch_sem(sem_id toBeReleased, sem_id toBeAcquired)
{
return switch_sem_etc(toBeReleased, toBeAcquired, 1, 0, 0);
}
status_t
switch_sem_etc(sem_id semToBeReleased, sem_id id, int32 count,
uint32 flags, bigtime_t timeout)
{
// ToDo: add support for B_CHECK_PERMISSION
int slot = id % sMaxSems;
int state;
status_t status = B_OK;
if (sSemsActive == false)
return B_NO_MORE_SEMS;
if (!kernel_startup && !are_interrupts_enabled())
panic("acquire_sem_etc: called with interrupts disabled for sem %#lx\n", id);
if (id < 0)
return B_BAD_SEM_ID;
if (count <= 0
|| (flags & (B_RELATIVE_TIMEOUT | B_ABSOLUTE_TIMEOUT)) == (B_RELATIVE_TIMEOUT | B_ABSOLUTE_TIMEOUT)) {
return B_BAD_VALUE;
}
state = disable_interrupts();
GRAB_SEM_LOCK(sSems[slot]);
if (sSems[slot].id != id) {
TRACE(("acquire_sem_etc: bad sem_id %ld\n", id));
status = B_BAD_SEM_ID;
goto err;
}
if (sSems[slot].u.used.count - count < 0 && (flags & B_RELATIVE_TIMEOUT) != 0
&& timeout <= 0) {
// immediate timeout
status = B_WOULD_BLOCK;
goto err;
}
if ((sSems[slot].u.used.count -= count) < 0) {
// we need to block
struct thread *thread = thread_get_current_thread();
timer timeout_timer; // stick it on the stack, since we may be blocking here
struct sem_timeout_args args;
TRACE_BLOCK(("acquire_sem_etc(id = %ld): block name = %s, thread = %p,"
" name = %s\n", id, sSems[slot].u.used.name, thread, thread->name));
// do a quick check to see if the thread has any pending signals
// this should catch most of the cases where the thread had a signal
if (((flags & B_CAN_INTERRUPT) && thread->sig_pending)
|| ((flags & B_KILL_CAN_INTERRUPT)
&& (thread->sig_pending & KILL_SIGNALS))) {
sSems[slot].u.used.count += count;
status = B_INTERRUPTED;
goto err;
}
if ((flags & (B_RELATIVE_TIMEOUT | B_ABSOLUTE_TIMEOUT)) == 0)
timeout = B_INFINITE_TIMEOUT;
thread->next_state = B_THREAD_WAITING;
thread->sem.flags = flags;
thread->sem.blocking = id;
thread->sem.acquire_count = count;
thread->sem.count = min(-sSems[slot].u.used.count, count);
// store the count we need to restore upon release
thread->sem.acquire_status = B_NO_ERROR;
thread_enqueue(thread, &sSems[slot].u.used.queue);
if (timeout != B_INFINITE_TIMEOUT) {
TRACE(("sem_acquire_etc: setting timeout sem for %Ld usecs, semid %d, tid %d\n",
timeout, id, thread->id));
// set up an event to go off with the thread struct as the data
args.blocked_sem_id = id;
args.blocked_thread = thread->id;
args.sem_count = count;
// ToDo: another evil hack: pass the args into timer->entry.prev
timeout_timer.entry.prev = (qent *)&args;
add_timer(&timeout_timer, &sem_timeout, timeout,
flags & B_RELATIVE_TIMEOUT ?
B_ONE_SHOT_RELATIVE_TIMER : B_ONE_SHOT_ABSOLUTE_TIMER);
}
RELEASE_SEM_LOCK(sSems[slot]);
if (semToBeReleased >= B_OK)
release_sem_etc(semToBeReleased, 1, B_DO_NOT_RESCHEDULE);
GRAB_THREAD_LOCK();
// check again to see if a signal is pending.
// it may have been delivered while setting up the sem, though it's pretty unlikely
if (((flags & B_CAN_INTERRUPT) && thread->sig_pending)
|| ((flags & B_KILL_CAN_INTERRUPT)
&& (thread->sig_pending & KILL_SIGNALS))) {
struct thread_queue wakeupQueue;
// ok, so a tiny race happened where a signal was delivered to this thread while
// it was setting up the sem. We can only be sure a signal wasn't delivered
// here, since the threadlock is held. The previous check would have found most
// instances, but there was a race, so we have to handle it. It'll be more messy...
clear_thread_queue(&wakeupQueue);
GRAB_SEM_LOCK(sSems[slot]);
if (sSems[slot].id == id) {
remove_thread_from_sem(thread, &sSems[slot], &wakeupQueue, B_INTERRUPTED);
}
RELEASE_SEM_LOCK(sSems[slot]);
while ((thread = thread_dequeue(&wakeupQueue)) != NULL) {
scheduler_enqueue_in_run_queue(thread);
}
// fall through and reschedule since another thread with a higher priority may have been woken up
}
scheduler_reschedule();
RELEASE_THREAD_LOCK();
if (timeout != B_INFINITE_TIMEOUT) {
if (thread->sem.acquire_status != B_TIMED_OUT) {
// cancel the timer event, the sem may have been deleted or interrupted
// with the timer still active
cancel_timer(&timeout_timer);
}
}
restore_interrupts(state);
TRACE_BLOCK(("acquire_sem_etc(id = %ld): exit block name = %s, "
"thread = %p (%s)\n", id, sSems[slot].u.used.name, thread,
thread->name));
return thread->sem.acquire_status;
}
err:
RELEASE_SEM_LOCK(sSems[slot]);
restore_interrupts(state);
return status;
}
status_t
release_sem(sem_id id)
{
return release_sem_etc(id, 1, 0);
}
status_t
release_sem_etc(sem_id id, int32 count, uint32 flags)
{
// ToDo: add support for B_CHECK_PERMISSION
struct thread_queue releaseQueue;
int32 slot = id % sMaxSems;
cpu_status state;
status_t status = B_OK;
if (sSemsActive == false)
return B_NO_MORE_SEMS;
if (id < 0)
return B_BAD_SEM_ID;
if (count <= 0 && (flags & B_RELEASE_ALL) == 0)
return B_BAD_VALUE;
state = disable_interrupts();
GRAB_SEM_LOCK(sSems[slot]);
if (sSems[slot].id != id) {
TRACE(("sem_release_etc: invalid sem_id %ld\n", id));
status = B_BAD_SEM_ID;
goto err;
}
// clear out a queue we will use to hold all of the threads that we will have to
// put back into the run list. This is done so the thread lock wont be held
// while this sems lock is held since the two locks are grabbed in the other
// order in sem_interrupt_thread.
clear_thread_queue(&releaseQueue);
if (flags & B_RELEASE_ALL) {
count = -sSems[slot].u.used.count;
// is there anything to do for us at all?
if (count == 0)
goto err;
}
while (count > 0) {
int delta = count;
if (sSems[slot].u.used.count < 0) {
struct thread *thread = thread_lookat_queue(&sSems[slot].u.used.queue);
delta = min(count, thread->sem.count);
thread->sem.count -= delta;
if (thread->sem.count <= 0) {
// release this thread
thread = thread_dequeue(&sSems[slot].u.used.queue);
thread_enqueue(thread, &releaseQueue);
thread->state = B_THREAD_READY;
thread->sem.count = 0;
}
} else if (flags & B_RELEASE_IF_WAITING_ONLY)
break;
sSems[slot].u.used.count += delta;
count -= delta;
}
RELEASE_SEM_LOCK(sSems[slot]);
// pull off any items in the release queue and put them in the run queue
if (releaseQueue.head != NULL) {
struct thread *thread;
int32 priority;
GRAB_THREAD_LOCK();
while ((thread = thread_dequeue(&releaseQueue)) != NULL) {
// temporarily place thread in a run queue with high priority to boost it up
priority = thread->priority;
thread->priority = thread->priority >= B_FIRST_REAL_TIME_PRIORITY ?
thread->priority : B_FIRST_REAL_TIME_PRIORITY;
scheduler_enqueue_in_run_queue(thread);
thread->priority = priority;
}
if ((flags & B_DO_NOT_RESCHEDULE) == 0)
scheduler_reschedule();
RELEASE_THREAD_LOCK();
}
goto outnolock;
err:
RELEASE_SEM_LOCK(sSems[slot]);
outnolock:
restore_interrupts(state);
return status;
}
status_t
get_sem_count(sem_id id, int32 *thread_count)
{
int slot;
int state;
if (sSemsActive == false)
return B_NO_MORE_SEMS;
if (id < 0)
return B_BAD_SEM_ID;
if (thread_count == NULL)
return EINVAL;
slot = id % sMaxSems;
state = disable_interrupts();
GRAB_SEM_LOCK(sSems[slot]);
if (sSems[slot].id != id) {
RELEASE_SEM_LOCK(sSems[slot]);
restore_interrupts(state);
TRACE(("sem_get_count: invalid sem_id %ld\n", id));
return B_BAD_SEM_ID;
}
*thread_count = sSems[slot].u.used.count;
RELEASE_SEM_LOCK(sSems[slot]);
restore_interrupts(state);
return B_NO_ERROR;
}
/** Fills the thread_info structure with information from the specified
* thread.
* The thread lock must be held when called.
*/
static void
fill_sem_info(struct sem_entry *sem, sem_info *info, size_t size)
{
info->sem = sem->id;
info->team = sem->u.used.owner;
strlcpy(info->name, sem->u.used.name, sizeof(info->name));
info->count = sem->u.used.count;
// ToDo: not sure if this is the latest holder, or the next
// holder...
if (sem->u.used.queue.head != NULL)
info->latest_holder = sem->u.used.queue.head->id;
else
info->latest_holder = -1;
}
/** The underscore is needed for binary compatibility with BeOS.
* OS.h contains the following macro:
* #define get_sem_info(sem, info) \
* _get_sem_info((sem), (info), sizeof(*(info)))
*/
status_t
_get_sem_info(sem_id id, struct sem_info *info, size_t size)
{
status_t status = B_OK;
int state;
int slot;
if (!sSemsActive)
return B_NO_MORE_SEMS;
if (id < 0)
return B_BAD_SEM_ID;
if (info == NULL || size != sizeof(sem_info))
return B_BAD_VALUE;
slot = id % sMaxSems;
state = disable_interrupts();
GRAB_SEM_LOCK(sSems[slot]);
if (sSems[slot].id != id) {
status = B_BAD_SEM_ID;
TRACE(("get_sem_info: invalid sem_id %ld\n", id));
} else
fill_sem_info(&sSems[slot], info, size);
RELEASE_SEM_LOCK(sSems[slot]);
restore_interrupts(state);
return status;
}
/** The underscore is needed for binary compatibility with BeOS.
* OS.h contains the following macro:
* #define get_next_sem_info(team, cookie, info) \
* _get_next_sem_info((team), (cookie), (info), sizeof(*(info)))
*/
status_t
_get_next_sem_info(team_id team, int32 *_cookie, struct sem_info *info, size_t size)
{
int state;
int slot;
bool found = false;
if (!sSemsActive)
return B_NO_MORE_SEMS;
if (_cookie == NULL || info == NULL || size != sizeof(sem_info))
return B_BAD_VALUE;
if (team == B_CURRENT_TEAM)
team = team_get_current_team_id();
/* prevents sSems[].owner == -1 >= means owned by a port */
if (team < 0 || !team_is_valid(team))
return B_BAD_TEAM_ID;
slot = *_cookie;
if (slot >= sMaxSems)
return B_BAD_VALUE;
state = disable_interrupts();
GRAB_SEM_LIST_LOCK();
while (slot < sMaxSems) {
if (sSems[slot].id != -1 && sSems[slot].u.used.owner == team) {
GRAB_SEM_LOCK(sSems[slot]);
if (sSems[slot].id != -1 && sSems[slot].u.used.owner == team) {
// found one!
fill_sem_info(&sSems[slot], info, size);
RELEASE_SEM_LOCK(sSems[slot]);
slot++;
found = true;
break;
}
RELEASE_SEM_LOCK(sSems[slot]);
}
slot++;
}
RELEASE_SEM_LIST_LOCK();
restore_interrupts(state);
if (!found)
return B_BAD_VALUE;
*_cookie = slot;
return B_OK;
}
status_t
set_sem_owner(sem_id id, team_id team)
{
int state;
int slot;
if (sSemsActive == false)
return B_NO_MORE_SEMS;
if (id < 0)
return B_BAD_SEM_ID;
if (team < 0 || !team_is_valid(team))
return B_BAD_TEAM_ID;
slot = id % sMaxSems;
state = disable_interrupts();
GRAB_SEM_LOCK(sSems[slot]);
if (sSems[slot].id != id) {
RELEASE_SEM_LOCK(sSems[slot]);
restore_interrupts(state);
TRACE(("set_sem_owner: invalid sem_id %ld\n", id));
return B_BAD_SEM_ID;
}
// ToDo: this is a small race condition: the team ID could already
// be invalid at this point - we would lose one semaphore slot in
// this case!
// The only safe way to do this is to prevent either team (the new
// or the old owner) from dying until we leave the spinlock.
sSems[slot].u.used.owner = team;
RELEASE_SEM_LOCK(sSems[slot]);
restore_interrupts(state);
return B_NO_ERROR;
}
/** Wake up a thread that's blocked on a semaphore
* this function must be entered with interrupts disabled and THREADLOCK held
*/
status_t
sem_interrupt_thread(struct thread *thread)
{
struct thread_queue wakeupQueue;
int32 slot;
TRACE(("sem_interrupt_thread: called on thread %p (%d), blocked on sem 0x%x\n",
thread, thread->id, thread->sem.blocking));
if (thread->state != B_THREAD_WAITING || thread->sem.blocking < 0)
return B_BAD_VALUE;
if ((thread->sem.flags & B_CAN_INTERRUPT) == 0
&& ((thread->sem.flags & B_KILL_CAN_INTERRUPT) == 0
|| (thread->sig_pending & KILL_SIGNALS) == 0)) {
return B_NOT_ALLOWED;
}
slot = thread->sem.blocking % sMaxSems;
GRAB_SEM_LOCK(sSems[slot]);
if (sSems[slot].id != thread->sem.blocking) {
panic("sem_interrupt_thread: thread 0x%lx sez it's blocking on sem 0x%lx, but that sem doesn't exist!\n", thread->id, thread->sem.blocking);
}
clear_thread_queue(&wakeupQueue);
if (remove_thread_from_sem(thread, &sSems[slot], &wakeupQueue, B_INTERRUPTED) != B_OK) {
panic("sem_interrupt_thread: thread 0x%lx not found in sem 0x%lx's wait queue\n",
thread->id, thread->sem.blocking);
}
RELEASE_SEM_LOCK(sSems[slot]);
while ((thread = thread_dequeue(&wakeupQueue)) != NULL) {
scheduler_enqueue_in_run_queue(thread);
}
return B_NO_ERROR;
}
/** Forcibly removes a thread from a semaphores wait queue. May have to wake up
* other threads in the process. All threads that need to be woken up are added
* to the passed in thread_queue.
* Must be called with semaphore lock held.
*/
static int
remove_thread_from_sem(struct thread *thread, struct sem_entry *sem,
struct thread_queue *queue, status_t acquireStatus)
{
// remove the thread from the queue and place it in the supplied queue
if (thread_dequeue_id(&sem->u.used.queue, thread->id) != thread)
return B_ENTRY_NOT_FOUND;
sem->u.used.count += thread->sem.acquire_count;
thread->state = thread->next_state = B_THREAD_READY;
thread->sem.acquire_status = acquireStatus;
thread_enqueue(thread, queue);
// now see if more threads need to be woken up
while (sem->u.used.count > 0
&& thread_lookat_queue(&sem->u.used.queue) != NULL) {
int32 delta = min(thread->sem.count, sem->u.used.count);
thread->sem.count -= delta;
if (thread->sem.count <= 0) {
thread = thread_dequeue(&sem->u.used.queue);
thread->state = thread->next_state = B_THREAD_READY;
thread_enqueue(thread, queue);
}
sem->u.used.count -= delta;
}
return B_OK;
}
/** this function cycles through the sem table, deleting all the sems that are owned by
* the passed team_id
*/
int
sem_delete_owned_sems(team_id owner)
{
int state;
int i;
int count = 0;
// ToDo: that looks horribly inefficient - maybe it would be better
// to have them in a list in the team
if (owner < 0)
return B_BAD_TEAM_ID;
state = disable_interrupts();
GRAB_SEM_LIST_LOCK();
for (i = 0; i < sMaxSems; i++) {
if (sSems[i].id != -1 && sSems[i].u.used.owner == owner) {
sem_id id = sSems[i].id;
RELEASE_SEM_LIST_LOCK();
restore_interrupts(state);
delete_sem(id);
count++;
state = disable_interrupts();
GRAB_SEM_LIST_LOCK();
}
}
RELEASE_SEM_LIST_LOCK();
restore_interrupts(state);
return count;
}
int32
sem_max_sems(void)
{
return sMaxSems;
}
int32
sem_used_sems(void)
{
return sUsedSems;
}
// #pragma mark -
sem_id
_user_create_sem(int32 count, const char *userName)
{
char name[B_OS_NAME_LENGTH];
if (userName == NULL)
return create_sem_etc(count, NULL, team_get_current_team_id());
if (!IS_USER_ADDRESS(userName)
|| user_strlcpy(name, userName, B_OS_NAME_LENGTH) < B_OK)
return B_BAD_ADDRESS;
return create_sem_etc(count, name, team_get_current_team_id());
}
status_t
_user_delete_sem(sem_id id)
{
return delete_sem(id);
}
status_t
_user_acquire_sem(sem_id id)
{
return switch_sem_etc(-1, id, 1, B_CAN_INTERRUPT | B_CHECK_PERMISSION, 0);
}
status_t
_user_acquire_sem_etc(sem_id id, int32 count, uint32 flags, bigtime_t timeout)
{
return switch_sem_etc(-1, id, count, flags | B_CAN_INTERRUPT | B_CHECK_PERMISSION, timeout);
}
status_t
_user_switch_sem(sem_id releaseSem, sem_id id)
{
return switch_sem_etc(releaseSem, id, 1, B_CAN_INTERRUPT | B_CHECK_PERMISSION, 0);
}
status_t
_user_switch_sem_etc(sem_id releaseSem, sem_id id, int32 count, uint32 flags, bigtime_t timeout)
{
return switch_sem_etc(releaseSem, id, count, flags | B_CAN_INTERRUPT | B_CHECK_PERMISSION, timeout);
}
status_t
_user_release_sem(sem_id id)
{
return release_sem_etc(id, 1, B_CHECK_PERMISSION);
}
status_t
_user_release_sem_etc(sem_id id, int32 count, uint32 flags)
{
return release_sem_etc(id, count, flags | B_CHECK_PERMISSION);
}
status_t
_user_get_sem_count(sem_id id, int32 *userCount)
{
status_t status;
int32 count;
if (userCount == NULL || !IS_USER_ADDRESS(userCount))
return B_BAD_ADDRESS;
status = get_sem_count(id, &count);
if (status == B_OK && user_memcpy(userCount, &count, sizeof(int32)) < B_OK)
return B_BAD_ADDRESS;
return status;
}
status_t
_user_get_sem_info(sem_id id, struct sem_info *userInfo, size_t size)
{
struct sem_info info;
status_t status;
if (userInfo == NULL || !IS_USER_ADDRESS(userInfo))
return B_BAD_ADDRESS;
status = _get_sem_info(id, &info, size);
if (status == B_OK && user_memcpy(userInfo, &info, size) < B_OK)
return B_BAD_ADDRESS;
return status;
}
status_t
_user_get_next_sem_info(team_id team, int32 *userCookie, struct sem_info *userInfo,
size_t size)
{
struct sem_info info;
int32 cookie;
status_t status;
if (userCookie == NULL || userInfo == NULL
|| !IS_USER_ADDRESS(userCookie) || !IS_USER_ADDRESS(userInfo)
|| user_memcpy(&cookie, userCookie, sizeof(int32)) < B_OK)
return B_BAD_ADDRESS;
status = _get_next_sem_info(team, &cookie, &info, size);
if (status == B_OK) {
if (user_memcpy(userInfo, &info, size) < B_OK
|| user_memcpy(userCookie, &cookie, sizeof(int32)) < B_OK)
return B_BAD_ADDRESS;
}
return status;
}
status_t
_user_set_sem_owner(sem_id id, team_id team)
{
return set_sem_owner(id, team);
}