haiku/src/system/kernel/real_time_clock.c

373 lines
7.8 KiB
C
Raw Normal View History

/*
* Copyright 2004-2005, Axel Dörfler, axeld@pinc-software.de. All rights reserved.
* Copyright 2003, Jeff Ward, jeff@r2d2.stcloudstate.edu. All rights reserved.
*
* Distributed under the terms of the MIT License.
*/
#include <KernelExport.h>
#include <arch/real_time_clock.h>
#include <real_time_clock.h>
#include <real_time_data.h>
#include <stdlib.h>
//#define TRACE_TIME
#ifdef TRACE_TIME
# define TRACE(x) dprintf x
#else
# define TRACE(x)
#endif
static struct real_time_data *sRealTimeData;
static bool sIsGMT = false;
static char sTimezoneFilename[B_PATH_NAME_LENGTH] = "";
static bigtime_t sTimezoneOffset = 0;
static bool sDaylightSavingTime = false;
/** Write the system time to CMOS. */
static void
rtc_system_to_hw(void)
{
uint32 seconds;
seconds = (arch_rtc_get_system_time_offset(sRealTimeData) + system_time()
- (sIsGMT ? 0 : sTimezoneOffset)) / 1000000;
arch_rtc_set_hw_time(seconds);
}
/** Read the CMOS clock and update the system time accordingly. */
static void
rtc_hw_to_system(void)
{
uint32 current_time;
current_time = arch_rtc_get_hw_time();
set_real_time_clock(current_time + (sIsGMT ? 0 : sTimezoneOffset));
}
bigtime_t
rtc_boot_time(void)
{
return arch_rtc_get_system_time_offset(sRealTimeData);
}
static int
rtc_debug(int argc, char **argv)
{
if (argc < 2) {
// If no arguments were given, output all useful data.
uint32 currentTime;
bigtime_t systemTimeOffset
= arch_rtc_get_system_time_offset(sRealTimeData);
currentTime = (systemTimeOffset + system_time()) / 1000000;
dprintf("system_time: %Ld\n", system_time());
dprintf("system_time_offset: %Ld\n", systemTimeOffset);
dprintf("current_time: %lu\n", currentTime);
} else {
// If there was an argument, reset the system and hw time.
set_real_time_clock(strtoul(argv[1], NULL, 10));
}
return 0;
}
status_t
rtc_init(kernel_args *args)
{
void *clonedRealTimeData;
area_id area = create_area("real time data", (void **)&sRealTimeData, B_ANY_KERNEL_ADDRESS,
PAGE_ALIGN(sizeof(struct real_time_data)), B_FULL_LOCK,
B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA);
if (area < B_OK) {
panic("rtc_init: error creating real time data area\n");
return area;
}
// On some systems like x86, a page cannot be read-only in userland and writable
// in the kernel. Therefore, we clone the real time data area here for user
// access; it doesn't hurt on other platforms, too.
// The area is used to share time critical information, such as the system
// time conversion factor which can change at any time.
if (clone_area("real time data userland", &clonedRealTimeData, B_ANY_KERNEL_ADDRESS,
B_READ_AREA, area) < B_OK) {
dprintf("rtc_init: error creating real time data userland area\n");
// we don't panic because it's not kernel critical
}
arch_rtc_init(args, sRealTimeData);
rtc_hw_to_system();
add_debugger_command("rtc", &rtc_debug, "Set and test the real-time clock");
return B_OK;
}
// #pragma mark -
// public kernel API
void
set_real_time_clock(uint32 currentTime)
{
arch_rtc_set_system_time_offset(sRealTimeData,
currentTime * 1000000LL - system_time());
rtc_system_to_hw();
}
uint32
real_time_clock(void)
{
return (arch_rtc_get_system_time_offset(sRealTimeData) + system_time())
/ 1000000;
}
bigtime_t
real_time_clock_usecs(void)
{
return arch_rtc_get_system_time_offset(sRealTimeData) + system_time();
}
status_t
get_rtc_info(rtc_info *info)
{
if (info == NULL)
return B_BAD_VALUE;
info->time = real_time_clock();
info->is_gmt = sIsGMT;
info->tz_minuteswest = sTimezoneOffset;
info->tz_dsttime = sDaylightSavingTime;
return B_OK;
}
// #pragma mark -
#define SECONDS_31 2678400
#define SECONDS_30 2592000
#define SECONDS_28 2419200
#define SECONDS_DAY 86400
static uint32 sSecsPerMonth[12] = {SECONDS_31, SECONDS_28, SECONDS_31, SECONDS_30,
SECONDS_31, SECONDS_30, SECONDS_31, SECONDS_31, SECONDS_30, SECONDS_31, SECONDS_30,
SECONDS_31};
static bool
leap_year(uint32 year)
{
if (year % 400 == 0)
return true;
if (year % 100 == 0)
return false;
if (year % 4 == 0)
return true;
return false;
}
static inline uint32
secs_this_year(uint32 year)
{
if (leap_year(year))
return 31622400;
return 31536000;
}
uint32
rtc_tm_to_secs(const struct tm *t)
{
uint32 wholeYear;
uint32 time = 0;
uint32 i;
wholeYear = 1900 + t->tm_year;
// ToDo: get rid of these loops and compute the correct value
// i.e. days = (long)(year > 0) + year*365 + --year/4 - year/100 + year/400;
// let sSecsPerMonth[] have the values already added up
// Add up the seconds from all years since 1970 that have elapsed.
for (i = RTC_EPOCHE_BASE_YEAR; i < wholeYear; ++i) {
time += secs_this_year(i);
}
// Add up the seconds from all months passed this year.
for (i = 0; i < t->tm_mon && i < 12; ++i)
time += sSecsPerMonth[i];
// Add up the seconds from all days passed this month.
if (leap_year(wholeYear) && t->tm_mon >= 2)
time += SECONDS_DAY;
time += (t->tm_mday - 1) * SECONDS_DAY;
time += t->tm_hour * 3600;
time += t->tm_min * 60;
time += t->tm_sec;
return time;
}
void
rtc_secs_to_tm(uint32 seconds, struct tm *t)
{
uint32 wholeYear = RTC_EPOCHE_BASE_YEAR;
uint32 secsThisYear;
bool keepLooping;
bool isLeapYear;
int temp;
int month;
keepLooping = 1;
// Determine the current year by starting at 1970 and incrementing whole_year as long as
// we can keep subtracting secs_this_year from seconds.
while (keepLooping) {
secsThisYear = secs_this_year(wholeYear);
if (seconds >= secsThisYear) {
seconds -= secsThisYear;
++wholeYear;
} else
keepLooping = false;
}
t->tm_year = wholeYear - RTC_EPOCHE_BASE_YEAR;
// Determine the current month
month = 0;
isLeapYear = leap_year(wholeYear);
do {
temp = seconds - sSecsPerMonth[month];
if (isLeapYear && month == 1)
temp -= SECONDS_DAY;
if (temp >= 0) {
seconds = temp;
++month;
}
} while (temp >= 0 && month < 12);
t->tm_mon = month;
t->tm_mday = seconds / SECONDS_DAY + 1;
seconds = seconds % SECONDS_DAY;
t->tm_hour = seconds / 3600;
seconds = seconds % 3600;
t->tm_min = seconds / 60;
seconds = seconds % 60;
t->tm_sec = seconds;
}
// #pragma mark -
// public userland API
bigtime_t
_user_system_time(void)
{
return system_time();
}
status_t
_user_set_real_time_clock(uint32 time)
{
if (geteuid() != 0)
return B_NOT_ALLOWED;
set_real_time_clock(time);
return B_OK;
}
status_t
_user_set_timezone(time_t timezoneOffset, bool daylightSavingTime)
{
bigtime_t offset = (bigtime_t)timezoneOffset * 1000000LL;
if (geteuid() != 0)
return B_NOT_ALLOWED;
TRACE(("old system_time_offset %Ld old %Ld new %Ld gmt %d\n",
arch_rtc_get_system_time_offset(sRealTimeData), sTimezoneOffset, offset,
sIsGMT));
// We only need to update our time offset if the hardware clock
// does not run in the local timezone.
// Since this is shared data, we need to update it atomically.
if (!sIsGMT) {
arch_rtc_set_system_time_offset(sRealTimeData,
sTimezoneOffset - offset);
}
sTimezoneOffset = offset;
sDaylightSavingTime = daylightSavingTime;
TRACE(("new system_time_offset %Ld\n",
arch_rtc_get_system_time_offset(sRealTimeData)));
return B_OK;
}
status_t
_user_set_tzfilename(const char *filename, size_t length, bool isGMT)
{
if (geteuid() != 0)
return B_NOT_ALLOWED;
if (!IS_USER_ADDRESS(filename)
|| filename == NULL
|| user_strlcpy(sTimezoneFilename, filename, B_PATH_NAME_LENGTH) < B_OK)
return B_BAD_ADDRESS;
// ToDo: Shouldn't this update the system_time_offset as well?
sIsGMT = isGMT;
return B_OK;
}
status_t
_user_get_tzfilename(char *filename, size_t length, bool *_isGMT)
{
if (filename == NULL || _isGMT == NULL
|| !IS_USER_ADDRESS(filename) || !IS_USER_ADDRESS(_isGMT)
|| user_strlcpy(filename, sTimezoneFilename, length) < B_OK
|| user_memcpy(_isGMT, &sIsGMT, sizeof(bool)) < B_OK)
return B_BAD_ADDRESS;
return B_OK;
}