haiku/src/system/kernel/module.cpp

1371 lines
33 KiB
C++
Raw Normal View History

/*
* Copyright 2002-2007, Haiku Inc. All rights reserved.
* Distributed under the terms of the MIT License.
*
* Copyright 2001, Thomas Kurschel. All rights reserved.
* Distributed under the terms of the NewOS License.
*/
/** Manages kernel add-ons and their exported modules. */
#include <boot_device.h>
#include <elf.h>
#include <kmodule.h>
#include <lock.h>
#include <vfs.h>
#include <boot/elf.h>
#include <fs/KPath.h>
#include <util/khash.h>
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
//#define TRACE_MODULE
#ifdef TRACE_MODULE
# define TRACE(x) dprintf x
#else
# define TRACE(x) ;
#endif
#define FATAL(x) dprintf x
#define MODULE_HASH_SIZE 16
/** The modules referenced by this structure are built-in
* modules that can't be loaded from disk.
*/
extern module_info gDeviceManagerModule;
extern module_info gDeviceRootModule;
extern module_info gDeviceForDriversModule;
extern module_info gFrameBufferConsoleModule;
// file systems
extern module_info gRootFileSystem;
extern module_info gDeviceFileSystem;
extern module_info gPipeFileSystem;
static module_info *sBuiltInModules[] = {
&gDeviceManagerModule,
&gDeviceRootModule,
&gDeviceForDriversModule,
&gFrameBufferConsoleModule,
&gRootFileSystem,
&gDeviceFileSystem,
&gPipeFileSystem,
NULL
};
enum module_state {
MODULE_QUERIED = 0,
MODULE_LOADED,
MODULE_INIT,
MODULE_READY,
MODULE_UNINIT,
MODULE_ERROR
};
/* Each loaded module image (which can export several modules) is put
* in a hash (gModuleImagesHash) to be easily found when you search
* for a specific file name.
* ToDo: Could use only the inode number for hashing. Would probably be
* a little bit slower, but would lower the memory foot print quite a lot.
*/
struct module_image {
struct module_image *next;
module_info **info; /* the module_info we use */
module_dependency *dependencies;
char *path; /* the full path for the module */
image_id image;
int32 ref_count; /* how many ref's to this file */
bool keep_loaded;
};
/* Each known module will have this structure which is put in the
* gModulesHash, and looked up by name.
*/
struct module {
struct module *next;
::module_image *module_image;
char *name;
char *file;
int32 ref_count;
module_info *info; /* will only be valid if ref_count > 0 */
int32 offset; /* this is the offset in the headers */
module_state state; /* state of module */
uint32 flags;
};
#define B_BUILT_IN_MODULE 2
typedef struct module_path {
const char *name;
uint32 base_length;
} module_path;
typedef struct module_iterator {
module_path *stack;
int32 stack_size;
int32 stack_current;
char *prefix;
size_t prefix_length;
DIR *current_dir;
status_t status;
int32 module_offset;
/* This is used to keep track of which module_info
* within a module we're addressing. */
::module_image *module_image;
module_info **current_header;
const char *current_path;
uint32 path_base_length;
const char *current_module_path;
bool builtin_modules;
bool loaded_modules;
} module_iterator;
static bool sDisableUserAddOns = false;
/* locking scheme: there is a global lock only; having several locks
* makes trouble if dependent modules get loaded concurrently ->
* they have to wait for each other, i.e. we need one lock per module;
* also we must detect circular references during init and not dead-lock
*/
static recursive_lock sModulesLock;
/* These are the standard base paths where we start to look for modules
* to load. Order is important, the last entry here will be searched
* first.
* ToDo: these should probably be retrieved by using find_directory().
*/
static const char * const sModulePaths[] = {
"/boot/beos/system/add-ons/kernel",
"/boot/home/config/add-ons/kernel",
};
#define NUM_MODULE_PATHS (sizeof(sModulePaths) / sizeof(sModulePaths[0]))
#define FIRST_USER_MODULE_PATH (NUM_MODULE_PATHS - 1) /* first user path */
/* we store the loaded modules by directory path, and all known modules by module name
* in a hash table for quick access
*/
static hash_table *sModuleImagesHash;
static hash_table *sModulesHash;
/** calculates hash for a module using its name */
static uint32
module_hash(void *_module, const void *_key, uint32 range)
{
module *module = (struct module *)_module;
const char *name = (const char *)_key;
if (module != NULL)
return hash_hash_string(module->name) % range;
if (name != NULL)
return hash_hash_string(name) % range;
return 0;
}
/** compares a module to a given name */
static int
module_compare(void *_module, const void *_key)
{
module *module = (struct module *)_module;
const char *name = (const char *)_key;
if (name == NULL)
return -1;
return strcmp(module->name, name);
}
/** calculates the hash of a module image using its path */
static uint32
module_image_hash(void *_module, const void *_key, uint32 range)
{
module_image *image = (module_image *)_module;
const char *path = (const char *)_key;
if (image != NULL)
return hash_hash_string(image->path) % range;
if (path != NULL)
return hash_hash_string(path) % range;
return 0;
}
/** compares a module image to a path */
static int
module_image_compare(void *_module, const void *_key)
{
module_image *image = (module_image *)_module;
const char *path = (const char *)_key;
if (path == NULL)
return -1;
return strcmp(image->path, path);
}
static inline void
inc_module_ref_count(struct module *module)
{
module->ref_count++;
}
static inline void
dec_module_ref_count(struct module *module)
{
module->ref_count--;
}
/** Try to load the module image at the specified location.
* If it could be loaded, it returns B_OK, and stores a pointer
* to the module_image object in "_moduleImage".
*/
static status_t
load_module_image(const char *path, module_image **_moduleImage)
{
module_image *moduleImage;
status_t status;
image_id image;
TRACE(("load_module_image(path = \"%s\", _image = %p)\n", path, _moduleImage));
ASSERT(_moduleImage != NULL);
image = load_kernel_add_on(path);
if (image < 0) {
dprintf("load_module_image(%s) failed: %s\n", path, strerror(image));
return image;
}
moduleImage = (module_image *)malloc(sizeof(module_image));
if (!moduleImage) {
status = B_NO_MEMORY;
goto err;
}
if (get_image_symbol(image, "modules", B_SYMBOL_TYPE_DATA,
(void **)&moduleImage->info) != B_OK) {
TRACE(("load_module_image: Failed to load \"%s\" due to lack of 'modules' symbol\n", path));
status = B_BAD_TYPE;
goto err1;
}
moduleImage->dependencies = NULL;
get_image_symbol(image, "module_dependencies", B_SYMBOL_TYPE_DATA,
(void **)&moduleImage->dependencies);
// this is allowed to be NULL
moduleImage->path = strdup(path);
if (!moduleImage->path) {
status = B_NO_MEMORY;
goto err1;
}
moduleImage->image = image;
moduleImage->ref_count = 0;
moduleImage->keep_loaded = false;
recursive_lock_lock(&sModulesLock);
hash_insert(sModuleImagesHash, moduleImage);
recursive_lock_unlock(&sModulesLock);
*_moduleImage = moduleImage;
return B_OK;
err1:
free(moduleImage);
err:
unload_kernel_add_on(image);
return status;
}
static status_t
unload_module_image(module_image *moduleImage, const char *path)
{
TRACE(("unload_module_image(image = %p, path = %s)\n", moduleImage, path));
recursive_lock_lock(&sModulesLock);
if (moduleImage == NULL) {
// if no image was specified, lookup it up in the hash table
moduleImage = (module_image *)hash_lookup(sModuleImagesHash, path);
if (moduleImage == NULL) {
recursive_lock_unlock(&sModulesLock);
return B_ENTRY_NOT_FOUND;
}
}
if (moduleImage->ref_count != 0) {
FATAL(("Can't unload %s due to ref_cnt = %ld\n", moduleImage->path, moduleImage->ref_count));
return B_ERROR;
}
hash_remove(sModuleImagesHash, moduleImage);
recursive_lock_unlock(&sModulesLock);
unload_kernel_add_on(moduleImage->image);
free(moduleImage->path);
free(moduleImage);
return B_OK;
}
static void
put_module_image(module_image *image)
{
int32 refCount = atomic_add(&image->ref_count, -1);
ASSERT(refCount > 0);
// Don't unload anything when there is no boot device yet
// (because chances are that we will never be able to access it again)
if (refCount == 1 && !image->keep_loaded && gBootDevice > 0)
unload_module_image(image, NULL);
}
static status_t
get_module_image(const char *path, module_image **_image)
{
struct module_image *image;
TRACE(("get_module_image(path = \"%s\", _image = %p)\n", path, _image));
image = (module_image *)hash_lookup(sModuleImagesHash, path);
if (image == NULL) {
status_t status = load_module_image(path, &image);
if (status < B_OK)
return status;
}
atomic_add(&image->ref_count, 1);
*_image = image;
return B_OK;
}
/** Extract the information from the module_info structure pointed at
* by "info" and create the entries required for access to it's details.
*/
static status_t
create_module(module_info *info, const char *file, int offset, module **_module)
{
module *module;
TRACE(("create_module(info = %p, file = \"%s\", offset = %d, _module = %p)\n",
info, file, offset, _module));
if (!info->name)
return B_BAD_VALUE;
module = (struct module *)hash_lookup(sModulesHash, info->name);
if (module) {
FATAL(("Duplicate module name (%s) detected... ignoring new one\n", info->name));
return B_FILE_EXISTS;
}
if ((module = (struct module *)malloc(sizeof(struct module))) == NULL)
return B_NO_MEMORY;
TRACE(("create_module: name = \"%s\", file = \"%s\"\n", info->name, file));
module->module_image = NULL;
module->name = strdup(info->name);
if (module->name == NULL) {
free(module);
return B_NO_MEMORY;
}
module->file = strdup(file);
if (module->file == NULL) {
free(module->name);
free(module);
return B_NO_MEMORY;
}
module->state = MODULE_QUERIED;
module->info = info;
module->offset = offset;
// record where the module_info can be found in the module_info array
module->ref_count = 0;
module->flags = info->flags;
recursive_lock_lock(&sModulesLock);
hash_insert(sModulesHash, module);
recursive_lock_unlock(&sModulesLock);
if (_module)
*_module = module;
return B_OK;
}
/** Loads the file at "path" and scans all modules contained therein.
* Returns B_OK if "searchedName" could be found under those modules,
* B_ENTRY_NOT_FOUND if not.
* Must only be called for files that haven't been scanned yet.
* "searchedName" is allowed to be NULL (if all modules should be scanned)
*/
static status_t
check_module_image(const char *path, const char *searchedName)
{
module_image *image;
module_info **info;
int index = 0, match = B_ENTRY_NOT_FOUND;
TRACE(("check_module_image(path = \"%s\", searchedName = \"%s\")\n", path, searchedName));
ASSERT(hash_lookup(sModuleImagesHash, path) == NULL);
if (load_module_image(path, &image) < B_OK)
return B_ENTRY_NOT_FOUND;
for (info = image->info; *info; info++) {
// try to create a module for every module_info, check if the
// name matches if it was a new entry
if (create_module(*info, path, index++, NULL) == B_OK) {
if (searchedName && !strcmp((*info)->name, searchedName))
match = B_OK;
}
}
// The module we looked for couldn't be found, so we can unload the
// loaded module at this point
if (match != B_OK) {
TRACE(("check_module_file: unloading module file \"%s\" (not used yet)\n", path));
unload_module_image(image, path);
}
return match;
}
/** This is only called if we fail to find a module already in our cache...
* saves us some extra checking here :)
*/
static module *
search_module(const char *name)
{
status_t status = B_ENTRY_NOT_FOUND;
uint32 i;
TRACE(("search_module(%s)\n", name));
for (i = 0; i < NUM_MODULE_PATHS; i++) {
char path[B_FILE_NAME_LENGTH];
if (sDisableUserAddOns && i >= FIRST_USER_MODULE_PATH)
return NULL;
// let the VFS find that module for us
status = vfs_get_module_path(sModulePaths[i], name, path, sizeof(path));
if (status == B_OK) {
status = check_module_image(path, name);
if (status == B_OK)
break;
}
}
if (status != B_OK)
return NULL;
return (module *)hash_lookup(sModulesHash, name);
}
static status_t
put_dependent_modules(struct module *module)
{
module_dependency *dependencies;
int32 i = 0;
if (module->module_image == NULL
|| (dependencies = module->module_image->dependencies) == NULL)
return B_OK;
for (; dependencies[i].name != NULL; i++) {
status_t status = put_module(dependencies[i].name);
if (status < B_OK)
return status;
}
return B_OK;
}
static status_t
get_dependent_modules(struct module *module)
{
module_dependency *dependencies;
int32 i = 0;
// built-in modules don't have a module_image structure
if (module->module_image == NULL
|| (dependencies = module->module_image->dependencies) == NULL)
return B_OK;
TRACE(("resolving module dependencies...\n"));
for (; dependencies[i].name != NULL; i++) {
status_t status = get_module(dependencies[i].name, dependencies[i].info);
if (status < B_OK) {
TRACE(("loading dependent module \"%s\" failed!\n", dependencies[i].name));
return status;
}
}
return B_OK;
}
/** Initializes a loaded module depending on its state */
static inline status_t
init_module(module *module)
{
switch (module->state) {
case MODULE_QUERIED:
case MODULE_LOADED:
{
status_t status;
module->state = MODULE_INIT;
// resolve dependencies
status = get_dependent_modules(module);
if (status < B_OK) {
module->state = MODULE_LOADED;
return status;
}
// init module
TRACE(("initializing module %s (at %p)... \n", module->name, module->info->std_ops));
status = module->info->std_ops(B_MODULE_INIT);
TRACE(("...done (%s)\n", strerror(status)));
if (status >= B_OK)
module->state = MODULE_READY;
else {
put_dependent_modules(module);
module->state = MODULE_LOADED;
}
return status;
}
case MODULE_READY:
return B_OK;
case MODULE_INIT:
FATAL(("circular reference to %s\n", module->name));
return B_ERROR;
case MODULE_UNINIT:
FATAL(("tried to load module %s which is currently unloading\n", module->name));
return B_ERROR;
case MODULE_ERROR:
FATAL(("cannot load module %s because its earlier unloading failed\n", module->name));
return B_ERROR;
default:
return B_ERROR;
}
// never trespasses here
}
/** Uninitializes a module depeding on its state */
static inline int
uninit_module(module *module)
{
TRACE(("uninit_module(%s)\n", module->name));
switch (module->state) {
case MODULE_QUERIED:
case MODULE_LOADED:
return B_NO_ERROR;
case MODULE_INIT:
panic("Trying to unload module %s which is initializing\n", module->name);
return B_ERROR;
case MODULE_UNINIT:
panic("Trying to unload module %s which is un-initializing\n", module->name);
return B_ERROR;
case MODULE_READY:
{
status_t status;
module->state = MODULE_UNINIT;
TRACE(("uninitializing module %s...\n", module->name));
status = module->info->std_ops(B_MODULE_UNINIT);
TRACE(("...done (%s)\n", strerror(status)));
if (status == B_NO_ERROR) {
module->state = MODULE_LOADED;
put_dependent_modules(module);
return 0;
}
FATAL(("Error unloading module %s (%s)\n", module->name, strerror(status)));
module->state = MODULE_ERROR;
module->flags |= B_KEEP_LOADED;
return status;
}
default:
return B_ERROR;
}
// never trespasses here
}
static const char *
iterator_pop_path_from_stack(module_iterator *iterator, uint32 *_baseLength)
{
if (iterator->stack_current <= 0)
return NULL;
if (_baseLength)
*_baseLength = iterator->stack[iterator->stack_current - 1].base_length;
return iterator->stack[--iterator->stack_current].name;
}
static status_t
iterator_push_path_on_stack(module_iterator *iterator, const char *path, uint32 baseLength)
{
if (iterator->stack_current + 1 > iterator->stack_size) {
// allocate new space on the stack
module_path *stack = (module_path *)realloc(iterator->stack,
(iterator->stack_size + 8) * sizeof(module_path));
if (stack == NULL)
return B_NO_MEMORY;
iterator->stack = stack;
iterator->stack_size += 8;
}
iterator->stack[iterator->stack_current].name = path;
iterator->stack[iterator->stack_current++].base_length = baseLength;
return B_OK;
}
static status_t
iterator_get_next_module(module_iterator *iterator, char *buffer,
size_t *_bufferSize)
{
status_t status;
TRACE(("iterator_get_next_module() -- start\n"));
if (iterator->builtin_modules) {
for (int32 i = iterator->module_offset; sBuiltInModules[i] != NULL; i++) {
// the module name must fit the prefix
if (strncmp(sBuiltInModules[i]->name, iterator->prefix,
iterator->prefix_length))
continue;
*_bufferSize = strlcpy(buffer, sBuiltInModules[i]->name,
*_bufferSize);
iterator->module_offset = i + 1;
return B_OK;
}
iterator->builtin_modules = false;
}
if (iterator->loaded_modules) {
recursive_lock_lock(&sModulesLock);
hash_iterator hashIterator;
hash_open(sModulesHash, &hashIterator);
struct module *module = (struct module *)hash_next(sModulesHash,
&hashIterator);
for (int32 i = 0; module != NULL; i++) {
if (i >= iterator->module_offset) {
if (!strncmp(module->name, iterator->prefix,
iterator->prefix_length)) {
*_bufferSize = strlcpy(buffer, module->name, *_bufferSize);
iterator->module_offset = i + 1;
hash_close(sModulesHash, &hashIterator, false);
recursive_lock_unlock(&sModulesLock);
return B_OK;
}
}
module = (struct module *)hash_next(sModulesHash, &hashIterator);
}
hash_close(sModulesHash, &hashIterator, false);
recursive_lock_unlock(&sModulesLock);
// prevent from falling into modules hash iteration again
iterator->loaded_modules = false;
}
nextPath:
if (iterator->current_dir == NULL) {
// get next directory path from the stack
const char *path = iterator_pop_path_from_stack(iterator,
&iterator->path_base_length);
if (path == NULL) {
// we are finished, there are no more entries on the stack
return B_ENTRY_NOT_FOUND;
}
free((void *)iterator->current_path);
iterator->current_path = path;
iterator->current_dir = opendir(path);
TRACE(("open directory at %s -> %p\n", path, iterator->current_dir));
if (iterator->current_dir == NULL) {
// we don't throw an error here, but silently go to
// the next directory on the stack
goto nextPath;
}
}
nextModuleImage:
if (iterator->current_header == NULL) {
// get next entry from the current directory
errno = 0;
struct dirent *dirent;
if ((dirent = readdir(iterator->current_dir)) == NULL) {
closedir(iterator->current_dir);
iterator->current_dir = NULL;
if (errno < B_OK)
return errno;
goto nextPath;
}
// check if the prefix matches
int32 passedOffset, commonLength;
passedOffset = strlen(iterator->current_path) + 1;
commonLength = iterator->path_base_length + iterator->prefix_length
- passedOffset;
if (commonLength > 0) {
// the prefix still reaches into the new path part
int32 length = strlen(dirent->d_name);
if (commonLength > length)
commonLength = length;
if (strncmp(dirent->d_name, iterator->prefix + passedOffset
- iterator->path_base_length, commonLength))
goto nextModuleImage;
}
// we're not interested in traversing these again
if (!strcmp(dirent->d_name, ".")
|| !strcmp(dirent->d_name, ".."))
goto nextModuleImage;
// build absolute path to current file
KPath path(iterator->current_path);
if (path.InitCheck() != B_OK)
return B_NO_MEMORY;
if (path.Append(dirent->d_name) != B_OK)
return B_BUFFER_OVERFLOW;
// find out if it's a directory or a file
struct stat st;
if (stat(path.Path(), &st) < 0)
return errno;
iterator->current_module_path = strdup(path.Path());
if (iterator->current_module_path == NULL)
return B_NO_MEMORY;
if (S_ISDIR(st.st_mode)) {
status = iterator_push_path_on_stack(iterator,
iterator->current_module_path, iterator->path_base_length);
if (status < B_OK)
return status;
iterator->current_module_path = NULL;
goto nextModuleImage;
}
if (!S_ISREG(st.st_mode))
return B_BAD_TYPE;
TRACE(("open module at %s\n", path.Path()));
status = get_module_image(path.Path(), &iterator->module_image);
if (status < B_OK) {
free((void *)iterator->current_module_path);
iterator->current_module_path = NULL;
goto nextModuleImage;
}
iterator->current_header = iterator->module_image->info;
iterator->module_offset = 0;
}
// search the current module image until we've got a match
while (*iterator->current_header != NULL) {
module_info *info = *iterator->current_header;
// ToDo: we might want to create a module here and cache it in the hash table
iterator->current_header++;
iterator->module_offset++;
if (strncmp(info->name, iterator->prefix, iterator->prefix_length))
continue;
*_bufferSize = strlcpy(buffer, info->name, *_bufferSize);
return B_OK;
}
// leave this module and get the next one
iterator->current_header = NULL;
free((void *)iterator->current_module_path);
iterator->current_module_path = NULL;
put_module_image(iterator->module_image);
iterator->module_image = NULL;
goto nextModuleImage;
}
static void
register_builtin_modules(struct module_info **info)
{
for (; *info; info++) {
(*info)->flags |= B_BUILT_IN_MODULE;
// this is an internal flag, it doesn't have to be set by modules itself
if (create_module(*info, "", -1, NULL) != B_OK)
dprintf("creation of built-in module \"%s\" failed!\n", (*info)->name);
}
}
static status_t
register_preloaded_module_image(struct preloaded_image *image)
{
module_image *moduleImage;
struct module_info **info;
status_t status;
int32 index = 0;
TRACE(("register_preloaded_module_image(image = \"%s\")\n", image->name));
if (image->id < 0)
return B_BAD_VALUE;
moduleImage = (module_image *)malloc(sizeof(module_image));
if (moduleImage == NULL)
return B_NO_MEMORY;
if (get_image_symbol(image->id, "modules", B_SYMBOL_TYPE_DATA,
(void **)&moduleImage->info) != B_OK) {
status = B_BAD_TYPE;
goto error;
}
moduleImage->dependencies = NULL;
get_image_symbol(image->id, "module_dependencies", B_SYMBOL_TYPE_DATA,
(void **)&moduleImage->dependencies);
// this is allowed to be NULL
// Try to recreate the full module path, so that we don't try to load the
// image again when asked for a module it does not export (would only be
// problematic if it had got replaced and the new file actually exports
// that module). Also helpful for recurse_directory().
{
// ToDo: this is kind of a hack to have the full path in the hash
// (it always assumes the preloaded add-ons to be in the system directory)
char path[B_FILE_NAME_LENGTH];
const char *name, *suffix;
if (moduleImage->info[0]
&& (suffix = strstr(name = moduleImage->info[0]->name, image->name)) != NULL) {
// even if strlcpy() is used here, it's by no means safe against buffer overflows
size_t length = strlcpy(path, "/boot/beos/system/add-ons/kernel/", sizeof(path));
strlcpy(path + length, name, strlen(image->name) + 1 + (suffix - name));
moduleImage->path = strdup(path);
} else
moduleImage->path = strdup(image->name);
}
if (moduleImage->path == NULL) {
status = B_NO_MEMORY;
goto error;
}
moduleImage->image = image->id;
moduleImage->ref_count = 0;
moduleImage->keep_loaded = false;
hash_insert(sModuleImagesHash, moduleImage);
for (info = moduleImage->info; *info; info++) {
create_module(*info, moduleImage->path, index++, NULL);
}
return B_OK;
error:
free(moduleImage);
// we don't need this image anymore
unload_kernel_add_on(image->id);
return status;
}
static int
dump_modules(int argc, char **argv)
{
hash_iterator iterator;
struct module_image *image;
struct module *module;
hash_rewind(sModulesHash, &iterator);
dprintf("-- known modules:\n");
while ((module = (struct module *)hash_next(sModulesHash, &iterator)) != NULL) {
dprintf("%p: \"%s\", \"%s\" (%ld), refcount = %ld, state = %d, mimage = %p\n",
module, module->name, module->file, module->offset, module->ref_count,
module->state, module->module_image);
}
hash_rewind(sModuleImagesHash, &iterator);
dprintf("\n-- loaded module images:\n");
while ((image = (struct module_image *)hash_next(sModuleImagesHash, &iterator)) != NULL) {
dprintf("%p: \"%s\" (image_id = %ld), info = %p, refcount = %ld, %s\n", image,
image->path, image->image, image->info, image->ref_count,
image->keep_loaded ? "keep loaded" : "can be unloaded");
}
return 0;
}
// #pragma mark -
// Exported Kernel API (private part)
/** Unloads a module in case it's not in use. This is the counterpart
* to load_module().
*/
status_t
unload_module(const char *path)
{
struct module_image *moduleImage;
recursive_lock_lock(&sModulesLock);
moduleImage = (module_image *)hash_lookup(sModuleImagesHash, path);
recursive_lock_unlock(&sModulesLock);
if (moduleImage == NULL)
return B_ENTRY_NOT_FOUND;
put_module_image(moduleImage);
return B_OK;
}
/** Unlike get_module(), this function lets you specify the add-on to
* be loaded by path.
* However, you must not use the exported modules without having called
* get_module() on them. When you're done with the NULL terminated
* \a modules array, you have to call unload_module(), no matter if
* you're actually using any of the modules or not - of course, the
* add-on won't be unloaded until the last put_module().
*/
status_t
load_module(const char *path, module_info ***_modules)
{
module_image *moduleImage;
status_t status = get_module_image(path, &moduleImage);
if (status != B_OK)
return status;
*_modules = moduleImage->info;
return B_OK;
}
/** Setup the module structures and data for use - must be called
* before any other module call.
*/
status_t
module_init(kernel_args *args)
{
struct preloaded_image *image;
if (recursive_lock_init(&sModulesLock, "modules rlock") < B_OK)
return B_ERROR;
sModulesHash = hash_init(MODULE_HASH_SIZE, 0, module_compare, module_hash);
if (sModulesHash == NULL)
return B_NO_MEMORY;
sModuleImagesHash = hash_init(MODULE_HASH_SIZE, 0, module_image_compare, module_image_hash);
if (sModuleImagesHash == NULL)
return B_NO_MEMORY;
// register built-in modules
register_builtin_modules(sBuiltInModules);
// register preloaded images
for (image = args->preloaded_images; image != NULL; image = image->next) {
status_t status = register_preloaded_module_image(image);
if (status != B_OK)
dprintf("Could not register image \"%s\": %s\n", image->name, strerror(status));
}
// ToDo: set sDisableUserAddOns from kernel_args!
add_debugger_command("modules", &dump_modules, "list all known & loaded modules");
return B_OK;
}
// #pragma mark -
// Exported Kernel API (public part)
/** This returns a pointer to a structure that can be used to
* iterate through a list of all modules available under
* a given prefix.
* All paths will be searched and the returned list will
* contain all modules available under the prefix.
* The structure is then used by read_next_module_name(), and
* must be freed by calling close_module_list().
*/
void *
open_module_list(const char *prefix)
{
module_iterator *iterator;
uint32 i;
TRACE(("open_module_list(prefix = %s)\n", prefix));
if (sModulesHash == NULL) {
dprintf("open_module_list() called too early!\n");
return NULL;
}
iterator = (module_iterator *)malloc(sizeof(module_iterator));
if (!iterator)
return NULL;
memset(iterator, 0, sizeof(module_iterator));
iterator->prefix = strdup(prefix != NULL ? prefix : "");
if (iterator->prefix == NULL) {
free(iterator);
return NULL;
}
iterator->prefix_length = strlen(iterator->prefix);
if (gBootDevice > 0) {
// We do have a boot device to scan
// first, we'll traverse over the built-in modules
iterator->builtin_modules = true;
iterator->loaded_modules = false;
// put all search paths on the stack
for (i = 0; i < NUM_MODULE_PATHS; i++) {
if (sDisableUserAddOns && i >= FIRST_USER_MODULE_PATH)
break;
// Build path component: base path + '/' + prefix
size_t length = strlen(sModulePaths[i]);
char *path = (char *)malloc(length + iterator->prefix_length + 2);
if (path == NULL) {
// ToDo: should we abort the whole operation here?
// if we do, don't forget to empty the stack
continue;
}
memcpy(path, sModulePaths[i], length);
path[length] = '/';
memcpy(path + length + 1, iterator->prefix,
iterator->prefix_length + 1);
iterator_push_path_on_stack(iterator, path, length + 1);
}
} else {
// include loaded modules in case there is no boot device yet
iterator->builtin_modules = false;
iterator->loaded_modules = true;
}
return (void *)iterator;
}
/** Frees the cookie allocated by open_module_list()
*/
status_t
close_module_list(void *cookie)
{
module_iterator *iterator = (module_iterator *)cookie;
const char *path;
TRACE(("close_module_list()\n"));
if (iterator == NULL)
return B_BAD_VALUE;
// free stack
while ((path = iterator_pop_path_from_stack(iterator, NULL)) != NULL)
free((void *)path);
// close what have been left open
if (iterator->module_image != NULL)
put_module_image(iterator->module_image);
if (iterator->current_dir != NULL)
closedir(iterator->current_dir);
free(iterator->stack);
free((void *)iterator->current_path);
free((void *)iterator->current_module_path);
free(iterator->prefix);
free(iterator);
return 0;
}
/** Return the next module name from the available list, using
* a structure previously created by a call to open_module_list().
* Returns B_OK as long as it found another module, B_ENTRY_NOT_FOUND
* when done.
*/
status_t
read_next_module_name(void *cookie, char *buffer, size_t *_bufferSize)
{
module_iterator *iterator = (module_iterator *)cookie;
status_t status;
TRACE(("read_next_module_name: looking for next module\n"));
if (iterator == NULL || buffer == NULL || _bufferSize == NULL)
return B_BAD_VALUE;
if (iterator->status < B_OK)
return iterator->status;
status = iterator->status;
recursive_lock_lock(&sModulesLock);
status = iterator_get_next_module(iterator, buffer, _bufferSize);
iterator->status = status;
recursive_lock_unlock(&sModulesLock);
TRACE(("read_next_module_name: finished with status %s\n", strerror(status)));
return status;
}
/** Iterates through all loaded modules, and stores its path in "buffer".
* ToDo: check if the function in BeOS really does that (could also mean:
* iterate through all modules that are currently loaded; have a valid
* module_image pointer, which would be hard to test for)
*/
status_t
get_next_loaded_module_name(uint32 *_cookie, char *buffer, size_t *_bufferSize)
{
if (sModulesHash == NULL) {
dprintf("get_next_loaded_module_name() called too early!\n");
return NULL;
}
//TRACE(("get_next_loaded_module_name(\"%s\")\n", buffer));
if (_cookie == NULL || buffer == NULL || _bufferSize == NULL)
return B_BAD_VALUE;
status_t status = B_ENTRY_NOT_FOUND;
uint32 offset = *_cookie;
recursive_lock_lock(&sModulesLock);
hash_iterator iterator;
hash_open(sModulesHash, &iterator);
struct module *module = (struct module *)hash_next(sModulesHash,
&iterator);
for (uint32 i = 0; module != NULL; i++) {
if (i >= offset) {
*_bufferSize = strlcpy(buffer, module->name, *_bufferSize);
*_cookie = i + 1;
status = B_OK;
break;
}
module = (struct module *)hash_next(sModulesHash, &iterator);
}
hash_close(sModulesHash, &iterator, false);
recursive_lock_unlock(&sModulesLock);
return status;
}
status_t
get_module(const char *path, module_info **_info)
{
module_image *moduleImage;
module *module;
status_t status;
TRACE(("get_module(%s)\n", path));
if (path == NULL)
return B_BAD_VALUE;
recursive_lock_lock(&sModulesLock);
module = (struct module *)hash_lookup(sModulesHash, path);
// if we don't have it cached yet, search for it
if (module == NULL) {
module = search_module(path);
if (module == NULL) {
FATAL(("module: Search for %s failed.\n", path));
goto err;
}
}
if ((module->flags & B_BUILT_IN_MODULE) == 0) {
/* We now need to find the module_image for the module. This should
* be in memory if we have just run search_module(), but may not be
* if we are using cached information.
* We can't use the module->module_image pointer, because it is not
* reliable at this point (it won't be set to NULL when the module_image
* is unloaded).
*/
if (get_module_image(module->file, &moduleImage) < B_OK)
goto err;
// (re)set in-memory data for the loaded module
module->info = moduleImage->info[module->offset];
module->module_image = moduleImage;
// the module image must not be unloaded anymore
if (module->flags & B_KEEP_LOADED)
module->module_image->keep_loaded = true;
}
// The state will be adjusted by the call to init_module
// if we have just loaded the file
if (module->ref_count == 0)
status = init_module(module);
else
status = B_OK;
if (status == B_OK) {
inc_module_ref_count(module);
*_info = module->info;
} else if ((module->flags & B_BUILT_IN_MODULE) == 0)
put_module_image(module->module_image);
recursive_lock_unlock(&sModulesLock);
return status;
err:
recursive_lock_unlock(&sModulesLock);
return B_ENTRY_NOT_FOUND;
}
status_t
put_module(const char *path)
{
module *module;
TRACE(("put_module(path = %s)\n", path));
recursive_lock_lock(&sModulesLock);
module = (struct module *)hash_lookup(sModulesHash, path);
if (module == NULL) {
FATAL(("module: We don't seem to have a reference to module %s\n", path));
recursive_lock_unlock(&sModulesLock);
return B_BAD_VALUE;
}
if ((module->flags & B_KEEP_LOADED) == 0) {
dec_module_ref_count(module);
if (module->ref_count == 0)
uninit_module(module);
}
if ((module->flags & B_BUILT_IN_MODULE) == 0)
put_module_image(module->module_image);
recursive_lock_unlock(&sModulesLock);
return B_OK;
}