haiku/src/system/kernel/disk_device_manager/KPartition.cpp

1394 lines
27 KiB
C++
Raw Normal View History

// KPartition.cpp
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <KernelExport.h>
#include <Drivers.h>
#include <Errors.h>
#include <util/kernel_cpp.h>
#include <ddm_userland_interface.h>
#include <fs/devfs.h>
#include <KDiskDevice.h>
#include <KDiskDeviceManager.h>
#include <KDiskDeviceUtils.h>
#include <KDiskSystem.h>
#include <KPartition.h>
#include <KPartitionListener.h>
#include <KPartitionVisitor.h>
#include <KPath.h>
#include <VectorSet.h>
#include "UserDataWriter.h"
using namespace std;
// debugging
//#define DBG(x)
#define DBG(x) x
#define OUT dprintf
// ListenerSet
struct KPartition::ListenerSet : VectorSet<KPartitionListener*> {};
// constructor
KPartition::KPartition(partition_id id)
: fPartitionData(),
fChildren(),
fDevice(NULL),
fParent(NULL),
fDiskSystem(NULL),
fListeners(NULL),
fChangeFlags(0),
fChangeCounter(0),
fAlgorithmData(0),
fReferenceCount(0),
fObsolete(false),
fPublished(false)
{
fPartitionData.id = (id >= 0 ? id : _NextID());
fPartitionData.offset = 0;
fPartitionData.size = 0;
fPartitionData.content_size = 0;
fPartitionData.block_size = 0;
fPartitionData.child_count = 0;
fPartitionData.index = -1;
fPartitionData.status = B_PARTITION_UNRECOGNIZED;
fPartitionData.flags = B_PARTITION_BUSY | B_PARTITION_DESCENDANT_BUSY;
fPartitionData.volume = -1;
fPartitionData.mount_cookie = NULL;
fPartitionData.name = NULL;
fPartitionData.content_name = NULL;
fPartitionData.type = NULL;
fPartitionData.content_type = NULL;
fPartitionData.parameters = NULL;
fPartitionData.content_parameters = NULL;
fPartitionData.cookie = NULL;
fPartitionData.content_cookie = NULL;
}
// destructor
KPartition::~KPartition()
{
delete fListeners;
SetDiskSystem(NULL);
free(fPartitionData.name);
free(fPartitionData.content_name);
free(fPartitionData.type);
free(fPartitionData.parameters);
free(fPartitionData.content_parameters);
}
// Register
void
KPartition::Register()
{
fReferenceCount++;
}
// Unregister
void
KPartition::Unregister()
{
KDiskDeviceManager *manager = KDiskDeviceManager::Default();
ManagerLocker locker(manager);
fReferenceCount--;
if (IsObsolete() && fReferenceCount == 0) {
// let the manager delete object
manager->DeletePartition(this);
}
}
// CountReferences
int32
KPartition::CountReferences() const
{
return fReferenceCount;
}
// MarkObsolete
void
KPartition::MarkObsolete()
{
fObsolete = true;
}
// IsObsolete
bool
KPartition::IsObsolete() const
{
return fObsolete;
}
// PrepareForRemoval
bool
KPartition::PrepareForRemoval()
{
bool result = RemoveAllChildren();
UnpublishDevice();
if (ParentDiskSystem())
ParentDiskSystem()->FreeCookie(this);
if (DiskSystem())
DiskSystem()->FreeContentCookie(this);
return result;
}
// PrepareForDeletion
bool
KPartition::PrepareForDeletion()
{
return true;
}
// Open
status_t
KPartition::Open(int flags, int *fd)
{
if (!fd)
return B_BAD_VALUE;
// get the path
KPath path;
status_t error = GetPath(&path);
if (error != B_OK)
return error;
// open the device
*fd = open(path.Path(), flags);
if (*fd < 0)
return errno;
return B_OK;
}
// PublishDevice
status_t
KPartition::PublishDevice()
{
if (fPublished)
return B_OK;
// get the path
KPath path;
status_t error = GetPath(&path);
if (error != B_OK)
return error;
// prepare a partition_info
partition_info info;
info.offset = Offset();
info.size = Size();
info.logical_block_size = BlockSize();
info.session = 0;
info.partition = ID();
if (strlcpy(info.device, Device()->Path(), B_PATH_NAME_LENGTH)
>= B_PATH_NAME_LENGTH) {
return B_NAME_TOO_LONG;
}
error = devfs_publish_partition(path.Path() + 5, &info);
// we need to remove the "/dev/" part from the path
if (error != B_OK)
return error;
fPublished = true;
return B_OK;
}
// UnpublishDevice
status_t
KPartition::UnpublishDevice()
{
if (!fPublished)
return B_OK;
// get the path
KPath path;
status_t error = GetPath(&path);
if (error != B_OK)
return error;
fPublished = false;
return devfs_unpublish_partition(path.Path() + 5);
// we need to remove the "/dev/" part from the path
}
// IsPublished
bool
KPartition::IsPublished() const
{
return fPublished;
}
// SetBusy
void
KPartition::SetBusy(bool busy)
{
if (busy)
SetFlags(B_PARTITION_BUSY);
else
ClearFlags(B_PARTITION_BUSY);
}
// IsBusy
bool
KPartition::IsBusy() const
{
return (fPartitionData.flags & B_PARTITION_BUSY);
}
// SetDescendantBusy
void
KPartition::SetDescendantBusy(bool busy)
{
if (busy)
SetFlags(B_PARTITION_DESCENDANT_BUSY);
else
ClearFlags(B_PARTITION_DESCENDANT_BUSY);
}
// IsDescendantBusy
bool
KPartition::IsDescendantBusy() const
{
return (fPartitionData.flags & B_PARTITION_DESCENDANT_BUSY);
}
// SetOffset
void
KPartition::SetOffset(off_t offset)
{
if (fPartitionData.offset != offset) {
fPartitionData.offset = offset;
FireOffsetChanged(offset);
}
}
// Offset
off_t
KPartition::Offset() const
{
return fPartitionData.offset;
}
// SetSize
void
KPartition::SetSize(off_t size)
{
if (fPartitionData.size != size) {
fPartitionData.size = size;
FireSizeChanged(size);
}
}
// Size
off_t
KPartition::Size() const
{
return fPartitionData.size;
}
// SetContentSize
void
KPartition::SetContentSize(off_t size)
{
if (fPartitionData.content_size != size) {
fPartitionData.content_size = size;
FireContentSizeChanged(size);
}
}
// ContentSize
off_t
KPartition::ContentSize() const
{
return fPartitionData.content_size;
}
// SetBlockSize
void
KPartition::SetBlockSize(uint32 blockSize)
{
if (fPartitionData.block_size != blockSize) {
fPartitionData.block_size = blockSize;
FireBlockSizeChanged(blockSize);
}
}
// BlockSize
uint32
KPartition::BlockSize() const
{
return fPartitionData.block_size;
}
// SetIndex
void
KPartition::SetIndex(int32 index)
{
if (fPartitionData.index != index) {
fPartitionData.index = index;
FireIndexChanged(index);
}
}
// Index
int32
KPartition::Index() const
{
return fPartitionData.index;
}
// SetStatus
void
KPartition::SetStatus(uint32 status)
{
if (fPartitionData.status != status) {
fPartitionData.status = status;
FireStatusChanged(status);
}
}
// Status
uint32
KPartition::Status() const
{
return fPartitionData.status;
}
// IsUninitialized
bool
KPartition::IsUninitialized() const
{
return (Status() == B_PARTITION_UNINITIALIZED);
}
// SetFlags
void
KPartition::SetFlags(uint32 flags)
{
if (fPartitionData.flags != flags) {
fPartitionData.flags = flags;
FireFlagsChanged(flags);
}
}
// AddFlags
void
KPartition::AddFlags(uint32 flags)
{
if (~fPartitionData.flags & flags) {
fPartitionData.flags |= flags;
FireFlagsChanged(fPartitionData.flags);
}
}
// ClearFlags
void
KPartition::ClearFlags(uint32 flags)
{
if (fPartitionData.flags & flags) {
fPartitionData.flags &= ~flags;
FireFlagsChanged(fPartitionData.flags);
}
}
// Flags
uint32
KPartition::Flags() const
{
return fPartitionData.flags;
}
// ContainsFileSystem
bool
KPartition::ContainsFileSystem() const
{
return (fPartitionData.flags & B_PARTITION_FILE_SYSTEM);
}
// ContainsPartitioningSystem
bool
KPartition::ContainsPartitioningSystem() const
{
return (fPartitionData.flags & B_PARTITION_PARTITIONING_SYSTEM);
}
// IsReadOnly
bool
KPartition::IsReadOnly() const
{
return (fPartitionData.flags & B_PARTITION_READ_ONLY);
}
// IsMounted
bool
KPartition::IsMounted() const
{
return (fPartitionData.flags & B_PARTITION_MOUNTED);
}
// IsDevice
bool
KPartition::IsDevice() const
{
return (fPartitionData.flags & B_PARTITION_IS_DEVICE);
}
// SetName
status_t
KPartition::SetName(const char *name)
{
status_t error = set_string(fPartitionData.name, name);
FireNameChanged(fPartitionData.name);
return error;
}
// Name
const char *
KPartition::Name() const
{
return fPartitionData.name;
}
// SetContentName
status_t
KPartition::SetContentName(const char *name)
{
status_t error = set_string(fPartitionData.content_name, name);
FireContentNameChanged(fPartitionData.content_name);
return error;
}
// ContentName
const char *
KPartition::ContentName() const
{
return fPartitionData.content_name;
}
// SetType
status_t
KPartition::SetType(const char *type)
{
status_t error = set_string(fPartitionData.type, type);
FireTypeChanged(fPartitionData.type);
return error;
}
// Type
const char *
KPartition::Type() const
{
return fPartitionData.type;
}
// ContentType
const char *
KPartition::ContentType() const
{
return fPartitionData.content_type;
}
// PartitionData
partition_data *
KPartition::PartitionData()
{
return &fPartitionData;
}
// PartitionData
const partition_data *
KPartition::PartitionData() const
{
return &fPartitionData;
}
// SetID
void
KPartition::SetID(partition_id id)
{
if (fPartitionData.id != id) {
fPartitionData.id = id;
FireIDChanged(id);
}
}
// ID
partition_id
KPartition::ID() const
{
return fPartitionData.id;
}
// GetPath
status_t
KPartition::GetPath(KPath *path) const
{
// For a KDiskDevice this version is never invoked, so the check for
// Parent() is correct.
if (!path || path->InitCheck() != B_OK || !Parent() || Index() < 0)
return B_BAD_VALUE;
// get the parent's path
status_t error = Parent()->GetPath(path);
if (error != B_OK)
return error;
if (Parent()->IsDevice()) {
// Our parent is a device, so we replace `raw' by our index.
const char *leaf = path->Leaf();
if (!leaf || strcmp(leaf, "raw") != B_OK)
return B_ERROR;
#ifdef _KERNEL_MODE
char indexBuffer[12];
snprintf(indexBuffer, sizeof(indexBuffer), "%ld", Index());
#else
const char *prefix = "haiku_";
char indexBuffer[strlen(prefix) + 12];
snprintf(indexBuffer, sizeof(indexBuffer), "%s%ld", prefix,
Index());
#endif
error = path->ReplaceLeaf(indexBuffer);
} else {
// Our parent is a normal partition, no device: Append our index.
char indexBuffer[13];
snprintf(indexBuffer, sizeof(indexBuffer), "_%ld", Index());
error = path->Append(indexBuffer, false);
}
return error;
}
// SetVolumeID
void
KPartition::SetVolumeID(dev_t volumeID)
{
if (fPartitionData.volume != volumeID) {
fPartitionData.volume = volumeID;
FireVolumeIDChanged(volumeID);
if (VolumeID() >= 0)
AddFlags(B_PARTITION_MOUNTED);
else
ClearFlags(B_PARTITION_MOUNTED);
}
}
// VolumeID
dev_t
KPartition::VolumeID() const
{
return fPartitionData.volume;
}
// SetMountCookie
void
KPartition::SetMountCookie(void *cookie)
{
if (fPartitionData.mount_cookie != cookie) {
fPartitionData.mount_cookie = cookie;
FireMountCookieChanged(cookie);
}
}
// MountCookie
void *
KPartition::MountCookie() const
{
return fPartitionData.mount_cookie;
}
// Mount
status_t
KPartition::Mount(uint32 mountFlags, const char *parameters)
{
// not implemented
return B_ERROR;
}
// Unmount
status_t
KPartition::Unmount()
{
// not implemented
return B_ERROR;
}
// SetParameters
status_t
KPartition::SetParameters(const char *parameters)
{
status_t error = set_string(fPartitionData.parameters, parameters);
FireParametersChanged(fPartitionData.parameters);
return error;
}
// Parameters
const char *
KPartition::Parameters() const
{
return fPartitionData.parameters;
}
// SetContentParameters
status_t
KPartition::SetContentParameters(const char *parameters)
{
status_t error = set_string(fPartitionData.content_parameters, parameters);
FireContentParametersChanged(fPartitionData.content_parameters);
return error;
}
// ContentParameters
const char *
KPartition::ContentParameters() const
{
return fPartitionData.content_parameters;
}
// SetDevice
void
KPartition::SetDevice(KDiskDevice *device)
{
fDevice = device;
if (fDevice && fDevice->IsReadOnlyMedia())
AddFlags(B_PARTITION_READ_ONLY);
}
// Device
KDiskDevice *
KPartition::Device() const
{
return fDevice;
}
// SetParent
void
KPartition::SetParent(KPartition *parent)
{
// Must be called in a {Add,Remove}Child() only!
fParent = parent;
}
// Parent
KPartition *
KPartition::Parent() const
{
return fParent;
}
// AddChild
status_t
KPartition::AddChild(KPartition *partition, int32 index)
{
// check parameters
int32 count = fPartitionData.child_count;
if (index == -1)
index = count;
if (index < 0 || index > count || !partition)
return B_BAD_VALUE;
// add partition
KDiskDeviceManager *manager = KDiskDeviceManager::Default();
if (ManagerLocker locker = manager) {
status_t error = fChildren.Insert(partition, index);
if (error != B_OK)
return error;
if (!manager->PartitionAdded(partition)) {
fChildren.Erase(index);
return B_NO_MEMORY;
}
partition->SetIndex(index);
_UpdateChildIndices(index);
fPartitionData.child_count++;
partition->SetParent(this);
partition->SetDevice(Device());
// notify listeners
FireChildAdded(partition, index);
return B_OK;
}
return B_ERROR;
}
// CreateChild
status_t
KPartition::CreateChild(partition_id id, int32 index, KPartition **_child)
{
// check parameters
int32 count = fPartitionData.child_count;
if (index == -1)
index = count;
if (index < 0 || index > count)
return B_BAD_VALUE;
// create and add partition
KPartition *child = new(nothrow) KPartition(id);
if (!child)
return B_NO_MEMORY;
status_t error = AddChild(child, index);
// cleanup / set result
if (error != B_OK)
delete child;
else if (_child)
*_child = child;
return error;
}
// RemoveChild
bool
KPartition::RemoveChild(int32 index)
{
if (index < 0 || index >= fPartitionData.child_count)
return false;
KDiskDeviceManager *manager = KDiskDeviceManager::Default();
if (ManagerLocker locker = manager) {
KPartition *partition = fChildren.ElementAt(index);
PartitionRegistrar _(partition);
if (!partition || !manager->PartitionRemoved(partition)
|| !fChildren.Erase(index)) {
return false;
}
_UpdateChildIndices(index + 1);
partition->SetIndex(-1);
fPartitionData.child_count--;
partition->SetParent(NULL);
partition->SetDevice(NULL);
// notify listeners
FireChildRemoved(partition, index);
return true;
}
return false;
}
// RemoveChild
bool
KPartition::RemoveChild(KPartition *child)
{
if (child) {
int32 index = fChildren.IndexOf(child);
if (index >= 0)
return RemoveChild(index);
}
return false;
}
// RemoveAllChildren
bool
KPartition::RemoveAllChildren()
{
int32 count = CountChildren();
for (int32 i = count - 1; i >= 0; i--) {
if (!RemoveChild(i))
return false;
}
return true;
}
// ChildAt
KPartition *
KPartition::ChildAt(int32 index) const
{
return (index >= 0 && index < fChildren.Count()
? fChildren.ElementAt(index) : NULL);
}
// CountChildren
int32
KPartition::CountChildren() const
{
return fPartitionData.child_count;
}
// CountDescendants
int32
KPartition::CountDescendants() const
{
int32 count = 1;
for (int32 i = 0; KPartition *child = ChildAt(i); i++)
count += child->CountDescendants();
return count;
}
// VisitEachDescendant
KPartition *
KPartition::VisitEachDescendant(KPartitionVisitor *visitor)
{
if (!visitor)
return NULL;
if (visitor->VisitPre(this))
return this;
for (int32 i = 0; KPartition *child = ChildAt(i); i++) {
if (KPartition *result = child->VisitEachDescendant(visitor))
return result;
}
if (visitor->VisitPost(this))
return this;
return NULL;
}
// SetDiskSystem
void
KPartition::SetDiskSystem(KDiskSystem *diskSystem)
{
// unload former disk system
if (fDiskSystem) {
fPartitionData.content_type = NULL;
fDiskSystem->Unload();
fDiskSystem = NULL;
}
// set and load new one
fDiskSystem = diskSystem;
if (fDiskSystem)
fDiskSystem->Load(); // can't fail, since it's already loaded
// update concerned partition flags
if (fDiskSystem) {
fPartitionData.content_type = fDiskSystem->PrettyName();
if (fDiskSystem->IsFileSystem())
AddFlags(B_PARTITION_FILE_SYSTEM);
else
AddFlags(B_PARTITION_PARTITIONING_SYSTEM);
}
// notify listeners
FireDiskSystemChanged(fDiskSystem);
}
// DiskSystem
KDiskSystem *
KPartition::DiskSystem() const
{
return fDiskSystem;
}
// ParentDiskSystem
KDiskSystem *
KPartition::ParentDiskSystem() const
{
return (Parent() ? Parent()->DiskSystem() : NULL);
}
// SetCookie
void
KPartition::SetCookie(void *cookie)
{
if (fPartitionData.cookie != cookie) {
fPartitionData.cookie = cookie;
FireCookieChanged(cookie);
}
}
// Cookie
void *
KPartition::Cookie() const
{
return fPartitionData.cookie;
}
// SetContentCookie
void
KPartition::SetContentCookie(void *cookie)
{
if (fPartitionData.content_cookie != cookie) {
fPartitionData.content_cookie = cookie;
FireContentCookieChanged(cookie);
}
}
// ContentCookie
void *
KPartition::ContentCookie() const
{
return fPartitionData.content_cookie;
}
// AddListener
bool
KPartition::AddListener(KPartitionListener *listener)
{
if (!listener)
return false;
// lazy create listeners
if (!fListeners) {
fListeners = new(nothrow) ListenerSet;
if (!fListeners)
return false;
}
// add listener
return (fListeners->Insert(listener) == B_OK);
}
// RemoveListener
bool
KPartition::RemoveListener(KPartitionListener *listener)
{
if (!listener || !fListeners)
return false;
// remove listener and delete the set, if empty now
bool result = (fListeners->Remove(listener) > 0);
if (fListeners->IsEmpty()) {
delete fListeners;
fListeners = NULL;
}
return result;
}
// Changed
void
KPartition::Changed(uint32 flags, uint32 clearFlags)
{
fChangeFlags &= ~clearFlags;
fChangeFlags |= flags;
fChangeCounter++;
if (Parent())
Parent()->Changed(B_PARTITION_CHANGED_DESCENDANTS);
}
// SetChangeFlags
void
KPartition::SetChangeFlags(uint32 flags)
{
fChangeFlags = flags;
}
// ChangeFlags
uint32
KPartition::ChangeFlags() const
{
return fChangeFlags;
}
// ChangeCounter
int32
KPartition::ChangeCounter() const
{
return fChangeCounter;
}
// UninitializeContents
status_t
KPartition::UninitializeContents(bool logChanges)
{
if (DiskSystem()) {
uint32 flags = B_PARTITION_CHANGED_INITIALIZATION
| B_PARTITION_CHANGED_CONTENT_TYPE
| B_PARTITION_CHANGED_STATUS
| B_PARTITION_CHANGED_FLAGS;
// children
if (CountChildren() > 0) {
if (!RemoveAllChildren())
return B_ERROR;
flags |= B_PARTITION_CHANGED_CHILDREN;
}
// volume
if (VolumeID() >= 0) {
SetVolumeID(-1);
flags |= B_PARTITION_CHANGED_VOLUME;
}
// content name
if (ContentName()) {
SetContentName(NULL);
flags |= B_PARTITION_CHANGED_CONTENT_NAME;
}
// content parameters
if (ContentParameters()) {
SetContentParameters(NULL);
flags |= B_PARTITION_CHANGED_CONTENT_PARAMETERS;
}
// content size
if (ContentSize() > 0) {
SetContentSize(0);
flags |= B_PARTITION_CHANGED_CONTENT_SIZE;
}
// block size
if (Parent() && Parent()->BlockSize() != BlockSize()) {
SetBlockSize(Parent()->BlockSize());
flags |= B_PARTITION_CHANGED_BLOCK_SIZE;
}
// disk system
DiskSystem()->FreeContentCookie(this);
SetDiskSystem(NULL);
// status
SetStatus(B_PARTITION_UNINITIALIZED);
// flags
ClearFlags(B_PARTITION_FILE_SYSTEM | B_PARTITION_PARTITIONING_SYSTEM);
if (!Device()->IsReadOnlyMedia())
ClearFlags(B_PARTITION_READ_ONLY);
// log changes
if (logChanges) {
Changed(flags, B_PARTITION_CHANGED_DEFRAGMENTATION
| B_PARTITION_CHANGED_CHECK
| B_PARTITION_CHANGED_REPAIR);
}
}
return B_OK;
}
// SetAlgorithmData
void
KPartition::SetAlgorithmData(uint32 data)
{
fAlgorithmData = data;
}
// AlgorithmData
uint32
KPartition::AlgorithmData() const
{
return fAlgorithmData;
}
// WriteUserData
void
KPartition::WriteUserData(UserDataWriter &writer, user_partition_data *data)
{
// allocate
char *name = writer.PlaceString(Name());
char *contentName = writer.PlaceString(ContentName());
char *type = writer.PlaceString(Type());
char *contentType = writer.PlaceString(ContentType());
char *parameters = writer.PlaceString(Parameters());
char *contentParameters = writer.PlaceString(ContentParameters());
// fill in data
if (data) {
data->id = ID();
data->offset = Offset();
data->size = Size();
data->content_size = ContentSize();
data->block_size = BlockSize();
data->status = Status();
data->flags = Flags();
data->volume = VolumeID();
data->index = Index();
data->change_counter = ChangeCounter();
data->disk_system = (DiskSystem() ? DiskSystem()->ID() : -1);
data->name = name;
data->content_name = contentName;
data->type = type;
data->content_type = contentType;
data->parameters = parameters;
data->content_parameters = contentParameters;
data->child_count = CountChildren();
// make buffer relocatable
writer.AddRelocationEntry(&data->name);
writer.AddRelocationEntry(&data->content_name);
writer.AddRelocationEntry(&data->type);
writer.AddRelocationEntry(&data->content_type);
writer.AddRelocationEntry(&data->parameters);
writer.AddRelocationEntry(&data->content_parameters);
}
// children
for (int32 i = 0; KPartition *child = ChildAt(i); i++) {
user_partition_data *childData
= writer.AllocatePartitionData(child->CountChildren());
if (data) {
data->children[i] = childData;
writer.AddRelocationEntry(&data->children[i]);
}
child->WriteUserData(writer, childData);
}
}
// Dump
void
KPartition::Dump(bool deep, int32 level)
{
if (level < 0 || level > 255)
return;
char prefix[256];
sprintf(prefix, "%*s%*s", (int)level, "", (int)level, "");
KPath path;
GetPath(&path);
if (level > 0)
OUT("%spartition %ld: %s\n", prefix, ID(), path.Path());
OUT("%s offset: %lld\n", prefix, Offset());
OUT("%s size: %lld (%.2f MB)\n", prefix, Size(), Size() / (1024.0*1024));
OUT("%s content size: %lld\n", prefix, ContentSize());
OUT("%s block size: %lu\n", prefix, BlockSize());
OUT("%s child count: %ld\n", prefix, CountChildren());
OUT("%s index: %ld\n", prefix, Index());
OUT("%s status: %lu\n", prefix, Status());
OUT("%s flags: %lx\n", prefix, Flags());
OUT("%s volume: %ld\n", prefix, VolumeID());
OUT("%s disk system: %s\n", prefix,
(DiskSystem() ? DiskSystem()->Name() : NULL));
OUT("%s name: %s\n", prefix, Name());
OUT("%s content name: %s\n", prefix, ContentName());
OUT("%s type: %s\n", prefix, Type());
OUT("%s content type: %s\n", prefix, ContentType());
OUT("%s params: %s\n", prefix, Parameters());
OUT("%s content params: %s\n", prefix, ContentParameters());
if (deep) {
for (int32 i = 0; KPartition *child = ChildAt(i); i++)
child->Dump(true, level + 1);
}
}
// FireOffsetChanged
void
KPartition::FireOffsetChanged(off_t offset)
{
if (fListeners) {
for (ListenerSet::Iterator it = fListeners->Begin();
it != fListeners->End(); ++it) {
(*it)->OffsetChanged(this, offset);
}
}
}
// FireSizeChanged
void
KPartition::FireSizeChanged(off_t size)
{
if (fListeners) {
for (ListenerSet::Iterator it = fListeners->Begin();
it != fListeners->End(); ++it) {
(*it)->SizeChanged(this, size);
}
}
}
// FireContentSizeChanged
void
KPartition::FireContentSizeChanged(off_t size)
{
if (fListeners) {
for (ListenerSet::Iterator it = fListeners->Begin();
it != fListeners->End(); ++it) {
(*it)->ContentSizeChanged(this, size);
}
}
}
// FireBlockSizeChanged
void
KPartition::FireBlockSizeChanged(uint32 blockSize)
{
if (fListeners) {
for (ListenerSet::Iterator it = fListeners->Begin();
it != fListeners->End(); ++it) {
(*it)->BlockSizeChanged(this, blockSize);
}
}
}
// FireIndexChanged
void
KPartition::FireIndexChanged(int32 index)
{
if (fListeners) {
for (ListenerSet::Iterator it = fListeners->Begin();
it != fListeners->End(); ++it) {
(*it)->IndexChanged(this, index);
}
}
}
// FireStatusChanged
void
KPartition::FireStatusChanged(uint32 status)
{
if (fListeners) {
for (ListenerSet::Iterator it = fListeners->Begin();
it != fListeners->End(); ++it) {
(*it)->StatusChanged(this, status);
}
}
}
// FireFlagsChanged
void
KPartition::FireFlagsChanged(uint32 flags)
{
if (fListeners) {
for (ListenerSet::Iterator it = fListeners->Begin();
it != fListeners->End(); ++it) {
(*it)->FlagsChanged(this, flags);
}
}
}
// FireNameChanged
void
KPartition::FireNameChanged(const char *name)
{
if (fListeners) {
for (ListenerSet::Iterator it = fListeners->Begin();
it != fListeners->End(); ++it) {
(*it)->NameChanged(this, name);
}
}
}
// FireContentNameChanged
void
KPartition::FireContentNameChanged(const char *name)
{
if (fListeners) {
for (ListenerSet::Iterator it = fListeners->Begin();
it != fListeners->End(); ++it) {
(*it)->ContentNameChanged(this, name);
}
}
}
// FireTypeChanged
void
KPartition::FireTypeChanged(const char *type)
{
if (fListeners) {
for (ListenerSet::Iterator it = fListeners->Begin();
it != fListeners->End(); ++it) {
(*it)->TypeChanged(this, type);
}
}
}
// FireIDChanged
void
KPartition::FireIDChanged(partition_id id)
{
if (fListeners) {
for (ListenerSet::Iterator it = fListeners->Begin();
it != fListeners->End(); ++it) {
(*it)->IDChanged(this, id);
}
}
}
// FireVolumeIDChanged
void
KPartition::FireVolumeIDChanged(dev_t volumeID)
{
if (fListeners) {
for (ListenerSet::Iterator it = fListeners->Begin();
it != fListeners->End(); ++it) {
(*it)->VolumeIDChanged(this, volumeID);
}
}
}
// FireMountCookieChanged
void
KPartition::FireMountCookieChanged(void *cookie)
{
if (fListeners) {
for (ListenerSet::Iterator it = fListeners->Begin();
it != fListeners->End(); ++it) {
(*it)->MountCookieChanged(this, cookie);
}
}
}
// FireParametersChanged
void
KPartition::FireParametersChanged(const char *parameters)
{
if (fListeners) {
for (ListenerSet::Iterator it = fListeners->Begin();
it != fListeners->End(); ++it) {
(*it)->ParametersChanged(this, parameters);
}
}
}
// FireContentParametersChanged
void
KPartition::FireContentParametersChanged(const char *parameters)
{
if (fListeners) {
for (ListenerSet::Iterator it = fListeners->Begin();
it != fListeners->End(); ++it) {
(*it)->ContentParametersChanged(this, parameters);
}
}
}
// FireChildAdded
void
KPartition::FireChildAdded(KPartition *child, int32 index)
{
if (fListeners) {
for (ListenerSet::Iterator it = fListeners->Begin();
it != fListeners->End(); ++it) {
(*it)->ChildAdded(this, child, index);
}
}
}
// FireChildRemoved
void
KPartition::FireChildRemoved(KPartition *child, int32 index)
{
if (fListeners) {
for (ListenerSet::Iterator it = fListeners->Begin();
it != fListeners->End(); ++it) {
(*it)->ChildRemoved(this, child, index);
}
}
}
// FireDiskSystemChanged
void
KPartition::FireDiskSystemChanged(KDiskSystem *diskSystem)
{
if (fListeners) {
for (ListenerSet::Iterator it = fListeners->Begin();
it != fListeners->End(); ++it) {
(*it)->DiskSystemChanged(this, diskSystem);
}
}
}
// FireCookieChanged
void
KPartition::FireCookieChanged(void *cookie)
{
if (fListeners) {
for (ListenerSet::Iterator it = fListeners->Begin();
it != fListeners->End(); ++it) {
(*it)->CookieChanged(this, cookie);
}
}
}
// FireContentCookieChanged
void
KPartition::FireContentCookieChanged(void *cookie)
{
if (fListeners) {
for (ListenerSet::Iterator it = fListeners->Begin();
it != fListeners->End(); ++it) {
(*it)->ContentCookieChanged(this, cookie);
}
}
}
// _UpdateChildIndices
void
KPartition::_UpdateChildIndices(int32 index)
{
for (int32 i = index; i < fChildren.Count(); i++)
fChildren.ElementAt(i)->SetIndex(i);
}
// _NextID
int32
KPartition::_NextID()
{
return atomic_add(&fNextID, 1);
}
// fNextID
int32 KPartition::fNextID = 0;