haiku/src/kernel/core/int.c

222 lines
6.4 KiB
C
Raw Normal View History

/*
** Copyright 2001-2002, Travis Geiselbrecht. All rights reserved.
** Distributed under the terms of the NewOS License.
*/
#include <kernel.h>
#include <int.h>
#include <debug.h>
#include <memheap.h>
#include <smp.h>
#include <arch/int.h>
#include <errno.h>
#include <stage2.h>
#include <string.h>
#include <stdio.h>
#define NUM_IO_VECTORS 256
struct io_handler {
struct io_handler *next;
struct io_handler *prev;
interrupt_handler func;
void* data;
};
struct io_vector {
struct io_handler handler_list;
spinlock_t vector_lock;
};
static struct io_vector *io_vectors = NULL;
int
int_init(kernel_args *ka)
{
dprintf("init_int_handlers: entry\n");
return arch_int_init(ka);
}
int
int_init2(kernel_args *ka)
{
io_vectors = (struct io_vector *)kmalloc(sizeof(struct io_vector) * NUM_IO_VECTORS);
if (io_vectors == NULL)
panic("int_init2: could not create io vector table!\n");
memset(io_vectors, 0, sizeof(struct io_vector) * NUM_IO_VECTORS);
return arch_int_init2(ka);
}
/* install_interrupt_handler
* This function is used internally to install a handler on the given vector.
* NB this does NOT take an IRQ, but a system interrupt value.
* As this is intended for system use this function doe NOT call
* arch_int_enable_io_interrupt() as it only works for IRQ values
*/
long install_interrupt_handler(long vector, interrupt_handler handler,
void* data)
{
struct io_handler *io = NULL;
int state;
/* find the chain of handlers for this irq.
* NB there can be multiple handlers for the same IRQ, especially for
* PCI drivers. Where we have multiple handlers we will call each in turn
* until one returns a value other than B_UNHANDLED_INTERRUPT.
*/
io = (struct io_handler *)kmalloc(sizeof(struct io_handler));
if (io == NULL)
return ENOMEM;
io->func = handler;
io->data = data;
/* Make sure our list is init'd or bad things will happen */
if (io_vectors[vector].handler_list.next == NULL) {
io_vectors[vector].handler_list.next = &io_vectors[vector].handler_list;
io_vectors[vector].handler_list.prev = &io_vectors[vector].handler_list;
}
/* Disable the interrupts, get the spinlock for this irq only
* and then insert the handler */
state = disable_interrupts();
acquire_spinlock(&io_vectors[vector].vector_lock);
insque(io, &io_vectors[vector].handler_list);
release_spinlock(&io_vectors[vector].vector_lock);
restore_interrupts(state);
return 0;
}
/* install_io_interrupt_handler
* install a handler to be called when an interrupt is triggered
* for the given irq with data as the argument
*/
long install_io_interrupt_handler(long irq, interrupt_handler handler,
void* data, ulong flags)
{
long vector = irq + 0x20;
long rv = install_interrupt_handler(vector, handler, data);
if (rv != 0)
return rv;
/* If we were passed the bit-flag B_NO_ENABLE_COUNTER then
* we're being asked to not alter whether the interrupt is set
* regardless of setting.
*/
if ((flags & B_NO_ENABLE_COUNTER) == 0)
arch_int_enable_io_interrupt(irq);
return 0;
}
/* remove_interrupt_handler
* read notes for install_interrupt_handler
*/
long remove_interrupt_handler(long vector, interrupt_handler handler,
void* data)
{
struct io_handler *io = NULL;
long rv = EINVAL;
/* lock the structures down so it is not modified while we search */
int state = disable_interrupts();
acquire_spinlock(&io_vectors[vector].vector_lock);
/* loop through the available handlers and try to find a match.
* We go forward through the list but this means we start with the
* most recently added handlers.
*/
for (io = io_vectors[vector].handler_list.next;
io != &io_vectors[vector].handler_list;
io = io->next) {
/* we have to match both function and data */
if (io->func == handler && io->data == data) {
remque(io);
kfree(io);
rv = 0;
break;
}
}
/* to finish we need to release our locks and return
* the value rv
*/
release_spinlock(&io_vectors[vector].vector_lock);
restore_interrupts(state);
return rv;
}
/* remove_io_interrupt_handler
* remove an interrupt handler previously inserted
*/
long remove_io_interrupt_handler(long irq, interrupt_handler handler,
void* data)
{
long vector = irq + 0x20;
long rv = remove_interrupt_handler(vector, handler, data);
if (rv < 0)
return rv;
/* Check if we need to disable interrupts... */
if (io_vectors[vector].handler_list.next != &io_vectors[vector].handler_list)
arch_int_disable_io_interrupt(irq);
return 0;
}
/* int_io_interrupt_handler
* actually process an interrupt via the handlers registered for that
* vector (irq)
*/
int int_io_interrupt_handler(int vector)
{
int ret = B_UNHANDLED_INTERRUPT;
acquire_spinlock(&io_vectors[vector].vector_lock);
if (io_vectors[vector].handler_list.next == &io_vectors[vector].handler_list) {
dprintf("unhandled io interrupt %d\n", vector);
} else {
struct io_handler *io;
/* Loop through the list of handlers.
* each handler returns as follows...
* - B_UNHANDLED_INTERRUPT, the interrupt wasn't processed by the
* fucntion, so try the next available.
* - B_HANDLED_INTERRUPT, the interrupt has been handled and no further
* attention is required
* - B_INVOKE_SCHEDULER, the interrupt has been handled, but the function wants
* the scheduler to be invoked
*
* XXX - this is a change of behaviour from newos where every handler registered
* be called, even if the interrupt had been "handled" by a previous
* function.
* The logic now is that if there are no handlers then we return
* B_UNHANDLED_INTERRUPT and let the system do as it will.
* When we have the first function that claims to have "handled" the
* interrupt, by returning B_HANDLED_... or B_INVOKE_SCHEDULER we simply
* stop calling further handlers and return the value from that
* handler.
* This may not be correct but appears to be what BeOS did and seems
* right.
*/
for (io = io_vectors[vector].handler_list.next;
io != &io_vectors[vector].handler_list;
io = io->next) {
if ((ret = io->func(io->data)) != B_UNHANDLED_INTERRUPT)
break;
}
}
release_spinlock(&io_vectors[vector].vector_lock);
return ret;
}