haiku/src/system/kernel/module.cpp

2168 lines
51 KiB
C++
Raw Normal View History

/*
* Copyright 2002-2008, Haiku Inc. All rights reserved.
* Distributed under the terms of the MIT License.
*
* Copyright 2001, Thomas Kurschel. All rights reserved.
* Distributed under the terms of the NewOS License.
*/
/*! Manages kernel add-ons and their exported modules. */
#include <kmodule.h>
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <FindDirectory.h>
#include <NodeMonitor.h>
#include <dirent_private.h>
#include <boot_device.h>
#include <boot/elf.h>
#include <elf.h>
#include <fs/KPath.h>
#include <fs/node_monitor.h>
#include <lock.h>
#include <Notifications.h>
#include <safemode.h>
#include <syscalls.h>
#include <util/AutoLock.h>
#include <util/khash.h>
#include <util/Stack.h>
#include <vfs.h>
//#define TRACE_MODULE
#ifdef TRACE_MODULE
# define TRACE(x) dprintf x
#else
# define TRACE(x) ;
#endif
#define FATAL(x) dprintf x
#define MODULE_HASH_SIZE 16
/*! The modules referenced by this structure are built-in
modules that can't be loaded from disk.
*/
extern module_info gDeviceManagerModule;
extern module_info gDeviceRootModule;
extern module_info gDeviceGenericModule;
extern module_info gFrameBufferConsoleModule;
// file systems
extern module_info gRootFileSystem;
extern module_info gDeviceFileSystem;
static module_info* sBuiltInModules[] = {
&gDeviceManagerModule,
&gDeviceRootModule,
&gDeviceGenericModule,
&gFrameBufferConsoleModule,
&gRootFileSystem,
&gDeviceFileSystem,
NULL
};
enum module_state {
MODULE_QUERIED = 0,
MODULE_LOADED,
MODULE_INIT,
MODULE_READY,
MODULE_UNINIT,
MODULE_ERROR
};
/* Each loaded module image (which can export several modules) is put
* in a hash (gModuleImagesHash) to be easily found when you search
* for a specific file name.
* TODO: Could use only the inode number for hashing. Would probably be
* a little bit slower, but would lower the memory foot print quite a lot.
*/
struct module_image {
struct module_image* next;
module_info** info; // the module_info we use
module_dependency* dependencies;
char* path; // the full path for the module
image_id image;
int32 ref_count; // how many ref's to this file
bool keep_loaded;
};
/* Each known module will have this structure which is put in the
* gModulesHash, and looked up by name.
*/
struct module {
struct module* next;
::module_image* module_image;
char* name;
char* file;
int32 ref_count;
module_info* info; // will only be valid if ref_count > 0
int32 offset; // this is the offset in the headers
module_state state;
uint32 flags;
};
#define B_BUILT_IN_MODULE 2
typedef struct module_path {
const char* name;
uint32 base_length;
} module_path;
typedef struct module_iterator {
module_path* stack;
int32 stack_size;
int32 stack_current;
char* prefix;
size_t prefix_length;
const char* suffix;
size_t suffix_length;
DIR* current_dir;
status_t status;
int32 module_offset;
// This is used to keep track of which module_info
// within a module we're addressing.
::module_image* module_image;
module_info** current_header;
const char* current_path;
uint32 path_base_length;
const char* current_module_path;
bool builtin_modules;
bool loaded_modules;
} module_iterator;
namespace Module {
struct entry {
dev_t device;
ino_t node;
};
struct hash_entry : entry {
~hash_entry()
{
free((char*)path);
}
HashTableLink<hash_entry> link;
const char* path;
};
struct NodeHashDefinition {
typedef entry* KeyType;
typedef hash_entry ValueType;
size_t Hash(ValueType* entry) const
{ return HashKey(entry); }
HashTableLink<ValueType>* GetLink(ValueType* entry) const
{ return &entry->link; }
size_t HashKey(KeyType key) const
{
return ((uint32)(key->node >> 32) + (uint32)key->node) ^ key->device;
}
bool Compare(KeyType key, ValueType* entry) const
{
return key->device == entry->device
&& key->node == entry->node;
}
};
typedef OpenHashTable<NodeHashDefinition> NodeHash;
struct module_listener : DoublyLinkedListLinkImpl<module_listener> {
~module_listener()
{
free((char*)prefix);
}
NotificationListener* listener;
const char* prefix;
};
typedef DoublyLinkedList<module_listener> ModuleListenerList;
struct module_notification : DoublyLinkedListLinkImpl<module_notification> {
~module_notification()
{
free((char*)name);
}
int32 opcode;
dev_t device;
ino_t directory;
ino_t node;
const char* name;
};
typedef DoublyLinkedList<module_notification> NotificationList;
class DirectoryWatcher : public NotificationListener {
public:
DirectoryWatcher();
virtual ~DirectoryWatcher();
virtual void EventOccured(NotificationService& service,
const KMessage* event);
};
class ModuleWatcher : public NotificationListener {
public:
ModuleWatcher();
virtual ~ModuleWatcher();
virtual void EventOccured(NotificationService& service,
const KMessage* event);
};
class ModuleNotificationService : public NotificationService {
public:
ModuleNotificationService();
virtual ~ModuleNotificationService();
status_t InitCheck();
status_t AddListener(const KMessage* eventSpecifier,
NotificationListener& listener);
status_t UpdateListener(const KMessage* eventSpecifier,
NotificationListener& listener);
status_t RemoveListener(const KMessage* eventSpecifier,
NotificationListener& listener);
bool HasNode(dev_t device, ino_t node);
void Notify(int32 opcode, dev_t device, ino_t directory,
ino_t node, const char* name);
virtual const char* Name() { return "modules"; }
static void HandleNotifications(void *data, int iteration);
private:
status_t _RemoveNode(dev_t device, ino_t node);
status_t _AddNode(dev_t device, ino_t node, const char* path,
uint32 flags, NotificationListener& listener);
status_t _AddDirectoryNode(dev_t device, ino_t node);
status_t _AddModuleNode(dev_t device, ino_t node, int fd,
const char* name);
status_t _AddDirectory(const char* prefix);
status_t _ScanDirectory(char* directoryPath, const char* prefix,
size_t& prefixPosition);
status_t _ScanDirectory(Stack<DIR*>& stack, DIR* dir,
const char* prefix, size_t prefixPosition);
void _Notify(int32 opcode, dev_t device, ino_t directory,
ino_t node, const char* name);
void _HandleNotifications();
recursive_lock fLock;
ModuleListenerList fListeners;
NodeHash fNodes;
DirectoryWatcher fDirectoryWatcher;
ModuleWatcher fModuleWatcher;
NotificationList fNotifications;
};
} // namespace Module
using namespace Module;
/* These are the standard base paths where we start to look for modules
* to load. Order is important, the last entry here will be searched
* first.
*/
static const directory_which kModulePaths[] = {
B_BEOS_ADDONS_DIRECTORY,
B_COMMON_ADDONS_DIRECTORY,
B_USER_ADDONS_DIRECTORY,
};
static const uint32 kNumModulePaths = sizeof(kModulePaths)
/ sizeof(kModulePaths[0]);
static const uint32 kFirstNonSystemModulePath = 1;
static ModuleNotificationService sModuleNotificationService;
static bool sDisableUserAddOns = false;
/* locking scheme: there is a global lock only; having several locks
* makes trouble if dependent modules get loaded concurrently ->
* they have to wait for each other, i.e. we need one lock per module;
* also we must detect circular references during init and not dead-lock
*/
static recursive_lock sModulesLock;
/* We store the loaded modules by directory path, and all known modules
* by module name in a hash table for quick access
*/
static hash_table* sModuleImagesHash;
static hash_table* sModulesHash;
/*! Calculates hash for a module using its name */
static uint32
module_hash(void* _module, const void* _key, uint32 range)
{
module* module = (struct module*)_module;
const char* name = (const char*)_key;
if (module != NULL)
return hash_hash_string(module->name) % range;
if (name != NULL)
return hash_hash_string(name) % range;
return 0;
}
/*! Compares a module to a given name */
static int
module_compare(void* _module, const void* _key)
{
module* module = (struct module*)_module;
const char* name = (const char*)_key;
if (name == NULL)
return -1;
return strcmp(module->name, name);
}
/*! Calculates the hash of a module image using its path */
static uint32
module_image_hash(void* _module, const void* _key, uint32 range)
{
module_image* image = (module_image*)_module;
const char* path = (const char*)_key;
if (image != NULL)
return hash_hash_string(image->path) % range;
if (path != NULL)
return hash_hash_string(path) % range;
return 0;
}
/*! Compares a module image to a path */
static int
module_image_compare(void* _module, const void* _key)
{
module_image* image = (module_image*)_module;
const char* path = (const char*)_key;
if (path == NULL)
return -1;
return strcmp(image->path, path);
}
/*! Try to load the module image at the specified location.
If it could be loaded, it returns B_OK, and stores a pointer
to the module_image object in "_moduleImage".
*/
static status_t
load_module_image(const char* path, module_image** _moduleImage)
{
module_image* moduleImage;
status_t status;
image_id image;
TRACE(("load_module_image(path = \"%s\", _image = %p)\n", path, _moduleImage));
ASSERT(_moduleImage != NULL);
image = load_kernel_add_on(path);
if (image < 0) {
dprintf("load_module_image(%s) failed: %s\n", path, strerror(image));
return image;
}
moduleImage = (module_image*)malloc(sizeof(module_image));
if (moduleImage == NULL) {
status = B_NO_MEMORY;
goto err;
}
if (get_image_symbol(image, "modules", B_SYMBOL_TYPE_DATA,
(void**)&moduleImage->info) != B_OK) {
TRACE(("load_module_image: Failed to load \"%s\" due to lack of 'modules' symbol\n", path));
status = B_BAD_TYPE;
goto err1;
}
moduleImage->dependencies = NULL;
get_image_symbol(image, "module_dependencies", B_SYMBOL_TYPE_DATA,
(void**)&moduleImage->dependencies);
// this is allowed to be NULL
moduleImage->path = strdup(path);
if (!moduleImage->path) {
status = B_NO_MEMORY;
goto err1;
}
moduleImage->image = image;
moduleImage->ref_count = 0;
moduleImage->keep_loaded = false;
recursive_lock_lock(&sModulesLock);
hash_insert(sModuleImagesHash, moduleImage);
recursive_lock_unlock(&sModulesLock);
*_moduleImage = moduleImage;
return B_OK;
err1:
free(moduleImage);
err:
unload_kernel_add_on(image);
return status;
}
static status_t
unload_module_image(module_image* moduleImage, const char* path)
{
TRACE(("unload_module_image(image = %p, path = %s)\n", moduleImage, path));
RecursiveLocker locker(sModulesLock);
if (moduleImage == NULL) {
// if no image was specified, lookup it up in the hash table
moduleImage = (module_image*)hash_lookup(sModuleImagesHash, path);
if (moduleImage == NULL)
return B_ENTRY_NOT_FOUND;
}
if (moduleImage->ref_count != 0) {
FATAL(("Can't unload %s due to ref_cnt = %ld\n", moduleImage->path,
moduleImage->ref_count));
return B_ERROR;
}
hash_remove(sModuleImagesHash, moduleImage);
locker.Unlock();
unload_kernel_add_on(moduleImage->image);
free(moduleImage->path);
free(moduleImage);
return B_OK;
}
static void
put_module_image(module_image* image)
{
int32 refCount = atomic_add(&image->ref_count, -1);
ASSERT(refCount > 0);
// Don't unload anything when there is no boot device yet
// (because chances are that we will never be able to access it again)
if (refCount == 1 && !image->keep_loaded && gBootDevice > 0)
unload_module_image(image, NULL);
}
static status_t
get_module_image(const char* path, module_image** _image)
{
struct module_image* image;
TRACE(("get_module_image(path = \"%s\")\n", path));
RecursiveLocker _(sModulesLock);
image = (module_image*)hash_lookup(sModuleImagesHash, path);
if (image == NULL) {
status_t status = load_module_image(path, &image);
if (status < B_OK)
return status;
}
atomic_add(&image->ref_count, 1);
*_image = image;
return B_OK;
}
/*! Extract the information from the module_info structure pointed at
by "info" and create the entries required for access to it's details.
*/
static status_t
create_module(module_info* info, const char* file, int offset, module** _module)
{
module* module;
TRACE(("create_module(info = %p, file = \"%s\", offset = %d, _module = %p)\n",
info, file, offset, _module));
if (!info->name)
return B_BAD_VALUE;
module = (struct module*)hash_lookup(sModulesHash, info->name);
if (module) {
FATAL(("Duplicate module name (%s) detected... ignoring new one\n", info->name));
return B_FILE_EXISTS;
}
if ((module = (struct module*)malloc(sizeof(struct module))) == NULL)
return B_NO_MEMORY;
TRACE(("create_module: name = \"%s\", file = \"%s\"\n", info->name, file));
module->module_image = NULL;
module->name = strdup(info->name);
if (module->name == NULL) {
free(module);
return B_NO_MEMORY;
}
module->file = strdup(file);
if (module->file == NULL) {
free(module->name);
free(module);
return B_NO_MEMORY;
}
module->state = MODULE_QUERIED;
module->info = info;
module->offset = offset;
// record where the module_info can be found in the module_info array
module->ref_count = 0;
module->flags = info->flags;
recursive_lock_lock(&sModulesLock);
hash_insert(sModulesHash, module);
recursive_lock_unlock(&sModulesLock);
if (_module)
*_module = module;
return B_OK;
}
/*! Loads the file at "path" and scans all modules contained therein.
Returns B_OK if "searchedName" could be found under those modules,
B_ENTRY_NOT_FOUND if not.
Must only be called for files that haven't been scanned yet.
"searchedName" is allowed to be NULL (if all modules should be scanned)
*/
static status_t
check_module_image(const char* path, const char* searchedName)
{
module_image* image;
module_info** info;
int index = 0, match = B_ENTRY_NOT_FOUND;
TRACE(("check_module_image(path = \"%s\", searchedName = \"%s\")\n", path,
searchedName));
if (get_module_image(path, &image) < B_OK)
return B_ENTRY_NOT_FOUND;
for (info = image->info; *info; info++) {
// try to create a module for every module_info, check if the
// name matches if it was a new entry
if (create_module(*info, path, index++, NULL) == B_OK) {
if (searchedName && !strcmp((*info)->name, searchedName))
match = B_OK;
}
}
// The module we looked for couldn't be found, so we can unload the
// loaded module at this point
if (match != B_OK) {
TRACE(("check_module_file: unloading module file \"%s\" (not used yet)\n",
path));
unload_module_image(image, path);
}
// decrement the ref we got in get_module_image
put_module_image(image);
return match;
}
/*! This is only called if we fail to find a module already in our cache...
saves us some extra checking here :)
*/
static module*
search_module(const char* name)
{
status_t status = B_ENTRY_NOT_FOUND;
uint32 i;
TRACE(("search_module(%s)\n", name));
for (i = kNumModulePaths; i-- > 0;) {
if (sDisableUserAddOns && i >= kFirstNonSystemModulePath)
continue;
// let the VFS find that module for us
KPath basePath;
if (find_directory(kModulePaths[i], gBootDevice, true,
basePath.LockBuffer(), basePath.BufferSize()) != B_OK)
continue;
basePath.UnlockBuffer();
basePath.Append("kernel");
KPath path;
status = vfs_get_module_path(basePath.Path(), name, path.LockBuffer(),
path.BufferSize());
if (status == B_OK) {
path.UnlockBuffer();
status = check_module_image(path.Path(), name);
if (status == B_OK)
break;
}
}
if (status != B_OK)
return NULL;
return (module*)hash_lookup(sModulesHash, name);
}
static status_t
put_dependent_modules(struct module* module)
{
module_image* image = module->module_image;
module_dependency* dependencies;
// built-in modules don't have a module_image structure
if (image == NULL
|| (dependencies = image->dependencies) == NULL)
return B_OK;
for (int32 i = 0; dependencies[i].name != NULL; i++) {
status_t status = put_module(dependencies[i].name);
if (status < B_OK)
return status;
}
return B_OK;
}
static status_t
get_dependent_modules(struct module* module)
{
module_image* image = module->module_image;
module_dependency* dependencies;
// built-in modules don't have a module_image structure
if (image == NULL
|| (dependencies = image->dependencies) == NULL)
return B_OK;
TRACE(("resolving module dependencies...\n"));
for (int32 i = 0; dependencies[i].name != NULL; i++) {
status_t status = get_module(dependencies[i].name,
dependencies[i].info);
if (status < B_OK) {
dprintf("loading dependent module %s of %s failed!\n",
dependencies[i].name, module->name);
return status;
}
}
return B_OK;
}
/*! Initializes a loaded module depending on its state */
static inline status_t
init_module(module* module)
{
switch (module->state) {
case MODULE_QUERIED:
case MODULE_LOADED:
{
status_t status;
module->state = MODULE_INIT;
// resolve dependencies
status = get_dependent_modules(module);
if (status < B_OK) {
module->state = MODULE_LOADED;
return status;
}
// init module
TRACE(("initializing module %s (at %p)... \n", module->name, module->info->std_ops));
if (module->info->std_ops != NULL)
status = module->info->std_ops(B_MODULE_INIT);
TRACE(("...done (%s)\n", strerror(status)));
if (status >= B_OK)
module->state = MODULE_READY;
else {
put_dependent_modules(module);
module->state = MODULE_LOADED;
}
return status;
}
case MODULE_READY:
return B_OK;
case MODULE_INIT:
FATAL(("circular reference to %s\n", module->name));
return B_ERROR;
case MODULE_UNINIT:
FATAL(("tried to load module %s which is currently unloading\n", module->name));
return B_ERROR;
case MODULE_ERROR:
FATAL(("cannot load module %s because its earlier unloading failed\n", module->name));
return B_ERROR;
default:
return B_ERROR;
}
// never trespasses here
}
/*! Uninitializes a module depeding on its state */
static inline int
uninit_module(module* module)
{
TRACE(("uninit_module(%s)\n", module->name));
switch (module->state) {
case MODULE_QUERIED:
case MODULE_LOADED:
return B_NO_ERROR;
case MODULE_INIT:
panic("Trying to unload module %s which is initializing\n", module->name);
return B_ERROR;
case MODULE_UNINIT:
panic("Trying to unload module %s which is un-initializing\n", module->name);
return B_ERROR;
case MODULE_READY:
{
status_t status = B_OK;
module->state = MODULE_UNINIT;
TRACE(("uninitializing module %s...\n", module->name));
if (module->info->std_ops != NULL)
status = module->info->std_ops(B_MODULE_UNINIT);
TRACE(("...done (%s)\n", strerror(status)));
if (status == B_OK) {
module->state = MODULE_LOADED;
put_dependent_modules(module);
return B_OK;
}
FATAL(("Error unloading module %s (%s)\n", module->name,
strerror(status)));
module->state = MODULE_ERROR;
module->flags |= B_KEEP_LOADED;
return status;
}
default:
return B_ERROR;
}
// never trespasses here
}
static const char*
iterator_pop_path_from_stack(module_iterator* iterator, uint32* _baseLength)
{
if (iterator->stack_current <= 0)
return NULL;
if (_baseLength)
*_baseLength = iterator->stack[iterator->stack_current - 1].base_length;
return iterator->stack[--iterator->stack_current].name;
}
static status_t
iterator_push_path_on_stack(module_iterator* iterator, const char* path,
uint32 baseLength)
{
if (iterator->stack_current + 1 > iterator->stack_size) {
// allocate new space on the stack
module_path* stack = (module_path*)realloc(iterator->stack,
(iterator->stack_size + 8) * sizeof(module_path));
if (stack == NULL)
return B_NO_MEMORY;
iterator->stack = stack;
iterator->stack_size += 8;
}
iterator->stack[iterator->stack_current].name = path;
iterator->stack[iterator->stack_current++].base_length = baseLength;
return B_OK;
}
static bool
match_iterator_suffix(module_iterator* iterator, const char* name)
{
if (iterator->suffix == NULL || iterator->suffix_length == 0)
return true;
size_t length = strlen(name);
if (length <= iterator->suffix_length)
return false;
return name[length - iterator->suffix_length - 1] == '/'
&& !strcmp(name + length - iterator->suffix_length, iterator->suffix);
}
static status_t
iterator_get_next_module(module_iterator* iterator, char* buffer,
size_t* _bufferSize)
{
status_t status;
TRACE(("iterator_get_next_module() -- start\n"));
if (iterator->builtin_modules) {
for (int32 i = iterator->module_offset; sBuiltInModules[i] != NULL; i++) {
// the module name must fit the prefix
if (strncmp(sBuiltInModules[i]->name, iterator->prefix,
iterator->prefix_length)
|| !match_iterator_suffix(iterator, sBuiltInModules[i]->name))
continue;
*_bufferSize = strlcpy(buffer, sBuiltInModules[i]->name,
*_bufferSize);
iterator->module_offset = i + 1;
return B_OK;
}
iterator->builtin_modules = false;
}
if (iterator->loaded_modules) {
recursive_lock_lock(&sModulesLock);
hash_iterator hashIterator;
hash_open(sModulesHash, &hashIterator);
struct module* module = (struct module*)hash_next(sModulesHash,
&hashIterator);
for (int32 i = 0; module != NULL; i++) {
if (i >= iterator->module_offset) {
if (!strncmp(module->name, iterator->prefix,
iterator->prefix_length)
&& match_iterator_suffix(iterator, module->name)) {
*_bufferSize = strlcpy(buffer, module->name, *_bufferSize);
iterator->module_offset = i + 1;
hash_close(sModulesHash, &hashIterator, false);
recursive_lock_unlock(&sModulesLock);
return B_OK;
}
}
module = (struct module*)hash_next(sModulesHash, &hashIterator);
}
hash_close(sModulesHash, &hashIterator, false);
recursive_lock_unlock(&sModulesLock);
// prevent from falling into modules hash iteration again
iterator->loaded_modules = false;
}
nextPath:
if (iterator->current_dir == NULL) {
// get next directory path from the stack
const char* path = iterator_pop_path_from_stack(iterator,
&iterator->path_base_length);
if (path == NULL) {
// we are finished, there are no more entries on the stack
return B_ENTRY_NOT_FOUND;
}
free((char*)iterator->current_path);
iterator->current_path = path;
iterator->current_dir = opendir(path);
TRACE(("open directory at %s -> %p\n", path, iterator->current_dir));
if (iterator->current_dir == NULL) {
// we don't throw an error here, but silently go to
// the next directory on the stack
goto nextPath;
}
}
nextModuleImage:
if (iterator->current_header == NULL) {
// get next entry from the current directory
errno = 0;
struct dirent* dirent;
if ((dirent = readdir(iterator->current_dir)) == NULL) {
closedir(iterator->current_dir);
iterator->current_dir = NULL;
if (errno < B_OK)
return errno;
goto nextPath;
}
// check if the prefix matches
int32 passedOffset, commonLength;
passedOffset = strlen(iterator->current_path) + 1;
commonLength = iterator->path_base_length + iterator->prefix_length
- passedOffset;
if (commonLength > 0) {
// the prefix still reaches into the new path part
int32 length = strlen(dirent->d_name);
if (commonLength > length)
commonLength = length;
if (strncmp(dirent->d_name, iterator->prefix + passedOffset
- iterator->path_base_length, commonLength))
goto nextModuleImage;
}
// we're not interested in traversing these again
if (!strcmp(dirent->d_name, ".")
|| !strcmp(dirent->d_name, ".."))
goto nextModuleImage;
// build absolute path to current file
KPath path(iterator->current_path);
if (path.InitCheck() != B_OK)
return B_NO_MEMORY;
if (path.Append(dirent->d_name) != B_OK)
return B_BUFFER_OVERFLOW;
// find out if it's a directory or a file
struct stat stat;
if (::stat(path.Path(), &stat) < 0)
return errno;
iterator->current_module_path = strdup(path.Path());
if (iterator->current_module_path == NULL)
return B_NO_MEMORY;
if (S_ISDIR(stat.st_mode)) {
status = iterator_push_path_on_stack(iterator,
iterator->current_module_path, iterator->path_base_length);
if (status < B_OK)
return status;
iterator->current_module_path = NULL;
goto nextModuleImage;
}
if (!S_ISREG(stat.st_mode))
return B_BAD_TYPE;
TRACE(("open module at %s\n", path.Path()));
status = get_module_image(path.Path(), &iterator->module_image);
if (status < B_OK) {
free((char*)iterator->current_module_path);
iterator->current_module_path = NULL;
goto nextModuleImage;
}
iterator->current_header = iterator->module_image->info;
iterator->module_offset = 0;
}
// search the current module image until we've got a match
while (*iterator->current_header != NULL) {
module_info* info = *iterator->current_header;
// TODO: we might want to create a module here and cache it in the
// hash table
iterator->current_header++;
iterator->module_offset++;
if (strncmp(info->name, iterator->prefix, iterator->prefix_length)
|| !match_iterator_suffix(iterator, info->name))
continue;
*_bufferSize = strlcpy(buffer, info->name, *_bufferSize);
return B_OK;
}
// leave this module and get the next one
iterator->current_header = NULL;
free((char*)iterator->current_module_path);
iterator->current_module_path = NULL;
put_module_image(iterator->module_image);
iterator->module_image = NULL;
goto nextModuleImage;
}
static void
register_builtin_modules(struct module_info** info)
{
for (; *info; info++) {
(*info)->flags |= B_BUILT_IN_MODULE;
// this is an internal flag, it doesn't have to be set by modules itself
if (create_module(*info, "", -1, NULL) != B_OK)
dprintf("creation of built-in module \"%s\" failed!\n", (*info)->name);
}
}
static status_t
register_preloaded_module_image(struct preloaded_image* image)
{
module_image* moduleImage;
struct module_info** info;
status_t status;
int32 index = 0;
TRACE(("register_preloaded_module_image(image = \"%s\")\n", image->name));
[Sorry, couldn't split this one up any further.] * Images preloaded by the boot loader had to be modules to be of any use to the kernel. Extended the mechanism so that any images not accepted by the module code would later be tried to be added as drivers by the devfs. This is a little hacky ATM, since the devfs manages the drivers using a hash map keyed by the drivers inode ID, which those drivers obviously don't have. * The devfs emulates read_pages() using read(), if the device driver doesn't implement the former (all old-style drivers), thus making it possible to BFS, which uses the file cache which in turn requires read_pages(), on the device. write_pages() emulation is still missing. * Replaced the kernel_args::boot_disk structure by a KMessage, which can more flexibly be extended and deals more gracefully with arbitrarily-size data. The disk_identifier structure still exists, though. It is added as message field in cases where needed (non net boot). Moved the boot_drive_number field of the bios_ia32 platform specific args into the message. * Made the stage 1 PXE boot loader superfluous. Moved the relevant initialization code into the stage 2 loader, which can now be loaded directly via PXE. * The PXE boot loader does now download a boot tgz archive via TFTP. It does no longer use the RemoteDisk protocol (it could actually be removed from the boot loader). It also parses the DHCP options in the DHCPACK packet provided by PXE and extracts the root path to be mounted by the kernel. * Reorganized the boot volume search in the kernel (vfs_boot.cpp) and added support for network boot. In this case the net stack is initialized and the network interface the boot loader used is brought up and configured. Since NBD and RemoteDisk are our only options for net boot (and those aren't really configurable dynamically) ATM, the the boot device is found automatically by the disk device manager. Booting via PXE does work to some degree now. The most grievous problem is that loading certain drivers or kernel modules (or related activity) causes a reboot (likely a triple fault, though one wonders where our double fault handler is on vacation). Namely the keyboard and mouse input server add-ons need to be deactivated as well as the media server. A smaller problem is the net server, which apparently tries to (re-)configure the network interface we're using to boot, which obviously doesn't work out that well. So, if all this stuff is disabled Haiku does fully boot, when using the RemoteDisk protocol (not being able to use keyboard or mouse doesn't make this a particular fascinating experience, though ;-)). I had no luck with NBD -- it seemed to have protocol problems with the servers I tried. git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@21611 a95241bf-73f2-0310-859d-f6bbb57e9c96
2007-07-15 06:10:15 +04:00
image->is_module = false;
if (image->id < 0)
return B_BAD_VALUE;
moduleImage = (module_image*)malloc(sizeof(module_image));
if (moduleImage == NULL)
return B_NO_MEMORY;
if (get_image_symbol(image->id, "modules", B_SYMBOL_TYPE_DATA,
(void**)&moduleImage->info) != B_OK) {
status = B_BAD_TYPE;
goto error;
}
[Sorry, couldn't split this one up any further.] * Images preloaded by the boot loader had to be modules to be of any use to the kernel. Extended the mechanism so that any images not accepted by the module code would later be tried to be added as drivers by the devfs. This is a little hacky ATM, since the devfs manages the drivers using a hash map keyed by the drivers inode ID, which those drivers obviously don't have. * The devfs emulates read_pages() using read(), if the device driver doesn't implement the former (all old-style drivers), thus making it possible to BFS, which uses the file cache which in turn requires read_pages(), on the device. write_pages() emulation is still missing. * Replaced the kernel_args::boot_disk structure by a KMessage, which can more flexibly be extended and deals more gracefully with arbitrarily-size data. The disk_identifier structure still exists, though. It is added as message field in cases where needed (non net boot). Moved the boot_drive_number field of the bios_ia32 platform specific args into the message. * Made the stage 1 PXE boot loader superfluous. Moved the relevant initialization code into the stage 2 loader, which can now be loaded directly via PXE. * The PXE boot loader does now download a boot tgz archive via TFTP. It does no longer use the RemoteDisk protocol (it could actually be removed from the boot loader). It also parses the DHCP options in the DHCPACK packet provided by PXE and extracts the root path to be mounted by the kernel. * Reorganized the boot volume search in the kernel (vfs_boot.cpp) and added support for network boot. In this case the net stack is initialized and the network interface the boot loader used is brought up and configured. Since NBD and RemoteDisk are our only options for net boot (and those aren't really configurable dynamically) ATM, the the boot device is found automatically by the disk device manager. Booting via PXE does work to some degree now. The most grievous problem is that loading certain drivers or kernel modules (or related activity) causes a reboot (likely a triple fault, though one wonders where our double fault handler is on vacation). Namely the keyboard and mouse input server add-ons need to be deactivated as well as the media server. A smaller problem is the net server, which apparently tries to (re-)configure the network interface we're using to boot, which obviously doesn't work out that well. So, if all this stuff is disabled Haiku does fully boot, when using the RemoteDisk protocol (not being able to use keyboard or mouse doesn't make this a particular fascinating experience, though ;-)). I had no luck with NBD -- it seemed to have protocol problems with the servers I tried. git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@21611 a95241bf-73f2-0310-859d-f6bbb57e9c96
2007-07-15 06:10:15 +04:00
image->is_module = true;
moduleImage->dependencies = NULL;
get_image_symbol(image->id, "module_dependencies", B_SYMBOL_TYPE_DATA,
(void**)&moduleImage->dependencies);
// this is allowed to be NULL
// Try to recreate the full module path, so that we don't try to load the
// image again when asked for a module it does not export (would only be
// problematic if it had got replaced and the new file actually exports
// that module). Also helpful for recurse_directory().
{
// ToDo: this is kind of a hack to have the full path in the hash
// (it always assumes the preloaded add-ons to be in the system
// directory)
char path[B_FILE_NAME_LENGTH];
const char* suffix;
const char* name;
if (moduleImage->info[0]
&& (suffix = strstr(name = moduleImage->info[0]->name,
image->name)) != NULL) {
// even if strlcpy() is used here, it's by no means safe
// against buffer overflows
KPath addonsKernelPath;
status_t status = find_directory(B_BEOS_ADDONS_DIRECTORY,
gBootDevice, false, addonsKernelPath.LockBuffer(),
addonsKernelPath.BufferSize());
if (status != B_OK) {
dprintf("register_preloaded_module_image: find_directory() "
"failed: %s\n", strerror(status));
}
addonsKernelPath.UnlockBuffer();
if (status == B_OK) {
status = addonsKernelPath.Append("kernel/");
// KPath does not remove the trailing '/'
}
if (status == B_OK) {
size_t length = strlcpy(path, addonsKernelPath.Path(),
sizeof(path));
strlcpy(path + length, name, strlen(image->name)
+ 1 + (suffix - name));
moduleImage->path = strdup(path);
} else {
moduleImage->path = NULL;
// this will trigger B_NO_MEMORY, which is the only
// reason to get here anyways...
}
} else
moduleImage->path = strdup(image->name);
}
if (moduleImage->path == NULL) {
status = B_NO_MEMORY;
goto error;
}
moduleImage->image = image->id;
moduleImage->ref_count = 0;
moduleImage->keep_loaded = false;
hash_insert(sModuleImagesHash, moduleImage);
for (info = moduleImage->info; *info; info++) {
create_module(*info, moduleImage->path, index++, NULL);
}
return B_OK;
error:
free(moduleImage);
[Sorry, couldn't split this one up any further.] * Images preloaded by the boot loader had to be modules to be of any use to the kernel. Extended the mechanism so that any images not accepted by the module code would later be tried to be added as drivers by the devfs. This is a little hacky ATM, since the devfs manages the drivers using a hash map keyed by the drivers inode ID, which those drivers obviously don't have. * The devfs emulates read_pages() using read(), if the device driver doesn't implement the former (all old-style drivers), thus making it possible to BFS, which uses the file cache which in turn requires read_pages(), on the device. write_pages() emulation is still missing. * Replaced the kernel_args::boot_disk structure by a KMessage, which can more flexibly be extended and deals more gracefully with arbitrarily-size data. The disk_identifier structure still exists, though. It is added as message field in cases where needed (non net boot). Moved the boot_drive_number field of the bios_ia32 platform specific args into the message. * Made the stage 1 PXE boot loader superfluous. Moved the relevant initialization code into the stage 2 loader, which can now be loaded directly via PXE. * The PXE boot loader does now download a boot tgz archive via TFTP. It does no longer use the RemoteDisk protocol (it could actually be removed from the boot loader). It also parses the DHCP options in the DHCPACK packet provided by PXE and extracts the root path to be mounted by the kernel. * Reorganized the boot volume search in the kernel (vfs_boot.cpp) and added support for network boot. In this case the net stack is initialized and the network interface the boot loader used is brought up and configured. Since NBD and RemoteDisk are our only options for net boot (and those aren't really configurable dynamically) ATM, the the boot device is found automatically by the disk device manager. Booting via PXE does work to some degree now. The most grievous problem is that loading certain drivers or kernel modules (or related activity) causes a reboot (likely a triple fault, though one wonders where our double fault handler is on vacation). Namely the keyboard and mouse input server add-ons need to be deactivated as well as the media server. A smaller problem is the net server, which apparently tries to (re-)configure the network interface we're using to boot, which obviously doesn't work out that well. So, if all this stuff is disabled Haiku does fully boot, when using the RemoteDisk protocol (not being able to use keyboard or mouse doesn't make this a particular fascinating experience, though ;-)). I had no luck with NBD -- it seemed to have protocol problems with the servers I tried. git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@21611 a95241bf-73f2-0310-859d-f6bbb57e9c96
2007-07-15 06:10:15 +04:00
// We don't need this image anymore. We keep it, if it doesn't look like
// a module at all. It might be an old-style driver.
if (image->is_module)
unload_kernel_add_on(image->id);
return status;
}
static int
dump_modules(int argc, char** argv)
{
hash_iterator iterator;
struct module_image* image;
struct module* module;
hash_rewind(sModulesHash, &iterator);
kprintf("-- known modules:\n");
while ((module = (struct module*)hash_next(sModulesHash, &iterator)) != NULL) {
kprintf("%p: \"%s\", \"%s\" (%ld), refcount = %ld, state = %d, mimage = %p\n",
module, module->name, module->file, module->offset, module->ref_count,
module->state, module->module_image);
}
hash_rewind(sModuleImagesHash, &iterator);
kprintf("\n-- loaded module images:\n");
while ((image = (struct module_image*)hash_next(sModuleImagesHash, &iterator)) != NULL) {
kprintf("%p: \"%s\" (image_id = %ld), info = %p, refcount = %ld, %s\n", image,
image->path, image->image, image->info, image->ref_count,
image->keep_loaded ? "keep loaded" : "can be unloaded");
}
return 0;
}
// #pragma mark - DirectoryWatcher
DirectoryWatcher::DirectoryWatcher()
{
}
DirectoryWatcher::~DirectoryWatcher()
{
}
void
DirectoryWatcher::EventOccured(NotificationService& service,
const KMessage* event)
{
int32 opcode = event->GetInt32("opcode", -1);
dev_t device = event->GetInt32("device", -1);
ino_t directory = event->GetInt64("directory", -1);
ino_t node = event->GetInt64("node", -1);
const char *name = event->GetString("name", NULL);
if (opcode == B_ENTRY_MOVED) {
// Determine wether it's a move within, out of, or into one
// of our watched directories.
directory = event->GetInt64("to directory", -1);
if (!sModuleNotificationService.HasNode(device, directory)) {
directory = event->GetInt64("from directory", -1);
opcode = B_ENTRY_REMOVED;
} else {
// Move within, doesn't sound like a good idea for modules
opcode = B_ENTRY_CREATED;
}
}
sModuleNotificationService.Notify(opcode, device, directory, node, name);
}
// #pragma mark - ModuleWatcher
ModuleWatcher::ModuleWatcher()
{
}
ModuleWatcher::~ModuleWatcher()
{
}
void
ModuleWatcher::EventOccured(NotificationService& service, const KMessage* event)
{
if (event->GetInt32("opcode", -1) != B_STAT_CHANGED
|| (event->GetInt32("fields", 0) & B_STAT_MODIFICATION_TIME) == 0)
return;
dev_t device = event->GetInt32("device", -1);
ino_t node = event->GetInt64("node", -1);
sModuleNotificationService.Notify(B_STAT_CHANGED, device, -1, node, NULL);
}
// #pragma mark - ModuleNotificationService
ModuleNotificationService::ModuleNotificationService()
{
recursive_lock_init(&fLock, "module notifications");
}
ModuleNotificationService::~ModuleNotificationService()
{
recursive_lock_destroy(&fLock);
}
status_t
ModuleNotificationService::AddListener(const KMessage* eventSpecifier,
NotificationListener& listener)
{
const char* prefix = eventSpecifier->GetString("prefix", NULL);
if (prefix == NULL)
return B_BAD_VALUE;
module_listener* moduleListener = new(std::nothrow) module_listener;
if (moduleListener == NULL)
return B_NO_MEMORY;
moduleListener->prefix = strdup(prefix);
if (moduleListener->prefix == NULL) {
delete moduleListener;
return B_NO_MEMORY;
}
status_t status = _AddDirectory(prefix);
if (status != B_OK) {
delete moduleListener;
return status;
}
moduleListener->listener = &listener;
fListeners.Add(moduleListener);
return B_OK;
}
status_t
ModuleNotificationService::UpdateListener(const KMessage* eventSpecifier,
NotificationListener& listener)
{
return B_ERROR;
}
status_t
ModuleNotificationService::RemoveListener(const KMessage* eventSpecifier,
NotificationListener& listener)
{
return B_ERROR;
}
bool
ModuleNotificationService::HasNode(dev_t device, ino_t node)
{
RecursiveLocker _(fLock);
struct entry entry = {device, node};
return fNodes.Lookup(&entry) != NULL;
}
status_t
ModuleNotificationService::_RemoveNode(dev_t device, ino_t node)
{
RecursiveLocker _(fLock);
struct entry key = {device, node};
hash_entry* entry = fNodes.Lookup(&key);
if (entry == NULL)
return B_ENTRY_NOT_FOUND;
remove_node_listener(device, node, entry->path != NULL
? (NotificationListener&)fModuleWatcher
: (NotificationListener&)fDirectoryWatcher);
fNodes.Remove(entry);
delete entry;
return B_OK;
}
status_t
ModuleNotificationService::_AddNode(dev_t device, ino_t node, const char* path,
uint32 flags, NotificationListener& listener)
{
RecursiveLocker locker(fLock);
if (HasNode(device, node))
return B_OK;
struct hash_entry* entry = new(std::nothrow) hash_entry;
if (entry == NULL)
return B_NO_MEMORY;
if (path != NULL) {
entry->path = strdup(path);
if (entry->path == NULL) {
delete entry;
return B_NO_MEMORY;
}
} else
entry->path = NULL;
status_t status = add_node_listener(device, node, flags, listener);
if (status != B_OK) {
delete entry;
return status;
}
//dprintf(" add %s %ld:%Ld (%s)\n", flags == B_WATCH_DIRECTORY
// ? "dir" : "file", device, node, path);
entry->device = device;
entry->node = node;
fNodes.Insert(entry);
return B_OK;
}
status_t
ModuleNotificationService::_AddDirectoryNode(dev_t device, ino_t node)
{
return _AddNode(device, node, NULL, B_WATCH_DIRECTORY, fDirectoryWatcher);
}
status_t
ModuleNotificationService::_AddModuleNode(dev_t device, ino_t node, int fd,
const char* name)
{
struct vnode* vnode;
status_t status = vfs_get_vnode_from_fd(fd, true, &vnode);
if (status != B_OK)
return status;
ino_t directory;
vfs_vnode_to_node_ref(vnode, &device, &directory);
KPath path;
status = path.InitCheck();
if (status == B_OK) {
status = vfs_entry_ref_to_path(device, directory, name,
path.LockBuffer(), path.BufferSize());
}
if (status != B_OK)
return status;
path.UnlockBuffer();
return _AddNode(device, node, path.Path(), B_WATCH_STAT, fModuleWatcher);
}
status_t
ModuleNotificationService::_AddDirectory(const char* prefix)
{
status_t status = B_ERROR;
for (uint32 i = 0; i < kNumModulePaths; i++) {
if (sDisableUserAddOns && i >= kFirstNonSystemModulePath)
break;
KPath pathBuffer;
if (find_directory(kModulePaths[i], gBootDevice, true,
pathBuffer.LockBuffer(), pathBuffer.BufferSize()) != B_OK)
continue;
pathBuffer.UnlockBuffer();
pathBuffer.Append("kernel");
pathBuffer.Append(prefix);
size_t prefixPosition = strlen(prefix);
status_t scanStatus = _ScanDirectory(pathBuffer.LockBuffer(), prefix,
prefixPosition);
pathBuffer.UnlockBuffer();
// It's enough if we succeed for one directory
if (status != B_OK)
status = scanStatus;
}
return status;
}
status_t
ModuleNotificationService::_ScanDirectory(char* directoryPath,
const char* prefix, size_t& prefixPosition)
{
DIR* dir = NULL;
while (true) {
dir = opendir(directoryPath);
if (dir != NULL || prefixPosition == 0)
break;
// the full prefix is not accessible, remove path components
const char* parentPrefix = prefix + prefixPosition - 1;
while (parentPrefix != prefix && parentPrefix[0] != '/')
parentPrefix--;
size_t cutPosition = parentPrefix - prefix;
size_t length = strlen(directoryPath);
directoryPath[length - prefixPosition + cutPosition] = '\0';
prefixPosition = cutPosition;
}
if (dir == NULL)
return B_ERROR;
Stack<DIR*> stack;
stack.Push(dir);
while (stack.Pop(&dir)) {
status_t status = _ScanDirectory(stack, dir, prefix, prefixPosition);
if (status != B_OK)
return status;
}
return B_OK;
}
status_t
ModuleNotificationService::_ScanDirectory(Stack<DIR*>& stack, DIR* dir,
const char* prefix, size_t prefixPosition)
{
bool directMatchAdded = false;
struct dirent* dirent;
while ((dirent = readdir(dir)) != NULL) {
if (dirent->d_name[0] == '.')
continue;
bool directMatch = false;
if (prefix[prefixPosition] != '\0') {
// the start must match
const char* startPrefix = prefix + prefixPosition;
if (startPrefix[0] == '/')
startPrefix++;
const char* endPrefix = strchr(startPrefix, '/');
size_t length;
if (endPrefix != NULL)
length = endPrefix - startPrefix;
else
length = strlen(startPrefix);
if (strncmp(dirent->d_name, startPrefix, length))
continue;
if (dirent->d_name[length] == '\0')
directMatch = true;
}
struct stat stat;
status_t status = vfs_read_stat(dir->fd, dirent->d_name, true, &stat,
true);
if (status != B_OK)
continue;
if (S_ISDIR(stat.st_mode)) {
int fd = _kern_open_dir(dir->fd, dirent->d_name);
if (fd < 0)
continue;
DIR* subDir = (DIR*)malloc(DIR_BUFFER_SIZE);
if (subDir == NULL) {
close(fd);
continue;
}
subDir->fd = fd;
subDir->entries_left = 0;
stack.Push(subDir);
if (_AddDirectoryNode(stat.st_dev, stat.st_ino) == B_OK
&& directMatch)
directMatchAdded = true;
} else if (S_ISREG(stat.st_mode)) {
if (_AddModuleNode(stat.st_dev, stat.st_ino, dir->fd,
dirent->d_name) == B_OK && directMatch)
directMatchAdded = true;
}
}
if (!directMatchAdded) {
// We need to monitor this directory to see if a matching file
// is added.
struct stat stat;
status_t status = vfs_read_stat(dir->fd, NULL, true, &stat, true);
if (status == B_OK)
_AddDirectoryNode(stat.st_dev, stat.st_ino);
}
closedir(dir);
return B_OK;
}
void
ModuleNotificationService::_Notify(int32 opcode, dev_t device, ino_t directory,
ino_t node, const char* name)
{
// construct path
KPath pathBuffer;
const char* path;
if (name != NULL) {
// we have an entry ref
if (pathBuffer.InitCheck() != B_OK
|| vfs_entry_ref_to_path(device, directory, name,
pathBuffer.LockBuffer(), pathBuffer.BufferSize()) != B_OK)
return;
pathBuffer.UnlockBuffer();
path = pathBuffer.Path();
} else {
// we only have a node ref
RecursiveLocker _(fLock);
struct entry key = {device, node};
hash_entry* entry = fNodes.Lookup(&key);
if (entry == NULL || entry->path == NULL)
return;
path = entry->path;
}
// remove kModulePaths from path
for (uint32 i = 0; i < kNumModulePaths; i++) {
KPath modulePath;
if (find_directory(kModulePaths[i], gBootDevice, true,
modulePath.LockBuffer(), modulePath.BufferSize()) != B_OK)
continue;
modulePath.UnlockBuffer();
modulePath.Append("kernel");
if (strncmp(path, modulePath.Path(), modulePath.Length()))
continue;
path += modulePath.Length();
if (path[i] == '/')
path++;
break;
}
KMessage event;
// find listeners by prefix/path
ModuleListenerList::Iterator iterator = fListeners.GetIterator();
while (iterator.HasNext()) {
module_listener* listener = iterator.Next();
if (strncmp(path, listener->prefix, strlen(listener->prefix)))
continue;
if (event.IsEmpty()) {
// construct message only when needed
event.AddInt32("opcode", opcode);
event.AddString("path", path);
}
// notify them!
listener->listener->EventOccured(*this, &event);
// we might need to watch new files now
if (opcode == B_ENTRY_CREATED)
_AddDirectory(listener->prefix);
}
// remove notification listeners, if needed
if (opcode == B_ENTRY_REMOVED)
_RemoveNode(device, node);
}
void
ModuleNotificationService::_HandleNotifications()
{
RecursiveLocker _(fLock);
NotificationList::Iterator iterator = fNotifications.GetIterator();
while (iterator.HasNext()) {
module_notification* notification = iterator.Next();
_Notify(notification->opcode, notification->device,
notification->directory, notification->node, notification->name);
iterator.Remove();
delete notification;
}
}
void
ModuleNotificationService::Notify(int32 opcode, dev_t device, ino_t directory,
ino_t node, const char* name)
{
module_notification* notification = new(std::nothrow) module_notification;
if (notification == NULL)
return;
if (name != NULL) {
notification->name = strdup(name);
if (notification->name == NULL) {
delete notification;
return;
}
} else
notification->name = NULL;
notification->opcode = opcode;
notification->device = device;
notification->directory = directory;
notification->node = node;
RecursiveLocker _(fLock);
fNotifications.Add(notification);
}
/*static*/ void
ModuleNotificationService::HandleNotifications(void */*data*/,
int /*iteration*/)
{
sModuleNotificationService._HandleNotifications();
}
// #pragma mark - Exported Kernel API (private part)
/*! Unloads a module in case it's not in use. This is the counterpart
to load_module().
*/
status_t
unload_module(const char* path)
{
struct module_image* moduleImage;
recursive_lock_lock(&sModulesLock);
moduleImage = (module_image*)hash_lookup(sModuleImagesHash, path);
recursive_lock_unlock(&sModulesLock);
if (moduleImage == NULL)
return B_ENTRY_NOT_FOUND;
put_module_image(moduleImage);
return B_OK;
}
/*! Unlike get_module(), this function lets you specify the add-on to
be loaded by path.
However, you must not use the exported modules without having called
get_module() on them. When you're done with the NULL terminated
\a modules array, you have to call unload_module(), no matter if
you're actually using any of the modules or not - of course, the
add-on won't be unloaded until the last put_module().
*/
status_t
load_module(const char* path, module_info*** _modules)
{
module_image* moduleImage;
status_t status = get_module_image(path, &moduleImage);
if (status != B_OK)
return status;
*_modules = moduleImage->info;
return B_OK;
}
status_t
start_watching_modules(const char* prefix, NotificationListener& listener)
{
KMessage specifier;
status_t status = specifier.AddString("prefix", prefix);
if (status != B_OK)
return status;
return sModuleNotificationService.AddListener(&specifier, listener);
}
status_t
stop_watching_modules(const char* prefix, NotificationListener& listener)
{
KMessage specifier;
status_t status = specifier.AddString("prefix", prefix);
if (status != B_OK)
return status;
return sModuleNotificationService.RemoveListener(&specifier, listener);
}
/*! Setup the module structures and data for use - must be called
before any other module call.
*/
status_t
module_init(kernel_args* args)
{
struct preloaded_image* image;
recursive_lock_init(&sModulesLock, "modules rlock");
sModulesHash = hash_init(MODULE_HASH_SIZE, 0, module_compare, module_hash);
if (sModulesHash == NULL)
return B_NO_MEMORY;
sModuleImagesHash = hash_init(MODULE_HASH_SIZE, 0, module_image_compare,
module_image_hash);
if (sModuleImagesHash == NULL)
return B_NO_MEMORY;
// register built-in modules
register_builtin_modules(sBuiltInModules);
// register preloaded images
for (image = args->preloaded_images; image != NULL; image = image->next) {
status_t status = register_preloaded_module_image(image);
if (status != B_OK) {
dprintf("Could not register image \"%s\": %s\n", image->name,
strerror(status));
}
}
new(&sModuleNotificationService) ModuleNotificationService();
sDisableUserAddOns = get_safemode_boolean(B_SAFEMODE_DISABLE_USER_ADD_ONS,
false);
add_debugger_command("modules", &dump_modules,
"list all known & loaded modules");
return B_OK;
}
status_t
module_init_post_threads(void)
{
return register_kernel_daemon(
&ModuleNotificationService::HandleNotifications, NULL, 10);
// once every second
return B_OK;
}
status_t
module_init_post_boot_device(void)
{
RecursiveLocker locker(sModulesLock);
hash_iterator iterator;
hash_open(sModuleImagesHash, &iterator);
while (true) {
struct module_image* image
= (struct module_image*)hash_next(sModuleImagesHash, &iterator);
if (image == NULL)
break;
if (image->ref_count == 0 && !image->keep_loaded)
unload_module_image(image, NULL);
}
return B_OK;
}
// #pragma mark - Exported Kernel API (public part)
/*! This returns a pointer to a structure that can be used to
iterate through a list of all modules available under
a given prefix that adhere to the specified suffix.
All paths will be searched and the returned list will
contain all modules available under the prefix.
The structure is then used by read_next_module_name(), and
must be freed by calling close_module_list().
*/
void*
open_module_list_etc(const char* prefix, const char* suffix)
{
TRACE(("open_module_list(prefix = %s)\n", prefix));
if (sModulesHash == NULL) {
dprintf("open_module_list() called too early!\n");
return NULL;
}
module_iterator* iterator = (module_iterator*)malloc(
sizeof(module_iterator));
if (iterator == NULL)
return NULL;
memset(iterator, 0, sizeof(module_iterator));
iterator->prefix = strdup(prefix != NULL ? prefix : "");
if (iterator->prefix == NULL) {
free(iterator);
return NULL;
}
iterator->prefix_length = strlen(iterator->prefix);
iterator->suffix = suffix;
if (suffix != NULL)
iterator->suffix_length = strlen(iterator->suffix);
if (gBootDevice > 0) {
// We do have a boot device to scan
// first, we'll traverse over the built-in modules
iterator->builtin_modules = true;
iterator->loaded_modules = false;
// put all search paths on the stack
for (uint32 i = 0; i < kNumModulePaths; i++) {
if (sDisableUserAddOns && i >= kFirstNonSystemModulePath)
break;
KPath pathBuffer;
if (find_directory(kModulePaths[i], gBootDevice, true,
pathBuffer.LockBuffer(), pathBuffer.BufferSize()) != B_OK)
continue;
pathBuffer.UnlockBuffer();
pathBuffer.Append("kernel");
// Copy base path onto the iterator stack
char* path = strdup(pathBuffer.Path());
if (path == NULL)
continue;
size_t length = strlen(path);
// TODO: it would currently be nicer to use the commented
// version below, but the iterator won't work if the prefix
// is inside a module then.
// It works this way, but should be done better.
#if 0
// Build path component: base path + '/' + prefix
size_t length = strlen(sModulePaths[i]);
char* path = (char*)malloc(length + iterator->prefix_length + 2);
if (path == NULL) {
// ToDo: should we abort the whole operation here?
// if we do, don't forget to empty the stack
continue;
}
memcpy(path, sModulePaths[i], length);
path[length] = '/';
memcpy(path + length + 1, iterator->prefix,
iterator->prefix_length + 1);
#endif
iterator_push_path_on_stack(iterator, path, length + 1);
}
} else {
// include loaded modules in case there is no boot device yet
iterator->builtin_modules = false;
iterator->loaded_modules = true;
}
return (void*)iterator;
}
void*
open_module_list(const char* prefix)
{
return open_module_list_etc(prefix, NULL);
}
/*! Frees the cookie allocated by open_module_list() */
status_t
close_module_list(void* cookie)
{
module_iterator* iterator = (module_iterator*)cookie;
const char* path;
TRACE(("close_module_list()\n"));
if (iterator == NULL)
return B_BAD_VALUE;
// free stack
while ((path = iterator_pop_path_from_stack(iterator, NULL)) != NULL)
free((char*)path);
// close what have been left open
if (iterator->module_image != NULL)
put_module_image(iterator->module_image);
if (iterator->current_dir != NULL)
closedir(iterator->current_dir);
free(iterator->stack);
free((char*)iterator->current_path);
free((char*)iterator->current_module_path);
free(iterator->prefix);
free(iterator);
return B_OK;
}
/*! Return the next module name from the available list, using
a structure previously created by a call to open_module_list().
Returns B_OK as long as it found another module, B_ENTRY_NOT_FOUND
when done.
*/
status_t
read_next_module_name(void* cookie, char* buffer, size_t* _bufferSize)
{
module_iterator* iterator = (module_iterator*)cookie;
status_t status;
TRACE(("read_next_module_name: looking for next module\n"));
if (iterator == NULL || buffer == NULL || _bufferSize == NULL)
return B_BAD_VALUE;
if (iterator->status < B_OK)
return iterator->status;
status = iterator->status;
recursive_lock_lock(&sModulesLock);
status = iterator_get_next_module(iterator, buffer, _bufferSize);
iterator->status = status;
recursive_lock_unlock(&sModulesLock);
TRACE(("read_next_module_name: finished with status %s\n",
strerror(status)));
return status;
}
/*! Iterates through all loaded modules, and stores its path in "buffer".
TODO: check if the function in BeOS really does that (could also mean:
iterate through all modules that are currently loaded; have a valid
module_image pointer)
*/
status_t
get_next_loaded_module_name(uint32* _cookie, char* buffer, size_t* _bufferSize)
{
if (sModulesHash == NULL) {
dprintf("get_next_loaded_module_name() called too early!\n");
return B_ERROR;
}
//TRACE(("get_next_loaded_module_name(\"%s\")\n", buffer));
if (_cookie == NULL || buffer == NULL || _bufferSize == NULL)
return B_BAD_VALUE;
status_t status = B_ENTRY_NOT_FOUND;
uint32 offset = *_cookie;
RecursiveLocker _(sModulesLock);
hash_iterator iterator;
hash_open(sModulesHash, &iterator);
struct module* module = (struct module*)hash_next(sModulesHash, &iterator);
for (uint32 i = 0; module != NULL; i++) {
if (i >= offset) {
*_bufferSize = strlcpy(buffer, module->name, *_bufferSize);
*_cookie = i + 1;
status = B_OK;
break;
}
module = (struct module*)hash_next(sModulesHash, &iterator);
}
hash_close(sModulesHash, &iterator, false);
return status;
}
status_t
get_module(const char* path, module_info** _info)
{
module_image* moduleImage;
module* module;
status_t status;
TRACE(("get_module(%s)\n", path));
if (path == NULL)
return B_BAD_VALUE;
RecursiveLocker _(sModulesLock);
module = (struct module*)hash_lookup(sModulesHash, path);
// if we don't have it cached yet, search for it
if (module == NULL) {
module = search_module(path);
if (module == NULL) {
FATAL(("module: Search for %s failed.\n", path));
return B_ENTRY_NOT_FOUND;
}
}
if ((module->flags & B_BUILT_IN_MODULE) == 0) {
/* We now need to find the module_image for the module. This should
* be in memory if we have just run search_module(), but may not be
* if we are using cached information.
* We can't use the module->module_image pointer, because it is not
* reliable at this point (it won't be set to NULL when the module_image
* is unloaded).
*/
if (get_module_image(module->file, &moduleImage) < B_OK)
return B_ENTRY_NOT_FOUND;
// (re)set in-memory data for the loaded module
module->info = moduleImage->info[module->offset];
module->module_image = moduleImage;
// the module image must not be unloaded anymore
if (module->flags & B_KEEP_LOADED)
module->module_image->keep_loaded = true;
}
// The state will be adjusted by the call to init_module
// if we have just loaded the file
if (module->ref_count == 0)
status = init_module(module);
else
status = B_OK;
if (status == B_OK) {
ASSERT(module->ref_count >= 0);
module->ref_count++;
*_info = module->info;
} else if ((module->flags & B_BUILT_IN_MODULE) == 0
&& (module->flags & B_KEEP_LOADED) == 0)
put_module_image(module->module_image);
return status;
}
status_t
put_module(const char* path)
{
module* module;
TRACE(("put_module(path = %s)\n", path));
RecursiveLocker _(sModulesLock);
module = (struct module*)hash_lookup(sModulesHash, path);
if (module == NULL) {
FATAL(("module: We don't seem to have a reference to module %s\n",
path));
return B_BAD_VALUE;
}
if (module->ref_count == 0)
panic("module %s has no references.\n", path);
if ((module->flags & B_KEEP_LOADED) == 0) {
if (--module->ref_count == 0)
uninit_module(module);
}
if ((module->flags & B_BUILT_IN_MODULE) == 0)
put_module_image(module->module_image);
return B_OK;
}