haiku/src/system/kernel/elf.c

1479 lines
35 KiB
C
Raw Normal View History

/*
* Copyright 2002-2005, Axel Dörfler, axeld@pinc-software.de. All rights reserved.
* Distributed under the terms of the MIT License.
*
* Copyright 2001, Travis Geiselbrecht. All rights reserved.
* Distributed under the terms of the NewOS License.
*/
/* Contains the ELF loader */
#include <OS.h>
#include <elf.h>
#include <vfs.h>
#include <vm.h>
#include <vm_address_space.h>
#include <thread.h>
#include <team.h>
#include <debug.h>
#include <kimage.h>
#include <util/khash.h>
#include <syscalls.h>
#include <arch/cpu.h>
#include <arch/elf.h>
#include <elf_priv.h>
#include <boot/elf.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <ctype.h>
//#define TRACE_ELF
#ifdef TRACE_ELF
# define TRACE(x) dprintf x
#else
# define TRACE(x) ;
#endif
// ToDo: this shall contain a list of linked images (one day)
// this is a preparation for shared libraries in the kernel
// and not yet used.
#if 0
typedef struct elf_linked_image {
struct elf_linked_image *next;
struct elf_image_info *image;
} elf_linked_image;
#endif
#define IMAGE_HASH_SIZE 16
static hash_table *sImagesHash;
static struct elf_image_info *sKernelImage = NULL;
static mutex sImageMutex;
static mutex sImageLoadMutex;
static bool sInitialized = false;
/** calculates hash for an image using its ID */
static uint32
image_hash(void *_image, const void *_key, uint32 range)
{
struct elf_image_info *image = (struct elf_image_info *)_image;
image_id id = (image_id)_key;
if (image != NULL)
return image->id % range;
return (uint32)id % range;
}
/** compares an image to a given ID */
static int
image_compare(void *_image, const void *_key)
{
struct elf_image_info *image = (struct elf_image_info *)_image;
image_id id = (image_id)_key;
return id - image->id;
}
static void
unregister_elf_image(struct elf_image_info *image)
{
unregister_image(team_get_kernel_team(), image->id);
hash_remove(sImagesHash, image);
}
static void
register_elf_image(struct elf_image_info *image)
{
image_info imageInfo;
memset(&imageInfo, 0, sizeof(image_info));
imageInfo.id = image->id;
imageInfo.type = B_SYSTEM_IMAGE;
strlcpy(imageInfo.name, image->name, sizeof(imageInfo.name));
imageInfo.text = (void *)image->text_region.start;
imageInfo.text_size = image->text_region.size;
imageInfo.data = (void *)image->data_region.start;
imageInfo.data_size = image->data_region.size;
image->id = register_image(team_get_kernel_team(), &imageInfo, sizeof(image_info));
hash_insert(sImagesHash, image);
}
/** Note, you must lock the image mutex when you call this function. */
static struct elf_image_info *
find_image_at_address(addr_t address)
{
struct hash_iterator iterator;
struct elf_image_info *image;
ASSERT_LOCKED_MUTEX(&sImageMutex);
hash_open(sImagesHash, &iterator);
// get image that may contain the address
while ((image = hash_next(sImagesHash, &iterator)) != NULL) {
if ((address >= image->text_region.start
&& address <= (image->text_region.start + image->text_region.size))
|| (address >= image->data_region.start
&& address <= (image->data_region.start + image->data_region.size)))
break;
}
hash_close(sImagesHash, &iterator, false);
return image;
}
static int
dump_address_info(int argc, char **argv)
{
const char *symbol, *imageName;
bool exactMatch;
addr_t address, baseAddress;
if (argc < 2) {
kprintf("usage: ls <address>\n");
return 0;
}
address = strtoul(argv[1], NULL, 16);
if (elf_debug_lookup_symbol_address(address, &baseAddress, &symbol,
&imageName, &exactMatch) == B_OK) {
kprintf("%p = %s + 0x%lx (%s)%s\n", (void *)address, symbol,
address - baseAddress, imageName, exactMatch ? "" : " (nearest)");
} else
kprintf("There is no image loaded at this address!\n");
return 0;
}
static struct elf_image_info *
find_image(image_id id)
{
return hash_lookup(sImagesHash, (void *)id);
}
static struct elf_image_info *
find_image_by_vnode(void *vnode)
{
struct hash_iterator iterator;
struct elf_image_info *image;
mutex_lock(&sImageMutex);
hash_open(sImagesHash, &iterator);
while ((image = hash_next(sImagesHash, &iterator)) != NULL) {
if (image->vnode == vnode)
break;
}
hash_close(sImagesHash, &iterator, false);
mutex_unlock(&sImageMutex);
return image;
}
static struct elf_image_info *
create_image_struct()
{
struct elf_image_info *image = (struct elf_image_info *)malloc(sizeof(struct elf_image_info));
if (image == NULL)
return NULL;
memset(image, 0, sizeof(struct elf_image_info));
image->text_region.id = -1;
image->data_region.id = -1;
image->ref_count = 1;
return image;
}
static uint32
elf_hash(const unsigned char *name)
{
unsigned long hash = 0;
unsigned long temp;
while (*name) {
hash = (hash << 4) + *name++;
if((temp = hash & 0xf0000000))
hash ^= temp >> 24;
hash &= ~temp;
}
return hash;
}
static const char *
get_symbol_type_string(struct Elf32_Sym *symbol)
{
switch (ELF32_ST_TYPE(symbol->st_info)) {
case STT_FUNC:
return "func";
case STT_OBJECT:
return " obj";
case STT_FILE:
return "file";
default:
return "----";
}
}
static const char *
get_symbol_bind_string(struct Elf32_Sym *symbol)
{
switch (ELF32_ST_BIND(symbol->st_info)) {
case STB_LOCAL:
return "loc ";
case STB_GLOBAL:
return "glob";
case STB_WEAK:
return "weak";
default:
return "----";
}
}
static int
dump_symbols(int argc, char **argv)
{
struct elf_image_info *image = NULL;
struct hash_iterator iterator;
uint32 i;
// if the argument looks like a hex number, treat it as such
if (argc > 1) {
if (isdigit(argv[1][0])) {
uint32 num = strtoul(argv[1], NULL, 0);
if (IS_KERNEL_ADDRESS(num)) {
// find image at address
hash_open(sImagesHash, &iterator);
while ((image = hash_next(sImagesHash, &iterator)) != NULL) {
if (image->text_region.start <= num
&& image->text_region.start + image->text_region.size >= num)
break;
}
hash_close(sImagesHash, &iterator, false);
if (image == NULL)
kprintf("No image covers 0x%lx in the kernel!\n", num);
} else {
image = hash_lookup(sImagesHash, (void *)num);
if (image == NULL)
kprintf("image 0x%lx doesn't exist in the kernel!\n", num);
}
} else {
// look for image by name
hash_open(sImagesHash, &iterator);
while ((image = hash_next(sImagesHash, &iterator)) != NULL) {
if (!strcmp(image->name, argv[1]))
break;
}
hash_close(sImagesHash, &iterator, false);
if (image == NULL)
kprintf("No image \"%s\" found in kernel!\n", argv[1]);
}
} else {
kprintf("usage: %s image_name/image_id/address_in_image\n", argv[0]);
return 0;
}
if (image == NULL)
return -1;
// dump symbols
kprintf("Symbols of image %ld \"%s\":\nAddress Type Size Name\n", image->id, image->name);
if (image->num_debug_symbols > 0) {
// search extended debug symbol table (contains static symbols)
for (i = 0; i < image->num_debug_symbols; i++) {
struct Elf32_Sym *symbol = &image->debug_symbols[i];
if (symbol->st_value == 0
|| symbol->st_size >= image->text_region.size + image->data_region.size)
continue;
kprintf("%08lx %s/%s %5ld %s\n", symbol->st_value + image->text_region.delta,
get_symbol_type_string(symbol), get_symbol_bind_string(symbol), symbol->st_size,
image->debug_string_table + symbol->st_name);
}
} else {
int32 j;
// search standard symbol lookup table
for (i = 0; i < HASHTABSIZE(image); i++) {
for (j = HASHBUCKETS(image)[i]; j != STN_UNDEF; j = HASHCHAINS(image)[j]) {
struct Elf32_Sym *symbol = &image->syms[j];
if (symbol->st_value == 0
|| symbol->st_size >= image->text_region.size + image->data_region.size)
continue;
kprintf("%08lx %s/%s %5ld %s\n", symbol->st_value + image->text_region.delta,
get_symbol_type_string(symbol), get_symbol_bind_string(symbol),
symbol->st_size, SYMNAME(image, symbol));
}
}
}
return 0;
}
static void
dump_elf_region(struct elf_region *region, const char *name)
{
kprintf(" %s.id 0x%lx\n", name, region->id);
kprintf(" %s.start 0x%lx\n", name, region->start);
kprintf(" %s.size 0x%lx\n", name, region->size);
kprintf(" %s.delta %ld\n", name, region->delta);
}
static void
dump_image_info(struct elf_image_info *image)
{
kprintf("elf_image_info at %p:\n", image);
kprintf(" next %p\n", image->next);
kprintf(" id 0x%lx\n", image->id);
dump_elf_region(&image->text_region, "text");
dump_elf_region(&image->data_region, "data");
kprintf(" dynamic_ptr 0x%lx\n", image->dynamic_ptr);
kprintf(" needed %p\n", image->needed);
kprintf(" symhash %p\n", image->symhash);
kprintf(" syms %p\n", image->syms);
kprintf(" strtab %p\n", image->strtab);
kprintf(" rel %p\n", image->rel);
kprintf(" rel_len 0x%x\n", image->rel_len);
kprintf(" rela %p\n", image->rela);
kprintf(" rela_len 0x%x\n", image->rela_len);
kprintf(" pltrel %p\n", image->pltrel);
kprintf(" pltrel_len 0x%x\n", image->pltrel_len);
kprintf(" debug_symbols %p (%ld)\n", image->debug_symbols, image->num_debug_symbols);
}
static int
dump_image(int argc, char **argv)
{
struct hash_iterator iterator;
struct elf_image_info *image;
// if the argument looks like a hex number, treat it as such
if (argc > 1) {
uint32 num = strtoul(argv[1], NULL, 0);
if (IS_KERNEL_ADDRESS(num)) {
// semi-hack
dump_image_info((struct elf_image_info *)num);
} else {
image = hash_lookup(sImagesHash, (void *)num);
if (image == NULL)
kprintf("image 0x%lx doesn't exist in the kernel!\n", num);
else
dump_image_info(image);
}
return 0;
}
kprintf("loaded kernel images:\n");
hash_open(sImagesHash, &iterator);
while ((image = hash_next(sImagesHash, &iterator)) != NULL) {
kprintf("%p (%ld) %s\n", image, image->id, image->name);
}
hash_close(sImagesHash, &iterator, false);
return 0;
}
// Currently unused
#if 0
static
void dump_symbol(struct elf_image_info *image, struct Elf32_Sym *sym)
{
kprintf("symbol at %p, in image %p\n", sym, image);
kprintf(" name index %d, '%s'\n", sym->st_name, SYMNAME(image, sym));
kprintf(" st_value 0x%x\n", sym->st_value);
kprintf(" st_size %d\n", sym->st_size);
kprintf(" st_info 0x%x\n", sym->st_info);
kprintf(" st_other 0x%x\n", sym->st_other);
kprintf(" st_shndx %d\n", sym->st_shndx);
}
#endif
static struct Elf32_Sym *
elf_find_symbol(struct elf_image_info *image, const char *name)
{
uint32 hash;
uint32 i;
if (!image->dynamic_ptr)
return NULL;
hash = elf_hash(name) % HASHTABSIZE(image);
for (i = HASHBUCKETS(image)[hash]; i != STN_UNDEF; i = HASHCHAINS(image)[i]) {
if (!strcmp(SYMNAME(image, &image->syms[i]), name))
return &image->syms[i];
}
return NULL;
}
static status_t
elf_parse_dynamic_section(struct elf_image_info *image)
{
struct Elf32_Dyn *d;
int i;
int needed_offset = -1;
TRACE(("top of elf_parse_dynamic_section\n"));
image->symhash = 0;
image->syms = 0;
image->strtab = 0;
d = (struct Elf32_Dyn *)image->dynamic_ptr;
if (!d)
return B_ERROR;
for (i = 0; d[i].d_tag != DT_NULL; i++) {
switch (d[i].d_tag) {
case DT_NEEDED:
needed_offset = d[i].d_un.d_ptr + image->text_region.delta;
break;
case DT_HASH:
image->symhash = (uint32 *)(d[i].d_un.d_ptr + image->text_region.delta);
break;
case DT_STRTAB:
image->strtab = (char *)(d[i].d_un.d_ptr + image->text_region.delta);
break;
case DT_SYMTAB:
image->syms = (struct Elf32_Sym *)(d[i].d_un.d_ptr + image->text_region.delta);
break;
case DT_REL:
image->rel = (struct Elf32_Rel *)(d[i].d_un.d_ptr + image->text_region.delta);
break;
case DT_RELSZ:
image->rel_len = d[i].d_un.d_val;
break;
case DT_RELA:
image->rela = (struct Elf32_Rela *)(d[i].d_un.d_ptr + image->text_region.delta);
break;
case DT_RELASZ:
image->rela_len = d[i].d_un.d_val;
break;
case DT_JMPREL:
image->pltrel = (struct Elf32_Rel *)(d[i].d_un.d_ptr + image->text_region.delta);
break;
case DT_PLTRELSZ:
image->pltrel_len = d[i].d_un.d_val;
break;
case DT_PLTREL:
image->pltrel_type = d[i].d_un.d_val;
break;
default:
continue;
}
}
// lets make sure we found all the required sections
if (!image->symhash || !image->syms || !image->strtab)
return B_ERROR;
TRACE(("needed_offset = %d\n", needed_offset));
if (needed_offset >= 0)
image->needed = STRING(image, needed_offset);
return B_OK;
}
/** this function first tries to see if the first image and it's already resolved symbol is okay, otherwise
* it tries to link against the shared_image
* XXX gross hack and needs to be done better
*/
status_t
elf_resolve_symbol(struct elf_image_info *image, struct Elf32_Sym *sym,
struct elf_image_info *shared_image, const char *sym_prepend, addr_t *sym_addr)
{
struct Elf32_Sym *sym2;
char new_symname[512];
switch (sym->st_shndx) {
case SHN_UNDEF:
// patch the symbol name
strlcpy(new_symname, sym_prepend, sizeof(new_symname));
strlcat(new_symname, SYMNAME(image, sym), sizeof(new_symname));
// it's undefined, must be outside this image, try the other image
sym2 = elf_find_symbol(shared_image, new_symname);
if (!sym2) {
dprintf("\"%s\": could not resolve symbol '%s'\n",
image->name, new_symname);
return B_MISSING_SYMBOL;
}
// make sure they're the same type
if (ELF32_ST_TYPE(sym->st_info) != ELF32_ST_TYPE(sym2->st_info)) {
dprintf("elf_resolve_symbol: found symbol '%s' in shared image but wrong type\n", new_symname);
return B_MISSING_SYMBOL;
}
if (ELF32_ST_BIND(sym2->st_info) != STB_GLOBAL && ELF32_ST_BIND(sym2->st_info) != STB_WEAK) {
TRACE(("elf_resolve_symbol: found symbol '%s' but not exported\n", new_symname));
return B_MISSING_SYMBOL;
}
*sym_addr = sym2->st_value + shared_image->text_region.delta;
return B_NO_ERROR;
case SHN_ABS:
*sym_addr = sym->st_value;
return B_NO_ERROR;
case SHN_COMMON:
// ToDo: finish this
TRACE(("elf_resolve_symbol: COMMON symbol, finish me!\n"));
return B_ERROR;
default:
// standard symbol
*sym_addr = sym->st_value + image->text_region.delta;
return B_NO_ERROR;
}
}
/** Until we have shared library support, just links against the kernel */
static int
elf_relocate(struct elf_image_info *image, const char *sym_prepend)
{
int status = B_NO_ERROR;
TRACE(("top of elf_relocate\n"));
// deal with the rels first
if (image->rel) {
TRACE(("total %i relocs\n", image->rel_len / (int)sizeof(struct Elf32_Rel)));
status = arch_elf_relocate_rel(image, sym_prepend, sKernelImage, image->rel, image->rel_len);
if (status < B_OK)
return status;
}
if (image->pltrel) {
TRACE(("total %i plt-relocs\n", image->pltrel_len / (int)sizeof(struct Elf32_Rel)));
if (image->pltrel_type == DT_REL)
status = arch_elf_relocate_rel(image, sym_prepend, sKernelImage, image->pltrel, image->pltrel_len);
else
status = arch_elf_relocate_rela(image, sym_prepend, sKernelImage, (struct Elf32_Rela *)image->pltrel, image->pltrel_len);
if (status < B_OK)
return status;
}
if (image->rela) {
status = arch_elf_relocate_rela(image, sym_prepend, sKernelImage, image->rela, image->rela_len);
if (status < B_OK)
return status;
}
return status;
}
static int
verify_eheader(struct Elf32_Ehdr *eheader)
{
if (memcmp(eheader->e_ident, ELF_MAGIC, 4) != 0)
return B_NOT_AN_EXECUTABLE;
if (eheader->e_ident[4] != ELFCLASS32)
return B_NOT_AN_EXECUTABLE;
if (eheader->e_phoff == 0)
return B_NOT_AN_EXECUTABLE;
if (eheader->e_phentsize < sizeof(struct Elf32_Phdr))
return B_NOT_AN_EXECUTABLE;
return 0;
}
#if 0
static int
elf_unlink_relocs(struct elf_image_info *image)
{
elf_linked_image *link, *next_link;
for (link = image->linked_images; link; link = next_link) {
next_link = link->next;
elf_unload_image(link->image);
free(link);
}
return B_NO_ERROR;
}
#endif
static status_t
unload_elf_image(struct elf_image_info *image)
{
if (atomic_add(&image->ref_count, -1) > 0)
return B_NO_ERROR;
//elf_unlink_relocs(image);
// not yet used
delete_area(image->text_region.id);
delete_area(image->data_region.id);
if (image->vnode)
vfs_put_vnode(image->vnode);
unregister_elf_image(image);
free(image->eheader);
free(image->name);
free(image);
return B_NO_ERROR;
}
static status_t
load_elf_symbol_table(int fd, struct elf_image_info *image)
{
struct Elf32_Ehdr *elfHeader = image->eheader;
struct Elf32_Sym *symbolTable = NULL;
struct Elf32_Shdr *stringHeader = NULL;
uint32 numSymbols = 0;
char *stringTable;
status_t status;
ssize_t length;
int32 i;
// get section headers
ssize_t size = elfHeader->e_shnum * elfHeader->e_shentsize;
struct Elf32_Shdr *sectionHeaders = (struct Elf32_Shdr *)malloc(size);
if (sectionHeaders == NULL) {
dprintf("error allocating space for section headers\n");
return B_NO_MEMORY;
}
length = read_pos(fd, elfHeader->e_shoff, sectionHeaders, size);
if (length < size) {
TRACE(("error reading in program headers\n"));
status = B_ERROR;
goto error1;
}
// find symbol table in section headers
for (i = 0; i < elfHeader->e_shnum; i++) {
if (sectionHeaders[i].sh_type == SHT_SYMTAB) {
stringHeader = &sectionHeaders[sectionHeaders[i].sh_link];
if (stringHeader->sh_type != SHT_STRTAB) {
TRACE(("doesn't link to string table\n"));
status = B_BAD_DATA;
goto error1;
}
// read in symbol table
symbolTable = (struct Elf32_Sym *)malloc(size = sectionHeaders[i].sh_size);
if (symbolTable == NULL) {
status = B_NO_MEMORY;
goto error1;
}
length = read_pos(fd, sectionHeaders[i].sh_offset, symbolTable, size);
if (length < size) {
TRACE(("error reading in symbol table\n"));
status = B_ERROR;
goto error1;
}
numSymbols = size / sizeof(struct Elf32_Sym);
break;
}
}
if (symbolTable == NULL) {
TRACE(("no symbol table\n"));
status = B_BAD_VALUE;
goto error1;
}
// read in string table
stringTable = (char *)malloc(size = stringHeader->sh_size);
if (stringTable == NULL) {
status = B_NO_MEMORY;
goto error2;
}
length = read_pos(fd, stringHeader->sh_offset, stringTable, size);
if (length < size) {
TRACE(("error reading in string table\n"));
status = B_ERROR;
goto error3;
}
TRACE(("loaded debug %ld symbols\n", numSymbols));
// insert tables into image
image->debug_symbols = symbolTable;
image->num_debug_symbols = numSymbols;
image->debug_string_table = stringTable;
free(sectionHeaders);
return B_OK;
error3:
free(stringTable);
error2:
free(symbolTable);
error1:
free(sectionHeaders);
return status;
}
static status_t
insert_preloaded_image(struct preloaded_image *preloadedImage, bool kernel)
{
struct elf_image_info *image;
status_t status;
status = verify_eheader(&preloadedImage->elf_header);
if (status < B_OK)
return status;
image = create_image_struct();
if (image == NULL)
return B_NO_MEMORY;
image->name = strdup(preloadedImage->name);
image->dynamic_ptr = preloadedImage->dynamic_section.start;
image->text_region = preloadedImage->text_region;
image->data_region = preloadedImage->data_region;
status = elf_parse_dynamic_section(image);
if (status < B_OK)
goto error1;
if (!kernel) {
status = elf_relocate(image, "");
if (status < B_OK)
goto error1;
} else
sKernelImage = image;
image->debug_symbols = preloadedImage->debug_symbols;
image->num_debug_symbols = preloadedImage->num_debug_symbols;
image->debug_string_table = preloadedImage->debug_string_table;
register_elf_image(image);
preloadedImage->id = image->id;
// modules_init() uses this information to get the preloaded images
return B_OK;
error1:
free(image);
// clean up preloaded image resources (this image won't be used anymore)
delete_area(preloadedImage->text_region.id);
delete_area(preloadedImage->data_region.id);
preloadedImage->id = -1;
return status;
}
// #pragma mark -
// public kernel API
status_t
get_image_symbol(image_id id, const char *name, int32 sclass, void **_symbol)
{
struct elf_image_info *image;
struct Elf32_Sym *symbol;
status_t status = B_OK;
TRACE(("get_image_symbol(%s)\n", name));
mutex_lock(&sImageMutex);
image = find_image(id);
if (image == NULL) {
status = B_BAD_IMAGE_ID;
goto done;
}
symbol = elf_find_symbol(image, name);
if (symbol == NULL || symbol->st_shndx == SHN_UNDEF) {
status = B_ENTRY_NOT_FOUND;
goto done;
}
// ToDo: support the "sclass" parameter!
TRACE(("found: %lx (%lx + %lx)\n", symbol->st_value + image->text_region.delta,
symbol->st_value, image->text_region.delta));
*_symbol = (void *)(symbol->st_value + image->text_region.delta);
done:
mutex_unlock(&sImageMutex);
return status;
}
// #pragma mark -
// kernel private API
/** Looks up a symbol by address in all images loaded in kernel space.
* Note, if you need to call this function outside a debugger, make
* sure you fix locking and the way it returns its information, first!
*/
status_t
elf_debug_lookup_symbol_address(addr_t address, addr_t *_baseAddress,
const char **_symbolName, const char **_imageName, bool *_exactMatch)
{
struct elf_image_info *image;
struct Elf32_Sym *symbolFound = NULL;
const char *symbolName = NULL;
addr_t deltaFound = INT_MAX;
bool exactMatch = false;
status_t status;
TRACE(("looking up %p\n", (void *)address));
if (!sInitialized)
return B_ERROR;
//mutex_lock(&sImageMutex);
image = find_image_at_address(address);
// get image that may contain the address
if (image != NULL) {
addr_t symbolDelta;
uint32 i;
int32 j;
TRACE((" image %p, base = %p, size = %p\n", image,
(void *)image->text_region.start, (void *)image->text_region.size));
if (image->debug_symbols != NULL) {
// search extended debug symbol table (contains static symbols)
TRACE((" searching debug symbols...\n"));
for (i = 0; i < image->num_debug_symbols; i++) {
struct Elf32_Sym *symbol = &image->debug_symbols[i];
if (symbol->st_value == 0
|| symbol->st_size >= image->text_region.size + image->data_region.size)
continue;
symbolDelta = address - (symbol->st_value + image->text_region.delta);
if (symbolDelta >= 0 && symbolDelta < symbol->st_size)
exactMatch = true;
if (exactMatch || symbolDelta < deltaFound) {
deltaFound = symbolDelta;
symbolFound = symbol;
symbolName = image->debug_string_table + symbol->st_name;
if (exactMatch)
break;
}
}
} else {
// search standard symbol lookup table
TRACE((" searching standard symbols...\n"));
for (i = 0; i < HASHTABSIZE(image); i++) {
for (j = HASHBUCKETS(image)[i]; j != STN_UNDEF; j = HASHCHAINS(image)[j]) {
struct Elf32_Sym *symbol = &image->syms[j];
if (symbol->st_value == 0
|| symbol->st_size >= image->text_region.size + image->data_region.size)
continue;
symbolDelta = address - (long)(symbol->st_value + image->text_region.delta);
if (symbolDelta >= 0 && symbolDelta < symbol->st_size)
exactMatch = true;
if (exactMatch || symbolDelta < deltaFound) {
deltaFound = symbolDelta;
symbolFound = symbol;
symbolName = SYMNAME(image, symbol);
if (exactMatch)
goto symbol_found;
}
}
}
}
}
symbol_found:
if (symbolFound != NULL) {
if (_symbolName)
*_symbolName = symbolName;
if (_imageName)
*_imageName = image->name;
if (_baseAddress)
*_baseAddress = symbolFound->st_value + image->text_region.delta;
if (_exactMatch)
*_exactMatch = exactMatch;
status = B_OK;
} else if (image != NULL) {
TRACE(("symbol not found!\n"));
if (_symbolName)
*_symbolName = NULL;
if (_imageName)
*_imageName = image->name;
if (_baseAddress)
*_baseAddress = image->text_region.start;
if (_exactMatch)
*_exactMatch = false;
status = B_OK;
} else {
TRACE(("image not found!\n"));
status = B_ENTRY_NOT_FOUND;
}
// Note, theoretically, all information we return back to our caller
// would have to be locked - but since this function is only called
// from the debugger, it's safe to do it this way
//mutex_unlock(&sImageMutex);
return status;
}
status_t
elf_load_user_image(const char *path, struct team *team, int flags, addr_t *entry)
{
struct Elf32_Ehdr eheader;
struct Elf32_Phdr *pheaders = NULL;
char baseName[B_OS_NAME_LENGTH];
status_t err;
ssize_t len;
int fd;
int i;
TRACE(("elf_load: entry path '%s', team %p\n", path, team));
fd = _kern_open(-1, path, O_RDONLY, 0);
if (fd < 0)
return fd;
// read and verify the ELF header
len = _kern_read(fd, 0, &eheader, sizeof(eheader));
if (len < 0) {
err = len;
goto error;
}
if (len != sizeof(eheader)) {
// short read
err = B_NOT_AN_EXECUTABLE;
goto error;
}
err = verify_eheader(&eheader);
if (err < 0)
goto error;
// read program header
pheaders = (struct Elf32_Phdr *)malloc(eheader.e_phnum * eheader.e_phentsize);
if (pheaders == NULL) {
dprintf("error allocating space for program headers\n");
err = B_NO_MEMORY;
goto error;
}
TRACE(("reading in program headers at 0x%lx, len 0x%x\n", eheader.e_phoff, eheader.e_phnum * eheader.e_phentsize));
len = _kern_read(fd, eheader.e_phoff, pheaders, eheader.e_phnum * eheader.e_phentsize);
if (len < 0) {
err = len;
dprintf("error reading in program headers\n");
goto error;
}
if (len != eheader.e_phnum * eheader.e_phentsize) {
dprintf("short read while reading in program headers\n");
err = -1;
goto error;
}
// construct a nice name for the region we have to create below
{
int32 length;
const char *leaf = strrchr(path, '/');
if (leaf == NULL)
leaf = path;
else
leaf++;
length = strlen(leaf);
if (length > B_OS_NAME_LENGTH - 8)
sprintf(baseName, "...%s", leaf + length + 8 - B_OS_NAME_LENGTH);
else
strcpy(baseName, leaf);
}
// map the program's segments into memory
for (i = 0; i < eheader.e_phnum; i++) {
char regionName[B_OS_NAME_LENGTH];
char *regionAddress;
area_id id;
if (pheaders[i].p_type != PT_LOAD)
continue;
regionAddress = (char *)ROUNDOWN(pheaders[i].p_vaddr, B_PAGE_SIZE);
if (pheaders[i].p_flags & PF_WRITE) {
/*
* rw/data segment
*/
uint32 memUpperBound = (pheaders[i].p_vaddr % B_PAGE_SIZE) + pheaders[i].p_memsz;
uint32 fileUpperBound = (pheaders[i].p_vaddr % B_PAGE_SIZE) + pheaders[i].p_filesz;
memUpperBound = ROUNDUP(memUpperBound, B_PAGE_SIZE);
fileUpperBound = ROUNDUP(fileUpperBound, B_PAGE_SIZE);
sprintf(regionName, "%s_seg%drw", baseName, i);
id = vm_map_file(team->id, regionName,
(void **)&regionAddress,
B_EXACT_ADDRESS,
fileUpperBound,
B_READ_AREA | B_WRITE_AREA, REGION_PRIVATE_MAP,
path, ROUNDOWN(pheaders[i].p_offset, B_PAGE_SIZE));
if (id < B_OK) {
dprintf("error mapping file data: %s!\n", strerror(id));
err = B_NOT_AN_EXECUTABLE;
goto error;
}
// clean garbage brought by mmap (the region behind the file,
// at least parts of it are the bss and have to be zeroed)
{
uint32 start = (uint32)regionAddress
+ (pheaders[i].p_vaddr % B_PAGE_SIZE)
+ pheaders[i].p_filesz;
uint32 amount = fileUpperBound
- (pheaders[i].p_vaddr % B_PAGE_SIZE)
- (pheaders[i].p_filesz);
memset((void *)start, 0, amount);
}
// Check if we need extra storage for the bss - we have to do this if
// the above region doesn't already comprise the memory size, too.
if (memUpperBound != fileUpperBound) {
size_t bss_size = memUpperBound - fileUpperBound;
snprintf(regionName, B_OS_NAME_LENGTH, "%s_bss%d", baseName, i);
regionAddress += fileUpperBound;
id = create_area_etc(team, regionName, (void **)&regionAddress,
B_EXACT_ADDRESS, bss_size, B_NO_LOCK, B_READ_AREA | B_WRITE_AREA);
if (id < B_OK) {
dprintf("error allocating bss area: %s!\n", strerror(id));
err = B_NOT_AN_EXECUTABLE;
goto error;
}
}
} else {
/*
* assume ro/text segment
*/
snprintf(regionName, B_OS_NAME_LENGTH, "%s_seg%dro", baseName, i);
id = vm_map_file(team->id, regionName,
(void **)&regionAddress,
B_EXACT_ADDRESS,
ROUNDUP(pheaders[i].p_memsz + (pheaders[i].p_vaddr % B_PAGE_SIZE), B_PAGE_SIZE),
B_READ_AREA | B_EXECUTE_AREA, REGION_PRIVATE_MAP,
path, ROUNDOWN(pheaders[i].p_offset, B_PAGE_SIZE));
if (id < B_OK) {
dprintf("error mapping file text: %s!\n", strerror(id));
err = B_NOT_AN_EXECUTABLE;
goto error;
}
}
}
TRACE(("elf_load: done!\n"));
*entry = eheader.e_entry;
err = B_OK;
error:
if (pheaders)
free(pheaders);
_kern_close(fd);
return err;
}
image_id
load_kernel_add_on(const char *path)
{
bool ro_segment_handled = false;
bool rw_segment_handled = false;
struct Elf32_Ehdr *eheader;
struct Elf32_Phdr *pheaders;
struct elf_image_info *image;
const char *fileName;
void *vnode = NULL;
void *reservedAddress;
addr_t start;
size_t reservedSize;
int fd;
int err;
int i;
ssize_t len;
TRACE(("elf_load_kspace: entry path '%s'\n", path));
fd = _kern_open(-1, path, O_RDONLY, 0);
if (fd < 0)
return fd;
err = vfs_get_vnode_from_fd(fd, true, &vnode);
if (err < 0)
goto error0;
// get the file name
fileName = strrchr(path, '/');
if (fileName == NULL)
fileName = path;
else
fileName++;
// XXX awful hack to keep someone else from trying to load this image
// probably not a bad thing, shouldn't be too many races
mutex_lock(&sImageLoadMutex);
// make sure it's not loaded already. Search by vnode
image = find_image_by_vnode(vnode);
if (image) {
atomic_add(&image->ref_count, 1);
//err = ERR_NOT_ALLOWED;
goto done;
}
eheader = (struct Elf32_Ehdr *)malloc(sizeof(*eheader));
if (!eheader) {
err = B_NO_MEMORY;
goto error;
}
len = _kern_read(fd, 0, eheader, sizeof(*eheader));
if (len < 0) {
err = len;
goto error1;
}
if (len != sizeof(*eheader)) {
// short read
err = B_NOT_AN_EXECUTABLE;
goto error1;
}
err = verify_eheader(eheader);
if (err < 0)
goto error1;
image = create_image_struct();
if (!image) {
err = B_NO_MEMORY;
goto error1;
}
image->vnode = vnode;
image->eheader = eheader;
image->name = strdup(path);
pheaders = (struct Elf32_Phdr *)malloc(eheader->e_phnum * eheader->e_phentsize);
if (pheaders == NULL) {
dprintf("error allocating space for program headers\n");
err = B_NO_MEMORY;
goto error2;
}
TRACE(("reading in program headers at 0x%lx, len 0x%x\n", eheader->e_phoff, eheader->e_phnum * eheader->e_phentsize));
len = _kern_read(fd, eheader->e_phoff, pheaders, eheader->e_phnum * eheader->e_phentsize);
if (len < 0) {
err = len;
TRACE(("error reading in program headers\n"));
goto error3;
}
if (len != eheader->e_phnum * eheader->e_phentsize) {
TRACE(("short read while reading in program headers\n"));
err = -1;
goto error3;
}
// determine how much space we need for all loaded segments
reservedSize = 0;
for (i = 0; i < eheader->e_phnum; i++) {
if (pheaders[i].p_type != PT_LOAD)
continue;
reservedSize += ROUNDUP(pheaders[i].p_memsz + (pheaders[i].p_vaddr % B_PAGE_SIZE), B_PAGE_SIZE);
}
// reserve that space and allocate the areas from that one
if (vm_reserve_address_range(vm_kernel_address_space_id(), &reservedAddress,
B_ANY_KERNEL_ADDRESS, reservedSize, 0) < B_OK)
goto error3;
start = (addr_t)reservedAddress;
for (i = 0; i < eheader->e_phnum; i++) {
char regionName[B_OS_NAME_LENGTH];
elf_region *region;
TRACE(("looking at program header %d\n", i));
switch (pheaders[i].p_type) {
case PT_LOAD:
break;
case PT_DYNAMIC:
image->dynamic_ptr = pheaders[i].p_vaddr;
continue;
default:
dprintf("unhandled pheader type 0x%lx\n", pheaders[i].p_type);
continue;
}
// we're here, so it must be a PT_LOAD segment
if ((pheaders[i].p_flags & (PF_PROTECTION_MASK)) == (PF_READ | PF_WRITE)) {
// this is the writable segment
if (rw_segment_handled) {
// we've already created this segment
continue;
}
rw_segment_handled = true;
region = &image->data_region;
snprintf(regionName, B_OS_NAME_LENGTH, "%s_data", fileName);
} else if ((pheaders[i].p_flags & (PF_PROTECTION_MASK)) == (PF_READ | PF_EXECUTE)) {
// this is the non-writable segment
if (ro_segment_handled) {
// we've already created this segment
continue;
}
ro_segment_handled = true;
region = &image->text_region;
snprintf(regionName, B_OS_NAME_LENGTH, "%s_text", fileName);
} else {
dprintf("weird program header flags 0x%lx\n", pheaders[i].p_flags);
continue;
}
// ToDo: this won't work if the on-disk order of the sections doesn't
// fit the in-memory order...
region->start = start;
region->size = ROUNDUP(pheaders[i].p_memsz + (pheaders[i].p_vaddr % B_PAGE_SIZE), B_PAGE_SIZE);
region->id = create_area(regionName, (void **)&region->start, B_EXACT_ADDRESS,
region->size, B_FULL_LOCK, B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA);
if (region->id < B_OK) {
dprintf("error allocating area: %s\n", strerror(region->id));
err = B_NOT_AN_EXECUTABLE;
goto error4;
}
region->delta = region->start - ROUNDOWN(pheaders[i].p_vaddr, B_PAGE_SIZE);
start += region->size;
TRACE(("elf_load_kspace: created area \"%s\" at %p\n", regionName, (void *)region->start));
len = _kern_read(fd, pheaders[i].p_offset,
(void *)(region->start + (pheaders[i].p_vaddr % B_PAGE_SIZE)),
pheaders[i].p_filesz);
if (len < 0) {
err = len;
dprintf("error reading in seg %d\n", i);
goto error5;
}
}
if (image->data_region.start != 0
&& image->text_region.delta != image->data_region.delta) {
dprintf("deltas do not match!\n");
dump_image_info(image);
err = B_ERROR;
goto error5;
}
// modify the dynamic ptr by the delta of the regions
image->dynamic_ptr += image->text_region.delta;
err = elf_parse_dynamic_section(image);
if (err < 0)
goto error5;
err = elf_relocate(image, "");
if (err < 0)
goto error5;
// We needed to read in the contents of the "text" area, but
// now we can protect it read-only/execute
set_area_protection(image->text_region.id, B_KERNEL_READ_AREA | B_KERNEL_EXECUTE_AREA);
// ToDo: this should be enabled by kernel settings!
if (1)
load_elf_symbol_table(fd, image);
free(pheaders);
register_elf_image(image);
done:
_kern_close(fd);
mutex_unlock(&sImageLoadMutex);
return image->id;
error5:
delete_area(image->data_region.id);
delete_area(image->text_region.id);
error4:
vm_unreserve_address_range(vm_kernel_address_space_id(), reservedAddress, reservedSize);
error3:
free(pheaders);
error2:
free(image);
error1:
free(eheader);
error:
mutex_unlock(&sImageLoadMutex);
error0:
if (vnode)
vfs_put_vnode(vnode);
_kern_close(fd);
return err;
}
status_t
unload_kernel_add_on(image_id id)
{
struct elf_image_info *image;
status_t status;
mutex_lock(&sImageMutex);
image = find_image(id);
if (image != NULL) {
mutex_lock(&sImageLoadMutex);
status = unload_elf_image(image);
mutex_unlock(&sImageLoadMutex);
} else
status = B_BAD_IMAGE_ID;
mutex_unlock(&sImageMutex);
return status;
}
status_t
elf_init(kernel_args *args)
{
struct preloaded_image *image;
image_init();
mutex_init(&sImageMutex, "kimages_lock");
mutex_init(&sImageLoadMutex, "kimages_load_lock");
sImagesHash = hash_init(IMAGE_HASH_SIZE, 0, image_compare, image_hash);
if (sImagesHash == NULL)
return B_NO_MEMORY;
// Build a image structure for the kernel, which has already been loaded.
// The preloaded_images were already prepared by the VM.
if (insert_preloaded_image(&args->kernel_image, true) < B_OK)
panic("could not create kernel image.\n");
// Build image structures for all preloaded images.
for (image = args->preloaded_images; image != NULL; image = image->next) {
insert_preloaded_image(image, false);
}
add_debugger_command("ls", &dump_address_info, "lookup symbol for a particular address");
add_debugger_command("symbols", &dump_symbols, "dump symbols for image");
add_debugger_command("image", &dump_image, "dump image info");
sInitialized = true;
return B_OK;
}