haiku/headers/private/kernel/boot/elf.h

55 lines
1.2 KiB
C
Raw Normal View History

/*
** Copyright 2003-2004, Axel Dörfler, axeld@pinc-software.de. All rights reserved.
** Distributed under the terms of the OpenBeOS License.
*/
#ifndef KERNEL_BOOT_ELF_H
#define KERNEL_BOOT_ELF_H
#include <boot/addr_range.h>
#include <sys/stat.h>
#include <elf_priv.h>
#include <util/FixedWidthPointer.h>
struct preloaded_image {
FixedWidthPointer<struct preloaded_image> next;
char *name;
elf_region text_region;
elf_region data_region;
addr_range dynamic_section;
struct Elf32_Ehdr elf_header;
struct Elf32_Sym *syms;
struct Elf32_Rel *rel;
int rel_len;
struct Elf32_Rela *rela;
int rela_len;
struct Elf32_Rel *pltrel;
int pltrel_len;
int pltrel_type;
struct Elf32_Sym *debug_symbols;
const char *debug_string_table;
uint32 num_debug_symbols, debug_string_table_size;
ino_t inode;
image_id id;
// the ID field will be filled out in the kernel
[Sorry, couldn't split this one up any further.] * Images preloaded by the boot loader had to be modules to be of any use to the kernel. Extended the mechanism so that any images not accepted by the module code would later be tried to be added as drivers by the devfs. This is a little hacky ATM, since the devfs manages the drivers using a hash map keyed by the drivers inode ID, which those drivers obviously don't have. * The devfs emulates read_pages() using read(), if the device driver doesn't implement the former (all old-style drivers), thus making it possible to BFS, which uses the file cache which in turn requires read_pages(), on the device. write_pages() emulation is still missing. * Replaced the kernel_args::boot_disk structure by a KMessage, which can more flexibly be extended and deals more gracefully with arbitrarily-size data. The disk_identifier structure still exists, though. It is added as message field in cases where needed (non net boot). Moved the boot_drive_number field of the bios_ia32 platform specific args into the message. * Made the stage 1 PXE boot loader superfluous. Moved the relevant initialization code into the stage 2 loader, which can now be loaded directly via PXE. * The PXE boot loader does now download a boot tgz archive via TFTP. It does no longer use the RemoteDisk protocol (it could actually be removed from the boot loader). It also parses the DHCP options in the DHCPACK packet provided by PXE and extracts the root path to be mounted by the kernel. * Reorganized the boot volume search in the kernel (vfs_boot.cpp) and added support for network boot. In this case the net stack is initialized and the network interface the boot loader used is brought up and configured. Since NBD and RemoteDisk are our only options for net boot (and those aren't really configurable dynamically) ATM, the the boot device is found automatically by the disk device manager. Booting via PXE does work to some degree now. The most grievous problem is that loading certain drivers or kernel modules (or related activity) causes a reboot (likely a triple fault, though one wonders where our double fault handler is on vacation). Namely the keyboard and mouse input server add-ons need to be deactivated as well as the media server. A smaller problem is the net server, which apparently tries to (re-)configure the network interface we're using to boot, which obviously doesn't work out that well. So, if all this stuff is disabled Haiku does fully boot, when using the RemoteDisk protocol (not being able to use keyboard or mouse doesn't make this a particular fascinating experience, though ;-)). I had no luck with NBD -- it seemed to have protocol problems with the servers I tried. git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@21611 a95241bf-73f2-0310-859d-f6bbb57e9c96
2007-07-15 06:10:15 +04:00
bool is_module;
// set by the module initialization code
} _PACKED;
#ifdef __cplusplus
extern "C" {
#endif
extern status_t boot_elf_resolve_symbol(struct preloaded_image *image,
struct Elf32_Sym *symbol, addr_t *symbolAddress);
#ifdef __cplusplus
}
#endif
#endif /* KERNEL_BOOT_ELF_H */