haiku/src/kernel/core/thread.c

2094 lines
49 KiB
C
Raw Normal View History

/* Threading and process information */
/*
** Copyright 2001-2002, Travis Geiselbrecht. All rights reserved.
** Distributed under the terms of the NewOS License.
*/
#include <kernel.h>
#include <debug.h>
#include <console.h>
#include <thread.h>
#include <arch/thread.h>
#include <khash.h>
#include <int.h>
#include <smp.h>
#include <timer.h>
#include <cpu.h>
#include <arch/int.h>
#include <arch/cpu.h>
#include <arch/vm.h>
#include <OS.h>
#include <sem.h>
#include <port.h>
#include <vfs.h>
#include <elf.h>
#include <memheap.h>
#include <user_runtime.h>
#include <Errors.h>
#include <stage2.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <resource.h>
#include <atomic.h>
#include <kerrors.h>
struct proc_key {
proc_id id;
};
struct thread_key {
thread_id id;
};
struct proc_arg {
char *path;
char **args;
unsigned int argc;
};
static struct proc *create_proc_struct(const char *name, bool kernel);
static int proc_struct_compare(void *_p, const void *_key);
static unsigned int proc_struct_hash(void *_p, const void *_key, unsigned int range);
// global
spinlock_t thread_spinlock = 0;
// proc list
static void *proc_hash = NULL;
static struct proc *kernel_proc = NULL;
static proc_id next_proc_id = 0;
static spinlock_t proc_spinlock = 0;
// NOTE: PROC lock can be held over a THREAD lock acquisition,
// but not the other way (to avoid deadlock)
#define GRAB_PROC_LOCK() acquire_spinlock(&proc_spinlock)
#define RELEASE_PROC_LOCK() release_spinlock(&proc_spinlock)
// thread list
static struct thread *idle_threads[MAX_BOOT_CPUS];
static void *thread_hash = NULL;
static thread_id next_thread_id = 0;
static sem_id snooze_sem = -1;
// death stacks - used temporarily as a thread cleans itself up
struct death_stack {
region_id rid;
addr address;
bool in_use;
};
static struct death_stack *death_stacks;
static unsigned int num_death_stacks;
static unsigned int volatile death_stack_bitmap;
static sem_id death_stack_sem;
// thread queues
static struct thread_queue run_q[THREAD_NUM_PRIORITY_LEVELS] = { { NULL, NULL }, };
static struct thread_queue dead_q;
static int _rand(void);
static void thread_entry(void);
static struct thread *thread_get_thread_struct_locked(thread_id id);
/* XXX - not currently used, so commented out
static struct proc *proc_get_proc_struct(proc_id id);
*/
static struct proc *proc_get_proc_struct_locked(proc_id id);
static void thread_kthread_exit(void);
static void deliver_signal(struct thread *t, int signal);
// insert a thread onto the tail of a queue
void thread_enqueue(struct thread *t, struct thread_queue *q)
{
t->q_next = NULL;
if(q->head == NULL) {
q->head = t;
q->tail = t;
} else {
q->tail->q_next = t;
q->tail = t;
}
}
struct thread *thread_lookat_queue(struct thread_queue *q)
{
return q->head;
}
struct thread *thread_dequeue(struct thread_queue *q)
{
struct thread *t;
t = q->head;
if(t != NULL) {
q->head = t->q_next;
if(q->tail == t)
q->tail = NULL;
}
return t;
}
struct thread *thread_dequeue_id(struct thread_queue *q, thread_id thr_id)
{
struct thread *t;
struct thread *last = NULL;
t = q->head;
while(t != NULL) {
if(t->id == thr_id) {
if(last == NULL) {
q->head = t->q_next;
} else {
last->q_next = t->q_next;
}
if(q->tail == t)
q->tail = last;
break;
}
last = t;
t = t->q_next;
}
return t;
}
struct thread *thread_lookat_run_q(int priority)
{
return thread_lookat_queue(&run_q[priority]);
}
void thread_enqueue_run_q(struct thread *t)
{
// these shouldn't exist
if(t->priority > THREAD_MAX_PRIORITY)
t->priority = THREAD_MAX_PRIORITY;
if(t->priority < 0)
t->priority = 0;
thread_enqueue(t, &run_q[t->priority]);
}
struct thread *thread_dequeue_run_q(int priority)
{
return thread_dequeue(&run_q[priority]);
}
static void insert_thread_into_proc(struct proc *p, struct thread *t)
{
t->proc_next = p->thread_list;
p->thread_list = t;
p->num_threads++;
if(p->num_threads == 1) {
// this was the first thread
p->main_thread = t;
}
t->proc = p;
}
static void remove_thread_from_proc(struct proc *p, struct thread *t)
{
struct thread *temp, *last = NULL;
for(temp = p->thread_list; temp != NULL; temp = temp->proc_next) {
if(temp == t) {
if(last == NULL) {
p->thread_list = temp->proc_next;
} else {
last->proc_next = temp->proc_next;
}
p->num_threads--;
break;
}
last = temp;
}
}
static int thread_struct_compare(void *_t, const void *_key)
{
struct thread *t = _t;
const struct thread_key *key = _key;
if(t->id == key->id) return 0;
else return 1;
}
// Frees the argument list
// Parameters
// args argument list.
// args number of arguments
static void free_arg_list(char **args, int argc)
{
int cnt = argc;
if(args != NULL) {
for(cnt = 0; cnt < argc; cnt++){
kfree(args[cnt]);
}
kfree(args);
}
}
// Copy argument list from userspace to kernel space
// Parameters
// args userspace parameters
// argc number of parameters
// kargs usespace parameters
// return < 0 on error and **kargs = NULL
static int user_copy_arg_list(char **args, int argc, char ***kargs)
{
char **largs;
int err;
int cnt;
char *source;
char buf[SYS_THREAD_ARG_LENGTH_MAX];
*kargs = NULL;
if((addr)args >= KERNEL_BASE && (addr)args <= KERNEL_TOP)
return ERR_VM_BAD_USER_MEMORY;
largs = (char **)kmalloc((argc + 1) * sizeof(char *));
if(largs == NULL){
return ERR_NO_MEMORY;
}
// scan all parameters and copy to kernel space
for(cnt = 0; cnt < argc; cnt++) {
err = user_memcpy(&source, &(args[cnt]), sizeof(char *));
if(err < 0)
goto error;
if((addr)source >= KERNEL_BASE && (addr)source <= KERNEL_TOP){
err = ERR_VM_BAD_USER_MEMORY;
goto error;
}
err = user_strncpy(buf,source, SYS_THREAD_ARG_LENGTH_MAX - 1);
if(err < 0)
goto error;
buf[SYS_THREAD_ARG_LENGTH_MAX - 1] = 0;
largs[cnt] = (char *)kstrdup(buf);
if(largs[cnt] == NULL){
err = ERR_NO_MEMORY;
goto error;
}
}
largs[argc] = NULL;
*kargs = largs;
return B_NO_ERROR;
error:
free_arg_list(largs,cnt);
dprintf("user_copy_arg_list failed %d \n",err);
return err;
}
static unsigned int thread_struct_hash(void *_t, const void *_key, unsigned int range)
{
struct thread *t = _t;
const struct thread_key *key = _key;
if(t != NULL)
return (t->id % range);
else
return (key->id % range);
}
static struct thread *create_thread_struct(const char *name)
{
struct thread *t;
int state;
state = int_disable_interrupts();
GRAB_THREAD_LOCK();
t = thread_dequeue(&dead_q);
RELEASE_THREAD_LOCK();
int_restore_interrupts(state);
if(t == NULL) {
t = (struct thread *)kmalloc(sizeof(struct thread));
if(t == NULL)
goto err;
}
strncpy(&t->name[0], name, SYS_MAX_OS_NAME_LEN-1);
t->name[SYS_MAX_OS_NAME_LEN-1] = 0;
t->id = atomic_add(&next_thread_id, 1);
t->proc = NULL;
t->cpu = NULL;
t->sem_blocking = -1;
t->fault_handler = 0;
t->kernel_stack_region_id = -1;
t->kernel_stack_base = 0;
t->user_stack_region_id = -1;
t->user_stack_base = 0;
t->proc_next = NULL;
t->q_next = NULL;
t->priority = -1;
t->args = NULL;
t->pending_signals = SIG_NONE;
t->in_kernel = true;
t->user_time = 0;
t->kernel_time = 0;
t->last_time = 0;
{
char temp[64];
sprintf(temp, "thread_0x%x_retcode_sem", t->id);
t->return_code_sem = create_sem(0, temp);
if(t->return_code_sem < 0)
goto err1;
}
if(arch_thread_init_thread_struct(t) < 0)
goto err2;
return t;
err2:
delete_sem_etc(t->return_code_sem, -1);
err1:
kfree(t);
err:
return NULL;
}
static void delete_thread_struct(struct thread *t)
{
if(t->return_code_sem >= 0)
delete_sem_etc(t->return_code_sem, -1);
kfree(t);
}
static int _create_user_thread_kentry(void)
{
struct thread *t;
t = thread_get_current_thread();
// a signal may have been delivered here
thread_atkernel_exit();
// jump to the entry point in user space
arch_thread_enter_uspace((addr)t->entry, t->args, t->user_stack_base + STACK_SIZE);
// never get here
return 0;
}
static int _create_kernel_thread_kentry(void)
{
int (*func)(void *args);
struct thread *t;
t = thread_get_current_thread();
// call the entry function with the appropriate args
func = (void *)t->entry;
return func(t->args);
}
static thread_id _create_thread(const char *name, proc_id pid, addr entry, void *args,
int priority, bool kernel)
{
struct thread *t;
struct proc *p;
int state;
char stack_name[64];
bool abort = false;
t = create_thread_struct(name);
if(t == NULL)
return ERR_NO_MEMORY;
t->priority = priority == -1 ? THREAD_MEDIUM_PRIORITY : priority;
t->state = THREAD_STATE_BIRTH;
t->next_state = THREAD_STATE_SUSPENDED;
state = int_disable_interrupts();
GRAB_THREAD_LOCK();
// insert into global list
hash_insert(thread_hash, t);
RELEASE_THREAD_LOCK();
GRAB_PROC_LOCK();
// look at the proc, make sure it's not being deleted
p = proc_get_proc_struct_locked(pid);
if(p != NULL && p->state != PROC_STATE_DEATH) {
insert_thread_into_proc(p, t);
} else {
abort = true;
}
RELEASE_PROC_LOCK();
if(abort) {
GRAB_THREAD_LOCK();
hash_remove(thread_hash, t);
RELEASE_THREAD_LOCK();
}
int_restore_interrupts(state);
if(abort) {
delete_thread_struct(t);
return ERR_TASK_PROC_DELETED;
}
sprintf(stack_name, "%s_kstack", name);
t->kernel_stack_region_id = vm_create_anonymous_region(vm_get_kernel_aspace_id(), stack_name,
(void **)&t->kernel_stack_base, REGION_ADDR_ANY_ADDRESS, KSTACK_SIZE,
REGION_WIRING_WIRED, LOCK_RW|LOCK_KERNEL);
if(t->kernel_stack_region_id < 0)
panic("_create_thread: error creating kernel stack!\n");
t->args = args;
t->entry = entry;
if(kernel) {
// this sets up an initial kthread stack that runs the entry
arch_thread_initialize_kthread_stack(t, &_create_kernel_thread_kentry, &thread_entry, &thread_kthread_exit);
} else {
// create user stack
// XXX make this better. For now just keep trying to create a stack
// until we find a spot.
t->user_stack_base = (USER_STACK_REGION - STACK_SIZE) + USER_STACK_REGION_SIZE;
while(t->user_stack_base > USER_STACK_REGION) {
sprintf(stack_name, "%s_stack%d", p->name, t->id);
t->user_stack_region_id = vm_create_anonymous_region(p->_aspace_id, stack_name,
(void **)&t->user_stack_base,
REGION_ADDR_ANY_ADDRESS, STACK_SIZE, REGION_WIRING_LAZY, LOCK_RW);
if(t->user_stack_region_id < 0) {
t->user_stack_base -= STACK_SIZE;
} else {
// we created a region
break;
}
}
if(t->user_stack_region_id < 0)
panic("_create_thread: unable to create user stack!\n");
// copy the user entry over to the args field in the thread struct
// the function this will call will immediately switch the thread into
// user space.
arch_thread_initialize_kthread_stack(t, &_create_user_thread_kentry, &thread_entry, &thread_kthread_exit);
}
t->state = THREAD_STATE_SUSPENDED;
return t->id;
}
thread_id user_thread_create_user_thread(addr entry, proc_id pid, const char *uname, int priority,
void *args)
{
char name[SYS_MAX_OS_NAME_LEN];
int rc;
if((addr)uname >= KERNEL_BASE && (addr)uname <= KERNEL_TOP)
return ERR_VM_BAD_USER_MEMORY;
if(entry >= KERNEL_BASE && entry <= KERNEL_TOP)
return ERR_VM_BAD_USER_MEMORY;
rc = user_strncpy(name, uname, SYS_MAX_OS_NAME_LEN-1);
if(rc < 0)
return rc;
name[SYS_MAX_OS_NAME_LEN-1] = 0;
return _create_thread(name, pid, entry, args, priority, false);
}
thread_id thread_create_user_thread(char *name, proc_id pid, addr entry, void *args)
{
return _create_thread(name, pid, entry, args, -1, false);
}
thread_id thread_create_kernel_thread(const char *name, int (*func)(void *), void *args)
{
return _create_thread(name, proc_get_kernel_proc()->id, (addr)func, args, -1, true);
}
static thread_id thread_create_kernel_thread_etc(const char *name, int (*func)(void *), void *args, struct proc *p)
{
return _create_thread(name, p->id, (addr)func, args, -1, true);
}
int thread_suspend_thread(thread_id id)
{
int state;
struct thread *t;
int retval;
bool global_resched = false;
state = int_disable_interrupts();
GRAB_THREAD_LOCK();
t = thread_get_current_thread();
if(t->id != id) {
t = thread_get_thread_struct_locked(id);
}
if (t != NULL) {
if (t->proc == kernel_proc) {
// no way
retval = ERR_NOT_ALLOWED;
} else if (t->in_kernel == true) {
t->pending_signals |= SIG_SUSPEND;
retval = B_NO_ERROR;
} else {
t->next_state = THREAD_STATE_SUSPENDED;
global_resched = true;
retval = B_NO_ERROR;
}
} else {
retval = ERR_INVALID_HANDLE;
}
RELEASE_THREAD_LOCK();
int_restore_interrupts(state);
if(global_resched) {
smp_send_broadcast_ici(SMP_MSG_RESCHEDULE, 0, 0, 0, NULL, SMP_MSG_FLAG_SYNC);
}
return retval;
}
int thread_resume_thread(thread_id id)
{
int state;
struct thread *t;
int retval;
state = int_disable_interrupts();
GRAB_THREAD_LOCK();
t = thread_get_thread_struct_locked(id);
if(t != NULL && t->state == THREAD_STATE_SUSPENDED) {
t->state = THREAD_STATE_READY;
t->next_state = THREAD_STATE_READY;
thread_enqueue_run_q(t);
retval = B_NO_ERROR;
} else {
retval = ERR_INVALID_HANDLE;
}
RELEASE_THREAD_LOCK();
int_restore_interrupts(state);
return retval;
}
int thread_set_priority(thread_id id, int priority)
{
struct thread *t;
int retval;
// make sure the passed in priority is within bounds
if(priority > THREAD_MAX_PRIORITY)
priority = THREAD_MAX_PRIORITY;
if(priority < THREAD_MIN_PRIORITY)
priority = THREAD_MIN_PRIORITY;
t = thread_get_current_thread();
if(t->id == id) {
// it's ourself, so we know we aren't in a run queue, and we can manipulate
// our structure directly
t->priority = priority;
retval = B_NO_ERROR;
} else {
int state = int_disable_interrupts();
GRAB_THREAD_LOCK();
t = thread_get_thread_struct_locked(id);
if(t) {
if(t->state == THREAD_STATE_READY && t->priority != priority) {
// this thread is in a ready queue right now, so it needs to be reinserted
thread_dequeue_id(&run_q[t->priority], t->id);
t->priority = priority;
thread_enqueue_run_q(t);
} else {
t->priority = priority;
}
retval = B_NO_ERROR;
} else {
retval = ERR_INVALID_HANDLE;
}
RELEASE_THREAD_LOCK();
int_restore_interrupts(state);
}
return retval;
}
static void _dump_proc_info(struct proc *p)
{
dprintf("PROC: %p\n", p);
dprintf("id: 0x%x\n", p->id);
dprintf("name: '%s'\n", p->name);
dprintf("next: %p\n", p->next);
dprintf("num_threads: %d\n", p->num_threads);
dprintf("state: %d\n", p->state);
dprintf("pending_signals: 0x%x\n", p->pending_signals);
dprintf("ioctx: %p\n", p->ioctx);
dprintf("path: '%s'\n", p->path);
dprintf("aspace_id: 0x%x\n", p->_aspace_id);
dprintf("aspace: %p\n", p->aspace);
dprintf("kaspace: %p\n", p->kaspace);
dprintf("main_thread: %p\n", p->main_thread);
dprintf("thread_list: %p\n", p->thread_list);
}
static void dump_proc_info(int argc, char **argv)
{
struct proc *p;
int id = -1;
unsigned long num;
struct hash_iterator i;
if(argc < 2) {
dprintf("proc: not enough arguments\n");
return;
}
// if the argument looks like a hex number, treat it as such
if(strlen(argv[1]) > 2 && argv[1][0] == '0' && argv[1][1] == 'x') {
num = atoul(argv[1]);
if(num > vm_get_kernel_aspace()->virtual_map.base) {
// XXX semi-hack
_dump_proc_info((struct proc*)num);
return;
} else {
id = num;
}
}
// walk through the thread list, trying to match name or id
hash_open(proc_hash, &i);
while((p = hash_next(proc_hash, &i)) != NULL) {
if((p->name && strcmp(argv[1], p->name) == 0) || p->id == id) {
_dump_proc_info(p);
break;
}
}
hash_close(proc_hash, &i, false);
}
static const char *state_to_text(int state)
{
switch(state) {
case THREAD_STATE_READY:
return "READY";
case THREAD_STATE_RUNNING:
return "RUNNING";
case THREAD_STATE_WAITING:
return "WAITING";
case THREAD_STATE_SUSPENDED:
return "SUSPEND";
case THREAD_STATE_FREE_ON_RESCHED:
return "DEATH";
case THREAD_STATE_BIRTH:
return "BIRTH";
default:
return "UNKNOWN";
}
}
static struct thread *last_thread_dumped = NULL;
static void _dump_thread_info(struct thread *t)
{
dprintf("THREAD: %p\n", t);
dprintf("id: 0x%x\n", t->id);
dprintf("name: '%s'\n", t->name);
dprintf("all_next: %p\nproc_next: %p\nq_next: %p\n",
t->all_next, t->proc_next, t->q_next);
dprintf("priority: 0x%x\n", t->priority);
dprintf("state: %s\n", state_to_text(t->state));
dprintf("next_state: %s\n", state_to_text(t->next_state));
dprintf("cpu: %p ", t->cpu);
if(t->cpu)
dprintf("(%d)\n", t->cpu->info.cpu_num);
else
dprintf("\n");
dprintf("pending_signals: 0x%x\n", t->pending_signals);
dprintf("in_kernel: %d\n", t->in_kernel);
dprintf("sem_blocking:0x%x\n", t->sem_blocking);
dprintf("sem_count: 0x%x\n", t->sem_count);
dprintf("sem_deleted_retcode: 0x%x\n", t->sem_deleted_retcode);
dprintf("sem_errcode: 0x%x\n", t->sem_errcode);
dprintf("sem_flags: 0x%x\n", t->sem_flags);
dprintf("fault_handler: 0x%lx\n", t->fault_handler);
dprintf("args: %p\n", t->args);
dprintf("entry: 0x%lx\n", t->entry);
dprintf("proc: %p\n", t->proc);
dprintf("return_code_sem: 0x%x\n", t->return_code_sem);
dprintf("kernel_stack_region_id: 0x%x\n", t->kernel_stack_region_id);
dprintf("kernel_stack_base: 0x%lx\n", t->kernel_stack_base);
dprintf("user_stack_region_id: 0x%x\n", t->user_stack_region_id);
dprintf("user_stack_base: 0x%lx\n", t->user_stack_base);
dprintf("kernel_time: %Ld\n", t->kernel_time);
dprintf("user_time: %Ld\n", t->user_time);
dprintf("architecture dependant section:\n");
arch_thread_dump_info(&t->arch_info);
last_thread_dumped = t;
}
static void dump_thread_info(int argc, char **argv)
{
struct thread *t;
int id = -1;
unsigned long num;
struct hash_iterator i;
if(argc < 2) {
dprintf("thread: not enough arguments\n");
return;
}
// if the argument looks like a hex number, treat it as such
if(strlen(argv[1]) > 2 && argv[1][0] == '0' && argv[1][1] == 'x') {
num = atoul(argv[1]);
if(num > vm_get_kernel_aspace()->virtual_map.base) {
// XXX semi-hack
_dump_thread_info((struct thread *)num);
return;
} else {
id = num;
}
}
// walk through the thread list, trying to match name or id
hash_open(thread_hash, &i);
while((t = hash_next(thread_hash, &i)) != NULL) {
if((t->name && strcmp(argv[1], t->name) == 0) || t->id == id) {
_dump_thread_info(t);
break;
}
}
hash_close(thread_hash, &i, false);
}
static void dump_thread_list(int argc, char **argv)
{
struct thread *t;
struct hash_iterator i;
hash_open(thread_hash, &i);
while((t = hash_next(thread_hash, &i)) != NULL) {
dprintf("%p", t);
if(t->name != NULL)
dprintf("\t%32s", t->name);
else
dprintf("\t%32s", "<NULL>");
dprintf("\t0x%x", t->id);
dprintf("\t%16s", state_to_text(t->state));
if(t->cpu)
dprintf("\t%d", t->cpu->info.cpu_num);
else
dprintf("\tNOCPU");
dprintf("\t0x%lx\n", t->kernel_stack_base);
}
hash_close(thread_hash, &i, false);
}
static void dump_next_thread_in_q(int argc, char **argv)
{
struct thread *t = last_thread_dumped;
if(t == NULL) {
dprintf("no thread previously dumped. Examine a thread first.\n");
return;
}
dprintf("next thread in queue after thread @ %p\n", t);
if(t->q_next != NULL) {
_dump_thread_info(t->q_next);
} else {
dprintf("NULL\n");
}
}
static void dump_next_thread_in_all_list(int argc, char **argv)
{
struct thread *t = last_thread_dumped;
if(t == NULL) {
dprintf("no thread previously dumped. Examine a thread first.\n");
return;
}
dprintf("next thread in global list after thread @ %p\n", t);
if(t->all_next != NULL) {
_dump_thread_info(t->all_next);
} else {
dprintf("NULL\n");
}
}
static void dump_next_thread_in_proc(int argc, char **argv)
{
struct thread *t = last_thread_dumped;
if(t == NULL) {
dprintf("no thread previously dumped. Examine a thread first.\n");
return;
}
dprintf("next thread in proc after thread @ %p\n", t);
if(t->proc_next != NULL) {
_dump_thread_info(t->proc_next);
} else {
dprintf("NULL\n");
}
}
static int get_death_stack(void)
{
int i;
unsigned int bit;
int state;
acquire_sem(death_stack_sem);
// grap the thread lock, find a free spot and release
state = int_disable_interrupts();
GRAB_THREAD_LOCK();
bit = death_stack_bitmap;
bit = (~bit)&~((~bit)-1);
death_stack_bitmap |= bit;
RELEASE_THREAD_LOCK();
// sanity checks
if( !bit ) {
panic("get_death_stack: couldn't find free stack!\n");
}
if( bit & (bit-1)) {
panic("get_death_stack: impossible bitmap result!\n");
}
// bit to number
i= -1;
while(bit) {
bit >>= 1;
i += 1;
}
// dprintf("get_death_stack: returning 0x%lx\n", death_stacks[i].address);
return i;
}
static void put_death_stack_and_reschedule(unsigned int index)
{
// dprintf("put_death_stack...: passed %d\n", index);
if(index >= num_death_stacks)
panic("put_death_stack: passed invalid stack index %d\n", index);
if(!(death_stack_bitmap & (1 << index)))
panic("put_death_stack: passed invalid stack index %d\n", index);
int_disable_interrupts();
GRAB_THREAD_LOCK();
death_stack_bitmap &= ~(1 << index);
release_sem_etc(death_stack_sem, 1, B_DO_NOT_RESCHEDULE);
thread_resched();
}
int thread_init(kernel_args *ka)
{
struct thread *t;
unsigned int i;
// dprintf("thread_init: entry\n");
// create the process hash table
proc_hash = hash_init(15, (addr)&kernel_proc->next - (addr)kernel_proc,
&proc_struct_compare, &proc_struct_hash);
// create the kernel process
kernel_proc = create_proc_struct("kernel_proc", true);
if(kernel_proc == NULL)
panic("could not create kernel proc!\n");
kernel_proc->state = PROC_STATE_NORMAL;
kernel_proc->ioctx = vfs_new_io_context(NULL);
if(kernel_proc->ioctx == NULL)
panic("could not create ioctx for kernel proc!\n");
//XXX should initialize kernel_proc->path here. Set it to "/"?
// stick it in the process hash
hash_insert(proc_hash, kernel_proc);
// create the thread hash table
thread_hash = hash_init(15, (addr)&t->all_next - (addr)t,
&thread_struct_compare, &thread_struct_hash);
// zero out the run queues
memset(run_q, 0, sizeof(run_q));
// zero out the dead thread structure q
memset(&dead_q, 0, sizeof(dead_q));
// allocate a snooze sem
snooze_sem = create_sem(0, "snooze sem");
if(snooze_sem < 0) {
panic("error creating snooze sem\n");
return snooze_sem;
}
// create an idle thread for each cpu
for(i=0; i<ka->num_cpus; i++) {
char temp[64];
vm_region *region;
sprintf(temp, "idle_thread%d", i);
t = create_thread_struct(temp);
if(t == NULL) {
panic("error creating idle thread struct\n");
return ERR_NO_MEMORY;
}
t->proc = proc_get_kernel_proc();
t->priority = THREAD_IDLE_PRIORITY;
t->state = THREAD_STATE_RUNNING;
t->next_state = THREAD_STATE_READY;
sprintf(temp, "idle_thread%d_kstack", i);
t->kernel_stack_region_id = vm_find_region_by_name(vm_get_kernel_aspace_id(), temp);
region = vm_get_region_by_id(t->kernel_stack_region_id);
if(!region) {
panic("error finding idle kstack region\n");
}
t->kernel_stack_base = region->base;
vm_put_region(region);
hash_insert(thread_hash, t);
insert_thread_into_proc(t->proc, t);
idle_threads[i] = t;
if(i == 0)
arch_thread_set_current_thread(t);
t->cpu = &cpu[i];
}
// create a set of death stacks
num_death_stacks = smp_get_num_cpus();
if(num_death_stacks > 8*sizeof(death_stack_bitmap)) {
/*
* clamp values for really beefy machines
*/
num_death_stacks = 8*sizeof(death_stack_bitmap);
}
death_stack_bitmap = 0;
death_stacks = (struct death_stack *)kmalloc(num_death_stacks * sizeof(struct death_stack));
if(death_stacks == NULL) {
panic("error creating death stacks\n");
return ERR_NO_MEMORY;
}
{
char temp[64];
for(i=0; i<num_death_stacks; i++) {
sprintf(temp, "death_stack%d", i);
death_stacks[i].rid = vm_create_anonymous_region(vm_get_kernel_aspace_id(), temp,
(void **)&death_stacks[i].address,
REGION_ADDR_ANY_ADDRESS, KSTACK_SIZE, REGION_WIRING_WIRED, LOCK_RW|LOCK_KERNEL);
if(death_stacks[i].rid < 0) {
panic("error creating death stacks\n");
return death_stacks[i].rid;
}
death_stacks[i].in_use = false;
}
}
death_stack_sem = create_sem(num_death_stacks, "death_stack_noavail_sem");
// set up some debugger commands
dbg_add_command(dump_thread_list, "threads", "list all threads");
dbg_add_command(dump_thread_info, "thread", "list info about a particular thread");
dbg_add_command(dump_next_thread_in_q, "next_q", "dump the next thread in the queue of last thread viewed");
dbg_add_command(dump_next_thread_in_all_list, "next_all", "dump the next thread in the global list of the last thread viewed");
dbg_add_command(dump_next_thread_in_proc, "next_proc", "dump the next thread in the process of the last thread viewed");
dbg_add_command(dump_proc_info, "proc", "list info about a particular process");
return 0;
}
int thread_init_percpu(int cpu_num)
{
arch_thread_set_current_thread(idle_threads[cpu_num]);
return 0;
}
// this starts the scheduler. Must be run under the context of
// the initial idle thread.
void thread_start_threading(void)
{
int state;
// XXX may not be the best place for this
// invalidate all of the other processors' TLB caches
state = int_disable_interrupts();
arch_cpu_global_TLB_invalidate();
smp_send_broadcast_ici(SMP_MSG_GLOBAL_INVL_PAGE, 0, 0, 0, NULL, SMP_MSG_FLAG_SYNC);
int_restore_interrupts(state);
// start the other processors
smp_send_broadcast_ici(SMP_MSG_RESCHEDULE, 0, 0, 0, NULL, SMP_MSG_FLAG_ASYNC);
state = int_disable_interrupts();
GRAB_THREAD_LOCK();
thread_resched();
RELEASE_THREAD_LOCK();
int_restore_interrupts(state);
}
int user_thread_snooze(bigtime_t time)
{
thread_snooze(time);
return B_NO_ERROR;
}
void thread_snooze(bigtime_t time)
{
acquire_sem_etc(snooze_sem, 1, B_TIMEOUT, time);
}
status_t snooze(bigtime_t timeout)
{
return acquire_sem_etc(snooze_sem, 1, B_TIMEOUT | B_CAN_INTERRUPT,
timeout);
}
// this function gets run by a new thread before anything else
static void thread_entry(void)
{
// simulates the thread spinlock release that would occur if the thread had been
// rescheded from. The resched didn't happen because the thread is new.
RELEASE_THREAD_LOCK();
int_enable_interrupts(); // this essentially simulates a return-from-interrupt
}
// used to pass messages between thread_exit and thread_exit2
struct thread_exit_args {
struct thread *t;
region_id old_kernel_stack;
int int_state;
unsigned int death_stack;
};
static void thread_exit2(void *_args)
{
struct thread_exit_args args;
// char *temp;
// copy the arguments over, since the source is probably on the kernel stack we're about to delete
memcpy(&args, _args, sizeof(struct thread_exit_args));
// restore the interrupts
int_restore_interrupts(args.int_state);
// dprintf("thread_exit2, running on death stack 0x%lx\n", args.t->kernel_stack_base);
// delete the old kernel stack region
// dprintf("thread_exit2: deleting old kernel stack id 0x%x for thread 0x%x\n", args.old_kernel_stack, args.t->id);
vm_delete_region(vm_get_kernel_aspace_id(), args.old_kernel_stack);
// dprintf("thread_exit2: removing thread 0x%x from global lists\n", args.t->id);
// remove this thread from all of the global lists
int_disable_interrupts();
GRAB_PROC_LOCK();
remove_thread_from_proc(kernel_proc, args.t);
RELEASE_PROC_LOCK();
GRAB_THREAD_LOCK();
hash_remove(thread_hash, args.t);
RELEASE_THREAD_LOCK();
// dprintf("thread_exit2: done removing thread from lists\n");
// set the next state to be gone. Will return the thread structure to a ready pool upon reschedule
args.t->next_state = THREAD_STATE_FREE_ON_RESCHED;
// return the death stack and reschedule one last time
put_death_stack_and_reschedule(args.death_stack);
// never get to here
panic("thread_exit2: made it where it shouldn't have!\n");
}
void thread_exit(int retcode)
{
int state;
struct thread *t = thread_get_current_thread();
struct proc *p = t->proc;
bool delete_proc = false;
unsigned int death_stack;
dprintf("thread 0x%x exiting w/return code 0x%x\n", t->id, retcode);
// boost our priority to get this over with
thread_set_priority(t->id, THREAD_HIGH_PRIORITY);
// delete the user stack region first
if(p->_aspace_id >= 0 && t->user_stack_region_id >= 0) {
region_id rid = t->user_stack_region_id;
t->user_stack_region_id = -1;
vm_delete_region(p->_aspace_id, rid);
}
if(p != kernel_proc) {
// remove this thread from the current process and add it to the kernel
// put the thread into the kernel proc until it dies
state = int_disable_interrupts();
GRAB_PROC_LOCK();
remove_thread_from_proc(p, t);
insert_thread_into_proc(kernel_proc, t);
if(p->main_thread == t) {
// this was main thread in this process
delete_proc = true;
hash_remove(proc_hash, p);
p->state = PROC_STATE_DEATH;
}
RELEASE_PROC_LOCK();
// swap address spaces, to make sure we're running on the kernel's pgdir
vm_aspace_swap(kernel_proc->kaspace);
int_restore_interrupts(state);
// dprintf("thread_exit: thread 0x%x now a kernel thread!\n", t->id);
}
// delete the process
if(delete_proc) {
if(p->num_threads > 0) {
// there are other threads still in this process,
// cycle through and signal kill on each of the threads
// XXX this can be optimized. There's got to be a better solution.
struct thread *temp_thread;
state = int_disable_interrupts();
GRAB_PROC_LOCK();
// we can safely walk the list because of the lock. no new threads can be created
// because of the PROC_STATE_DEATH flag on the process
temp_thread = p->thread_list;
while(temp_thread) {
struct thread *next = temp_thread->proc_next;
thread_kill_thread_nowait(temp_thread->id);
temp_thread = next;
}
RELEASE_PROC_LOCK();
int_restore_interrupts(state);
// Now wait for all of the threads to die
// XXX block on a semaphore
while((volatile int)p->num_threads > 0) {
thread_snooze(10000); // 10 ms
}
}
vm_put_aspace(p->aspace);
vm_delete_aspace(p->_aspace_id);
delete_owned_ports(p->id);
sem_delete_owned_sems(p->id);
vfs_free_io_context(p->ioctx);
kfree(p);
}
// delete the sem that others will use to wait on us and get the retcode
{
sem_id s = t->return_code_sem;
t->return_code_sem = -1;
delete_sem_etc(s, retcode);
}
death_stack = get_death_stack();
{
struct thread_exit_args args;
args.t = t;
args.old_kernel_stack = t->kernel_stack_region_id;
args.death_stack = death_stack;
// disable the interrupts. Must remain disabled until the kernel stack pointer can be officially switched
args.int_state = int_disable_interrupts();
// set the new kernel stack officially to the death stack, wont be really switched until
// the next function is called. This bookkeeping must be done now before a context switch
// happens, or the processor will interrupt to the old stack
t->kernel_stack_region_id = death_stacks[death_stack].rid;
t->kernel_stack_base = death_stacks[death_stack].address;
// we will continue in thread_exit2(), on the new stack
arch_thread_switch_kstack_and_call(t, t->kernel_stack_base + KSTACK_SIZE, thread_exit2, &args);
}
panic("never can get here\n");
}
static int _thread_kill_thread(thread_id id, bool wait_on)
{
int state;
struct thread *t;
int rc;
// dprintf("_thread_kill_thread: id %d, wait_on %d\n", id, wait_on);
state = int_disable_interrupts();
GRAB_THREAD_LOCK();
t = thread_get_thread_struct_locked(id);
if(t != NULL) {
if(t->proc == kernel_proc) {
// can't touch this
rc = ERR_NOT_ALLOWED;
} else {
deliver_signal(t, SIG_KILL);
rc = B_NO_ERROR;
if(t->id == thread_get_current_thread()->id)
wait_on = false; // can't wait on ourself
}
} else {
rc = ERR_INVALID_HANDLE;
}
RELEASE_THREAD_LOCK();
int_restore_interrupts(state);
if(rc < 0)
return rc;
if(wait_on)
thread_wait_on_thread(id, NULL);
return rc;
}
int thread_kill_thread(thread_id id)
{
return _thread_kill_thread(id, true);
}
int thread_kill_thread_nowait(thread_id id)
{
return _thread_kill_thread(id, false);
}
static void thread_kthread_exit(void)
{
thread_exit(0);
}
int user_thread_wait_on_thread(thread_id id, int *uretcode)
{
int retcode;
int rc, rc2;
if((addr)uretcode >= KERNEL_BASE && (addr)uretcode <= KERNEL_TOP)
return ERR_VM_BAD_USER_MEMORY;
rc = thread_wait_on_thread(id, &retcode);
rc2 = user_memcpy(uretcode, &retcode, sizeof(retcode));
if(rc2 < 0)
return rc2;
return rc;
}
int thread_wait_on_thread(thread_id id, int *retcode)
{
sem_id sem;
int state;
struct thread *t;
int rc;
state = int_disable_interrupts();
GRAB_THREAD_LOCK();
t = thread_get_thread_struct_locked(id);
if(t != NULL) {
sem = t->return_code_sem;
} else {
sem = ERR_INVALID_HANDLE;
}
RELEASE_THREAD_LOCK();
int_restore_interrupts(state);
rc = acquire_sem(sem);
/* This thread died the way it should, dont ripple a non-error up */
if (rc == ERR_SEM_DELETED)
rc = B_NO_ERROR;
return rc;
}
int user_proc_wait_on_proc(proc_id id, int *uretcode)
{
int retcode;
int rc, rc2;
if((addr)uretcode >= KERNEL_BASE && (addr)uretcode <= KERNEL_TOP)
return ERR_VM_BAD_USER_MEMORY;
rc = proc_wait_on_proc(id, &retcode);
if(rc < 0)
return rc;
rc2 = user_memcpy(uretcode, &retcode, sizeof(retcode));
if(rc2 < 0)
return rc2;
return rc;
}
int proc_wait_on_proc(proc_id id, int *retcode)
{
struct proc *p;
thread_id tid;
int state;
state = int_disable_interrupts();
GRAB_PROC_LOCK();
p = proc_get_proc_struct_locked(id);
if(p && p->main_thread) {
tid = p->main_thread->id;
} else {
tid = ERR_INVALID_HANDLE;
}
RELEASE_PROC_LOCK();
int_restore_interrupts(state);
if(tid < 0)
return tid;
return thread_wait_on_thread(tid, retcode);
}
struct thread *thread_get_thread_struct(thread_id id)
{
struct thread *t;
int state;
state = int_disable_interrupts();
GRAB_THREAD_LOCK();
t = thread_get_thread_struct_locked(id);
RELEASE_THREAD_LOCK();
int_restore_interrupts(state);
return t;
}
static struct thread *thread_get_thread_struct_locked(thread_id id)
{
struct thread_key key;
key.id = id;
return hash_lookup(thread_hash, &key);
}
/* XXX - static but unused
static struct proc *proc_get_proc_struct(proc_id id)
{
struct proc *p;
int state;
state = int_disable_interrupts();
GRAB_PROC_LOCK();
p = proc_get_proc_struct_locked(id);
RELEASE_PROC_LOCK();
int_restore_interrupts(state);
return p;
}
*/
static struct proc *proc_get_proc_struct_locked(proc_id id)
{
struct proc_key key;
key.id = id;
return hash_lookup(proc_hash, &key);
}
static void thread_context_switch(struct thread *t_from, struct thread *t_to)
{
bigtime_t now;
// track kernel time
now = system_time();
t_from->kernel_time += now - t_from->last_time;
t_to->last_time = now;
t_to->cpu = t_from->cpu;
arch_thread_set_current_thread(t_to);
t_from->cpu = NULL;
arch_thread_context_switch(t_from, t_to);
}
static int _rand(void)
{
static int next = 0;
if(next == 0)
next = system_time();
next = next * 1103515245 + 12345;
return((next >> 16) & 0x7FFF);
}
static int reschedule_event(void *unused)
{
// this function is called as a result of the timer event set by the scheduler
// returning this causes a reschedule on the timer event
thread_get_current_thread()->cpu->info.preempted= 1;
return INT_RESCHEDULE;
}
// NOTE: expects thread_spinlock to be held
void thread_resched(void)
{
struct thread *next_thread = NULL;
int last_thread_pri = -1;
struct thread *old_thread = thread_get_current_thread();
int i;
bigtime_t quantum;
struct timer_event *quantum_timer;
// dprintf("top of thread_resched: cpu %d, cur_thread = 0x%x\n", smp_get_current_cpu(), thread_get_current_thread());
switch(old_thread->next_state) {
case THREAD_STATE_RUNNING:
case THREAD_STATE_READY:
// dprintf("enqueueing thread 0x%x into run q. pri = %d\n", old_thread, old_thread->priority);
thread_enqueue_run_q(old_thread);
break;
case THREAD_STATE_SUSPENDED:
dprintf("suspending thread 0x%x\n", old_thread->id);
break;
case THREAD_STATE_FREE_ON_RESCHED:
thread_enqueue(old_thread, &dead_q);
break;
default:
// dprintf("not enqueueing thread 0x%x into run q. next_state = %d\n", old_thread, old_thread->next_state);
;
}
old_thread->state = old_thread->next_state;
// search the real-time queue
for(i = THREAD_MAX_RT_PRIORITY; i >= THREAD_MIN_RT_PRIORITY; i--) {
next_thread = thread_dequeue_run_q(i);
if(next_thread)
goto found_thread;
}
// search the regular queue
for(i = THREAD_MAX_PRIORITY; i > THREAD_IDLE_PRIORITY; i--) {
next_thread = thread_lookat_run_q(i);
if(next_thread != NULL) {
// skip it sometimes
if(_rand() > 0x3000) {
next_thread = thread_dequeue_run_q(i);
goto found_thread;
}
last_thread_pri = i;
next_thread = NULL;
}
}
if(next_thread == NULL) {
if(last_thread_pri != -1) {
next_thread = thread_dequeue_run_q(last_thread_pri);
if(next_thread == NULL)
panic("next_thread == NULL! last_thread_pri = %d\n", last_thread_pri);
} else {
next_thread = thread_dequeue_run_q(THREAD_IDLE_PRIORITY);
if(next_thread == NULL)
panic("next_thread == NULL! no idle priorities!\n");
}
}
found_thread:
next_thread->state = THREAD_STATE_RUNNING;
next_thread->next_state = THREAD_STATE_READY;
// XXX should only reset the quantum timer if we are switching to a new thread,
// or we got here as a result of a quantum expire.
// XXX calculate quantum
quantum = 10000;
// get the quantum timer for this cpu
quantum_timer = &old_thread->cpu->info.quantum_timer;
if(!old_thread->cpu->info.preempted) {
_local_timer_cancel_event(old_thread->cpu->info.cpu_num, quantum_timer);
}
old_thread->cpu->info.preempted= 0;
timer_setup_timer(&reschedule_event, NULL, quantum_timer);
timer_set_event(quantum, TIMER_MODE_ONESHOT, quantum_timer);
if(next_thread != old_thread) {
// dprintf("thread_resched: cpu %d switching from thread %d to %d\n",
// smp_get_current_cpu(), old_thread->id, next_thread->id);
thread_context_switch(old_thread, next_thread);
}
}
static int proc_struct_compare(void *_p, const void *_key)
{
struct proc *p = _p;
const struct proc_key *key = _key;
if(p->id == key->id) return 0;
else return 1;
}
static unsigned int proc_struct_hash(void *_p, const void *_key, unsigned int range)
{
struct proc *p = _p;
const struct proc_key *key = _key;
if(p != NULL)
return (p->id % range);
else
return (key->id % range);
}
struct proc *proc_get_kernel_proc(void)
{
return kernel_proc;
}
proc_id proc_get_kernel_proc_id(void)
{
if(!kernel_proc)
return 0;
else
return kernel_proc->id;
}
proc_id proc_get_current_proc_id(void)
{
return thread_get_current_thread()->proc->id;
}
static struct proc *create_proc_struct(const char *name, bool kernel)
{
struct proc *p;
p = (struct proc *)kmalloc(sizeof(struct proc));
if(p == NULL)
goto error;
p->id = atomic_add(&next_proc_id, 1);
strncpy(&p->name[0], name, SYS_MAX_OS_NAME_LEN-1);
p->name[SYS_MAX_OS_NAME_LEN-1] = 0;
p->num_threads = 0;
p->ioctx = NULL;
p->path[0] = 0;
p->_aspace_id = -1;
p->aspace = NULL;
p->kaspace = vm_get_kernel_aspace();
vm_put_aspace(p->kaspace);
p->thread_list = NULL;
p->main_thread = NULL;
p->state = PROC_STATE_BIRTH;
p->pending_signals = SIG_NONE;
if(arch_proc_init_proc_struct(p, kernel) < 0)
goto error1;
return p;
error1:
kfree(p);
error:
return NULL;
}
static void delete_proc_struct(struct proc *p)
{
kfree(p);
}
static int get_arguments_data_size(char **args,int argc)
{
int cnt;
int tot_size = 0;
for(cnt = 0; cnt < argc; cnt++)
tot_size += strlen(args[cnt]) + 1;
tot_size += (argc + 1) * sizeof(char *);
return tot_size + sizeof(struct uspace_prog_args_t);
}
static int proc_create_proc2(void *args)
{
int err;
struct thread *t;
struct proc *p;
struct proc_arg *pargs = args;
char *path;
addr entry;
char ustack_name[128];
int tot_top_size;
char **uargs;
char *udest;
struct uspace_prog_args_t *uspa;
unsigned int cnt;
t = thread_get_current_thread();
p = t->proc;
dprintf("proc_create_proc2: entry thread %d\n", t->id);
// create an initial primary stack region
tot_top_size = STACK_SIZE + PAGE_ALIGN(get_arguments_data_size(pargs->args,pargs->argc));
t->user_stack_base = ((USER_STACK_REGION - tot_top_size) + USER_STACK_REGION_SIZE);
sprintf(ustack_name, "%s_primary_stack", p->name);
t->user_stack_region_id = vm_create_anonymous_region(p->_aspace_id, ustack_name, (void **)&t->user_stack_base,
REGION_ADDR_EXACT_ADDRESS, tot_top_size, REGION_WIRING_LAZY, LOCK_RW);
if(t->user_stack_region_id < 0) {
panic("proc_create_proc2: could not create default user stack region\n");
return t->user_stack_region_id;
}
uspa = (struct uspace_prog_args_t *)(t->user_stack_base + STACK_SIZE);
uargs = (char **)(uspa + 1);
udest = (char *)(uargs + pargs->argc + 1);
// dprintf("addr: stack base=0x%x uargs = 0x%x udest=0x%x tot_top_size=%d \n\n",t->user_stack_base,uargs,udest,tot_top_size);
for(cnt = 0;cnt < pargs->argc;cnt++){
uargs[cnt] = udest;
user_strcpy(udest, pargs->args[cnt]);
udest += strlen(pargs->args[cnt]) + 1;
}
uargs[cnt] = NULL;
user_memcpy(uspa->prog_name, p->name, sizeof(uspa->prog_name));
user_memcpy(uspa->prog_path, pargs->path, sizeof(uspa->prog_path));
uspa->argc = cnt;
uspa->argv = uargs;
uspa->envc = 0;
uspa->envp = 0;
if(pargs->args != NULL)
free_arg_list(pargs->args,pargs->argc);
path = pargs->path;
dprintf("proc_create_proc2: loading elf binary '%s'\n", path);
err = elf_load_uspace("/boot/libexec/rld.so", p, 0, &entry);
if(err < 0){
// XXX clean up proc
return err;
}
// free the args
kfree(pargs->path);
kfree(pargs);
dprintf("proc_create_proc2: loaded elf. entry = 0x%lx\n", entry);
p->state = PROC_STATE_NORMAL;
// jump to the entry point in user space
arch_thread_enter_uspace(entry, uspa, t->user_stack_base + STACK_SIZE);
// never gets here
return 0;
}
proc_id proc_create_proc(const char *path, const char *name, char **args, int argc, int priority)
{
struct proc *p;
thread_id tid;
proc_id pid;
int err;
unsigned int state;
// int sem_retcode;
struct proc_arg *pargs;
dprintf("proc_create_proc: entry '%s', name '%s' args = %p argc = %d\n", path, name, args, argc);
p = create_proc_struct(name, false);
if(p == NULL)
return ERR_NO_MEMORY;
pid = p->id;
state = int_disable_interrupts();
GRAB_PROC_LOCK();
hash_insert(proc_hash, p);
RELEASE_PROC_LOCK();
int_restore_interrupts(state);
// copy the args over
pargs = (struct proc_arg *)kmalloc(sizeof(struct proc_arg));
if(pargs == NULL){
err = ERR_NO_MEMORY;
goto err1;
}
pargs->path = (char *)kstrdup(path);
if(pargs->path == NULL){
err = ERR_NO_MEMORY;
goto err2;
}
pargs->argc = argc;
pargs->args = args;
// create a new ioctx for this process
p->ioctx = vfs_new_io_context(thread_get_current_thread()->proc->ioctx);
if(!p->ioctx) {
err = ERR_NO_MEMORY;
goto err3;
}
//XXX should set p->path to path(?) here.
// create an address space for this process
p->_aspace_id = vm_create_aspace(p->name, USER_BASE, USER_SIZE, false);
if (p->_aspace_id < 0) {
err = p->_aspace_id;
goto err4;
}
p->aspace = vm_get_aspace_by_id(p->_aspace_id);
// create a kernel thread, but under the context of the new process
tid = thread_create_kernel_thread_etc(name, proc_create_proc2, pargs, p);
if (tid < 0) {
err = tid;
goto err5;
}
thread_resume_thread(tid);
return pid;
err5:
vm_put_aspace(p->aspace);
vm_delete_aspace(p->_aspace_id);
err4:
vfs_free_io_context(p->ioctx);
err3:
kfree(pargs->path);
err2:
kfree(pargs);
err1:
// remove the proc structure from the proc hash table and delete the proc structure
state = int_disable_interrupts();
GRAB_PROC_LOCK();
hash_remove(proc_hash, p);
RELEASE_PROC_LOCK();
int_restore_interrupts(state);
delete_proc_struct(p);
//err:
return err;
}
proc_id user_proc_create_proc(const char *upath, const char *uname, char **args, int argc, int priority)
{
char path[SYS_MAX_PATH_LEN];
char name[SYS_MAX_OS_NAME_LEN];
char **kargs;
int rc;
dprintf("user_proc_create_proc : argc=%d \n",argc);
if((addr)upath >= KERNEL_BASE && (addr)upath <= KERNEL_TOP)
return ERR_VM_BAD_USER_MEMORY;
if((addr)uname >= KERNEL_BASE && (addr)uname <= KERNEL_TOP)
return ERR_VM_BAD_USER_MEMORY;
rc = user_copy_arg_list(args, argc, &kargs);
if(rc < 0)
goto error;
rc = user_strncpy(path, upath, SYS_MAX_PATH_LEN-1);
if(rc < 0)
goto error;
path[SYS_MAX_PATH_LEN-1] = 0;
rc = user_strncpy(name, uname, SYS_MAX_OS_NAME_LEN-1);
if(rc < 0)
goto error;
name[SYS_MAX_OS_NAME_LEN-1] = 0;
return proc_create_proc(path, name, kargs, argc, priority);
error:
free_arg_list(kargs,argc);
return rc;
}
// used by PS command and anything else interested in a process list
int user_proc_get_table(struct proc_info *pbuf, size_t len)
{
struct proc *p;
struct hash_iterator i;
struct proc_info pi;
int state;
int count=0;
int max = (len / sizeof(struct proc_info));
if((addr)pbuf >= KERNEL_BASE && (addr)pbuf <= KERNEL_TOP)
return ERR_VM_BAD_USER_MEMORY;
state = int_disable_interrupts();
GRAB_PROC_LOCK();
hash_open(proc_hash, &i);
while(((p = hash_next(proc_hash, &i)) != NULL) && (count < max)) {
pi.id = p->id;
strcpy(pi.name, p->name);
pi.state = p->state;
pi.num_threads = p->num_threads;
count++;
user_memcpy(pbuf, &pi, sizeof(struct proc_info));
pbuf=pbuf + sizeof(struct proc_info);
}
hash_close(proc_hash, &i, false);
RELEASE_PROC_LOCK();
int_restore_interrupts(state);
if (count < max)
return count;
else
return ERR_NO_MEMORY;
}
int proc_kill_proc(proc_id id)
{
int state;
struct proc *p;
// struct thread *t;
thread_id tid = -1;
int retval = 0;
state = int_disable_interrupts();
GRAB_PROC_LOCK();
p = proc_get_proc_struct_locked(id);
if(p != NULL) {
tid = p->main_thread->id;
} else {
retval = ERR_INVALID_HANDLE;
}
RELEASE_PROC_LOCK();
int_restore_interrupts(state);
if(retval < 0)
return retval;
// just kill the main thread in the process. The cleanup code there will
// take care of the process
return thread_kill_thread(tid);
}
// sets the pending signal flag on a thread and possibly does some work to wake it up, etc.
// expects the thread lock to be held
static void deliver_signal(struct thread *t, int signal)
{
// dprintf("deliver_signal: thread %p (%d), signal %d\n", t, t->id, signal);
switch(signal) {
case SIG_KILL:
t->pending_signals |= SIG_KILL;
switch(t->state) {
case THREAD_STATE_SUSPENDED:
t->state = THREAD_STATE_READY;
t->next_state = THREAD_STATE_READY;
thread_enqueue_run_q(t);
break;
case THREAD_STATE_WAITING:
sem_interrupt_thread(t);
break;
default:
;
}
break;
default:
t->pending_signals |= signal;
}
}
// expects the thread lock to be held
static void _check_for_thread_sigs(struct thread *t, int state)
{
if(t->pending_signals == SIG_NONE)
return;
if(t->pending_signals & SIG_KILL) {
t->pending_signals &= ~SIG_KILL;
RELEASE_THREAD_LOCK();
int_restore_interrupts(state);
thread_exit(0);
// never gets to here
}
if(t->pending_signals & SIG_SUSPEND) {
t->pending_signals &= ~SIG_SUSPEND;
t->next_state = THREAD_STATE_SUSPENDED;
// XXX will probably want to delay this
thread_resched();
}
}
// called in the int handler code when a thread enters the kernel for any reason
void thread_atkernel_entry(void)
{
int state;
struct thread *t;
bigtime_t now;
// dprintf("thread_atkernel_entry: entry thread 0x%x\n", t->id);
t = thread_get_current_thread();
state = int_disable_interrupts();
// track user time
now = system_time();
t->user_time += now - t->last_time;
t->last_time = now;
GRAB_THREAD_LOCK();
t->in_kernel = true;
_check_for_thread_sigs(t, state);
RELEASE_THREAD_LOCK();
int_restore_interrupts(state);
}
// called when a thread exits kernel space to user space
void thread_atkernel_exit(void)
{
int state;
struct thread *t;
bigtime_t now;
// dprintf("thread_atkernel_exit: entry\n");
t = thread_get_current_thread();
state = int_disable_interrupts();
GRAB_THREAD_LOCK();
_check_for_thread_sigs(t, state);
t->in_kernel = false;
RELEASE_THREAD_LOCK();
// track kernel time
now = system_time();
t->kernel_time += now - t->last_time;
t->last_time = now;
int_restore_interrupts(state);
}
int user_getrlimit(int resource, struct rlimit * urlp)
{
int ret;
struct rlimit rl;
if (urlp == NULL) {
return ERR_INVALID_ARGS;
}
if((addr)urlp >= KERNEL_BASE && (addr)urlp <= KERNEL_TOP) {
return ERR_VM_BAD_USER_MEMORY;
}
ret = getrlimit(resource, &rl);
if (ret == 0) {
ret = user_memcpy(urlp, &rl, sizeof(struct rlimit));
if (ret < 0) {
return ret;
}
return 0;
}
return ret;
}
int getrlimit(int resource, struct rlimit * rlp)
{
if (!rlp) {
return -1;
}
switch(resource) {
case RLIMIT_NOFILE:
return vfs_getrlimit(resource, rlp);
default:
return -1;
}
return 0;
}
int user_setrlimit(int resource, const struct rlimit * urlp)
{
int err;
struct rlimit rl;
if (urlp == NULL) {
return ERR_INVALID_ARGS;
}
if((addr)urlp >= KERNEL_BASE && (addr)urlp <= KERNEL_TOP) {
return ERR_VM_BAD_USER_MEMORY;
}
err = user_memcpy(&rl, urlp, sizeof(struct rlimit));
if (err < 0) {
return err;
}
return setrlimit(resource, &rl);
}
int setrlimit(int resource, const struct rlimit * rlp)
{
if (!rlp) {
return -1;
}
switch(resource) {
case RLIMIT_NOFILE:
return vfs_setrlimit(resource, rlp);
default:
return -1;
}
return 0;
}