1102 lines
30 KiB
C
1102 lines
30 KiB
C
/*
|
|
* Copyright (c) 1982, 1986, 1989 Regents of the University of California.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: @(#)ufs_alloc.c 7.26 (Berkeley) 5/2/91
|
|
* $Id: ufs_alloc.c,v 1.6 1994/05/18 10:21:42 cgd Exp $
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/syslog.h>
|
|
|
|
#include <ufs/quota.h>
|
|
#include <ufs/inode.h>
|
|
#include <ufs/fs.h>
|
|
|
|
extern u_long hashalloc();
|
|
extern ino_t ialloccg();
|
|
extern daddr_t alloccg();
|
|
extern daddr_t alloccgblk();
|
|
extern daddr_t fragextend();
|
|
extern daddr_t blkpref();
|
|
extern daddr_t mapsearch();
|
|
extern int inside[], around[];
|
|
extern unsigned char *fragtbl[];
|
|
|
|
/*
|
|
* Allocate a block in the file system.
|
|
*
|
|
* The size of the requested block is given, which must be some
|
|
* multiple of fs_fsize and <= fs_bsize.
|
|
* A preference may be optionally specified. If a preference is given
|
|
* the following hierarchy is used to allocate a block:
|
|
* 1) allocate the requested block.
|
|
* 2) allocate a rotationally optimal block in the same cylinder.
|
|
* 3) allocate a block in the same cylinder group.
|
|
* 4) quadradically rehash into other cylinder groups, until an
|
|
* available block is located.
|
|
* If no block preference is given the following heirarchy is used
|
|
* to allocate a block:
|
|
* 1) allocate a block in the cylinder group that contains the
|
|
* inode for the file.
|
|
* 2) quadradically rehash into other cylinder groups, until an
|
|
* available block is located.
|
|
*/
|
|
alloc(ip, lbn, bpref, size, bnp)
|
|
register struct inode *ip;
|
|
daddr_t lbn, bpref;
|
|
int size;
|
|
daddr_t *bnp;
|
|
{
|
|
daddr_t bno;
|
|
register struct fs *fs;
|
|
register struct buf *bp;
|
|
int cg, error;
|
|
struct ucred *cred = curproc->p_ucred; /* XXX */
|
|
|
|
*bnp = 0;
|
|
fs = ip->i_fs;
|
|
if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) {
|
|
printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
|
|
ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
|
|
panic("alloc: bad size");
|
|
}
|
|
if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
|
|
goto nospace;
|
|
if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
|
|
goto nospace;
|
|
#ifdef QUOTA
|
|
if (error = chkdq(ip, (long)btodb(size), cred, 0))
|
|
return (error);
|
|
#endif
|
|
if (bpref >= fs->fs_size)
|
|
bpref = 0;
|
|
if (bpref == 0)
|
|
cg = itog(fs, ip->i_number);
|
|
else
|
|
cg = dtog(fs, bpref);
|
|
bno = (daddr_t)hashalloc(ip, cg, (long)bpref, size,
|
|
(u_long (*)())alloccg);
|
|
if (bno > 0) {
|
|
ip->i_blocks += btodb(size);
|
|
ip->i_flag |= IUPD|ICHG;
|
|
*bnp = bno;
|
|
return (0);
|
|
}
|
|
#ifdef QUOTA
|
|
/*
|
|
* Restore user's disk quota because allocation failed.
|
|
*/
|
|
(void) chkdq(ip, (long)-btodb(size), cred, FORCE);
|
|
#endif
|
|
nospace:
|
|
fserr(fs, cred->cr_uid, "file system full");
|
|
uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
|
|
return (ENOSPC);
|
|
}
|
|
|
|
/*
|
|
* Reallocate a fragment to a bigger size
|
|
*
|
|
* The number and size of the old block is given, and a preference
|
|
* and new size is also specified. The allocator attempts to extend
|
|
* the original block. Failing that, the regular block allocator is
|
|
* invoked to get an appropriate block.
|
|
*/
|
|
realloccg(ip, lbprev, bpref, osize, nsize, bpp)
|
|
register struct inode *ip;
|
|
daddr_t lbprev;
|
|
daddr_t bpref;
|
|
int osize, nsize;
|
|
struct buf **bpp;
|
|
{
|
|
register struct fs *fs;
|
|
struct buf *bp, *obp;
|
|
int cg, request, error;
|
|
daddr_t bprev, bno;
|
|
struct ucred *cred = curproc->p_ucred; /* XXX */
|
|
|
|
*bpp = 0;
|
|
fs = ip->i_fs;
|
|
if ((unsigned)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
|
|
(unsigned)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
|
|
printf("dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
|
|
ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
|
|
panic("realloccg: bad size");
|
|
}
|
|
if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
|
|
goto nospace;
|
|
if ((bprev = ip->i_db[lbprev]) == 0) {
|
|
printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
|
|
ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
|
|
panic("realloccg: bad bprev");
|
|
}
|
|
/*
|
|
* Allocate the extra space in the buffer.
|
|
*/
|
|
if (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) {
|
|
brelse(bp);
|
|
return (error);
|
|
}
|
|
#ifdef QUOTA
|
|
if (error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) {
|
|
brelse(bp);
|
|
return (error);
|
|
}
|
|
#endif
|
|
/*
|
|
* Check for extension in the existing location.
|
|
*/
|
|
cg = dtog(fs, bprev);
|
|
if (bno = fragextend(ip, cg, (long)bprev, osize, nsize)) {
|
|
if (bp->b_blkno != fsbtodb(fs, bno))
|
|
panic("bad blockno");
|
|
ip->i_blocks += btodb(nsize - osize);
|
|
ip->i_flag |= IUPD|ICHG;
|
|
allocbuf(bp, nsize);
|
|
bp->b_flags |= B_DONE;
|
|
bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize);
|
|
*bpp = bp;
|
|
return (0);
|
|
}
|
|
/*
|
|
* Allocate a new disk location.
|
|
*/
|
|
if (bpref >= fs->fs_size)
|
|
bpref = 0;
|
|
switch ((int)fs->fs_optim) {
|
|
case FS_OPTSPACE:
|
|
/*
|
|
* Allocate an exact sized fragment. Although this makes
|
|
* best use of space, we will waste time relocating it if
|
|
* the file continues to grow. If the fragmentation is
|
|
* less than half of the minimum free reserve, we choose
|
|
* to begin optimizing for time.
|
|
*/
|
|
request = nsize;
|
|
if (fs->fs_minfree < 5 ||
|
|
fs->fs_cstotal.cs_nffree >
|
|
fs->fs_dsize * fs->fs_minfree / (2 * 100))
|
|
break;
|
|
log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
|
|
fs->fs_fsmnt);
|
|
fs->fs_optim = FS_OPTTIME;
|
|
break;
|
|
case FS_OPTTIME:
|
|
/*
|
|
* At this point we have discovered a file that is trying
|
|
* to grow a small fragment to a larger fragment. To save
|
|
* time, we allocate a full sized block, then free the
|
|
* unused portion. If the file continues to grow, the
|
|
* `fragextend' call above will be able to grow it in place
|
|
* without further copying. If aberrant programs cause
|
|
* disk fragmentation to grow within 2% of the free reserve,
|
|
* we choose to begin optimizing for space.
|
|
*/
|
|
request = fs->fs_bsize;
|
|
if (fs->fs_cstotal.cs_nffree <
|
|
fs->fs_dsize * (fs->fs_minfree - 2) / 100)
|
|
break;
|
|
log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
|
|
fs->fs_fsmnt);
|
|
fs->fs_optim = FS_OPTSPACE;
|
|
break;
|
|
default:
|
|
printf("dev = 0x%x, optim = %d, fs = %s\n",
|
|
ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
|
|
panic("realloccg: bad optim");
|
|
/* NOTREACHED */
|
|
}
|
|
bno = (daddr_t)hashalloc(ip, cg, (long)bpref, request,
|
|
(u_long (*)())alloccg);
|
|
if (bno > 0) {
|
|
bp->b_blkno = fsbtodb(fs, bno);
|
|
(void) vnode_pager_uncache(ITOV(ip));
|
|
blkfree(ip, bprev, osize);
|
|
if (nsize < request)
|
|
blkfree(ip, bno + numfrags(fs, nsize),
|
|
(request - nsize));
|
|
ip->i_blocks += btodb(nsize - osize);
|
|
ip->i_flag |= IUPD|ICHG;
|
|
allocbuf(bp, nsize);
|
|
bp->b_flags |= B_DONE;
|
|
bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize);
|
|
*bpp = bp;
|
|
return (0);
|
|
}
|
|
#ifdef QUOTA
|
|
/*
|
|
* Restore user's disk quota because allocation failed.
|
|
*/
|
|
(void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
|
|
#endif
|
|
brelse(bp);
|
|
nospace:
|
|
/*
|
|
* no space available
|
|
*/
|
|
fserr(fs, cred->cr_uid, "file system full");
|
|
uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
|
|
return (ENOSPC);
|
|
}
|
|
|
|
/*
|
|
* Allocate an inode in the file system.
|
|
*
|
|
* A preference may be optionally specified. If a preference is given
|
|
* the following hierarchy is used to allocate an inode:
|
|
* 1) allocate the requested inode.
|
|
* 2) allocate an inode in the same cylinder group.
|
|
* 3) quadradically rehash into other cylinder groups, until an
|
|
* available inode is located.
|
|
* If no inode preference is given the following heirarchy is used
|
|
* to allocate an inode:
|
|
* 1) allocate an inode in cylinder group 0.
|
|
* 2) quadradically rehash into other cylinder groups, until an
|
|
* available inode is located.
|
|
*/
|
|
ialloc(pip, ipref, mode, cred, ipp)
|
|
register struct inode *pip;
|
|
ino_t ipref;
|
|
int mode;
|
|
struct ucred *cred;
|
|
struct inode **ipp;
|
|
{
|
|
ino_t ino;
|
|
register struct fs *fs;
|
|
register struct inode *ip;
|
|
int cg, error;
|
|
|
|
*ipp = 0;
|
|
fs = pip->i_fs;
|
|
if (fs->fs_cstotal.cs_nifree == 0)
|
|
goto noinodes;
|
|
if (ipref >= fs->fs_ncg * fs->fs_ipg)
|
|
ipref = 0;
|
|
cg = itog(fs, ipref);
|
|
ino = (ino_t)hashalloc(pip, cg, (long)ipref, mode, ialloccg);
|
|
if (ino == 0)
|
|
goto noinodes;
|
|
error = iget(pip, ino, ipp);
|
|
if (error) {
|
|
ifree(pip, ino, mode);
|
|
return (error);
|
|
}
|
|
ip = *ipp;
|
|
if (ip->i_mode) {
|
|
printf("mode = 0%o, inum = %d, fs = %s\n",
|
|
ip->i_mode, ip->i_number, fs->fs_fsmnt);
|
|
panic("ialloc: dup alloc");
|
|
}
|
|
if (ip->i_blocks) { /* XXX */
|
|
printf("free inode %s/%d had %d blocks\n",
|
|
fs->fs_fsmnt, ino, ip->i_blocks);
|
|
ip->i_blocks = 0;
|
|
}
|
|
ip->i_flags = 0;
|
|
/*
|
|
* Set up a new generation number for this inode.
|
|
*/
|
|
if (++nextgennumber < (u_long)time.tv_sec)
|
|
nextgennumber = time.tv_sec;
|
|
ip->i_gen = nextgennumber;
|
|
return (0);
|
|
noinodes:
|
|
fserr(fs, cred->cr_uid, "out of inodes");
|
|
uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
|
|
return (ENOSPC);
|
|
}
|
|
|
|
/*
|
|
* Find a cylinder to place a directory.
|
|
*
|
|
* The policy implemented by this algorithm is to select from
|
|
* among those cylinder groups with above the average number of
|
|
* free inodes, the one with the smallest number of directories.
|
|
*/
|
|
ino_t
|
|
dirpref(fs)
|
|
register struct fs *fs;
|
|
{
|
|
int cg, minndir, mincg, avgifree;
|
|
|
|
avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
|
|
minndir = fs->fs_ipg;
|
|
mincg = 0;
|
|
for (cg = 0; cg < fs->fs_ncg; cg++)
|
|
if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
|
|
fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
|
|
mincg = cg;
|
|
minndir = fs->fs_cs(fs, cg).cs_ndir;
|
|
}
|
|
return ((ino_t)(fs->fs_ipg * mincg));
|
|
}
|
|
|
|
/*
|
|
* Select the desired position for the next block in a file. The file is
|
|
* logically divided into sections. The first section is composed of the
|
|
* direct blocks. Each additional section contains fs_maxbpg blocks.
|
|
*
|
|
* If no blocks have been allocated in the first section, the policy is to
|
|
* request a block in the same cylinder group as the inode that describes
|
|
* the file. If no blocks have been allocated in any other section, the
|
|
* policy is to place the section in a cylinder group with a greater than
|
|
* average number of free blocks. An appropriate cylinder group is found
|
|
* by using a rotor that sweeps the cylinder groups. When a new group of
|
|
* blocks is needed, the sweep begins in the cylinder group following the
|
|
* cylinder group from which the previous allocation was made. The sweep
|
|
* continues until a cylinder group with greater than the average number
|
|
* of free blocks is found. If the allocation is for the first block in an
|
|
* indirect block, the information on the previous allocation is unavailable;
|
|
* here a best guess is made based upon the logical block number being
|
|
* allocated.
|
|
*
|
|
* If a section is already partially allocated, the policy is to
|
|
* contiguously allocate fs_maxcontig blocks. The end of one of these
|
|
* contiguous blocks and the beginning of the next is physically separated
|
|
* so that the disk head will be in transit between them for at least
|
|
* fs_rotdelay milliseconds. This is to allow time for the processor to
|
|
* schedule another I/O transfer.
|
|
*/
|
|
daddr_t
|
|
blkpref(ip, lbn, indx, bap)
|
|
struct inode *ip;
|
|
daddr_t lbn;
|
|
int indx;
|
|
daddr_t *bap;
|
|
{
|
|
register struct fs *fs;
|
|
register int cg;
|
|
int avgbfree, startcg;
|
|
daddr_t nextblk;
|
|
|
|
fs = ip->i_fs;
|
|
if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
|
|
if (lbn < NDADDR) {
|
|
cg = itog(fs, ip->i_number);
|
|
return (fs->fs_fpg * cg + fs->fs_frag);
|
|
}
|
|
/*
|
|
* Find a cylinder with greater than average number of
|
|
* unused data blocks.
|
|
*/
|
|
if (indx == 0 || bap[indx - 1] == 0)
|
|
startcg = itog(fs, ip->i_number) + lbn / fs->fs_maxbpg;
|
|
else
|
|
startcg = dtog(fs, bap[indx - 1]) + 1;
|
|
startcg %= fs->fs_ncg;
|
|
avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
|
|
for (cg = startcg; cg < fs->fs_ncg; cg++)
|
|
if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
|
|
fs->fs_cgrotor = cg;
|
|
return (fs->fs_fpg * cg + fs->fs_frag);
|
|
}
|
|
for (cg = 0; cg <= startcg; cg++)
|
|
if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
|
|
fs->fs_cgrotor = cg;
|
|
return (fs->fs_fpg * cg + fs->fs_frag);
|
|
}
|
|
return (NULL);
|
|
}
|
|
/*
|
|
* One or more previous blocks have been laid out. If less
|
|
* than fs_maxcontig previous blocks are contiguous, the
|
|
* next block is requested contiguously, otherwise it is
|
|
* requested rotationally delayed by fs_rotdelay milliseconds.
|
|
*/
|
|
nextblk = bap[indx - 1] + fs->fs_frag;
|
|
if (indx < fs->fs_maxcontig || bap[indx - fs->fs_maxcontig] +
|
|
blkstofrags(fs, fs->fs_maxcontig) != nextblk)
|
|
return (nextblk);
|
|
if (fs->fs_rotdelay != 0)
|
|
/*
|
|
* Here we convert ms of delay to frags as:
|
|
* (frags) = (ms) * (rev/sec) * (sect/rev) /
|
|
* ((sect/frag) * (ms/sec))
|
|
* then round up to the next block.
|
|
*/
|
|
nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
|
|
(NSPF(fs) * 1000), fs->fs_frag);
|
|
return (nextblk);
|
|
}
|
|
|
|
/*
|
|
* Implement the cylinder overflow algorithm.
|
|
*
|
|
* The policy implemented by this algorithm is:
|
|
* 1) allocate the block in its requested cylinder group.
|
|
* 2) quadradically rehash on the cylinder group number.
|
|
* 3) brute force search for a free block.
|
|
*/
|
|
/*VARARGS5*/
|
|
u_long
|
|
hashalloc(ip, cg, pref, size, allocator)
|
|
struct inode *ip;
|
|
int cg;
|
|
long pref;
|
|
int size; /* size for data blocks, mode for inodes */
|
|
u_long (*allocator)();
|
|
{
|
|
register struct fs *fs;
|
|
long result;
|
|
int i, icg = cg;
|
|
|
|
fs = ip->i_fs;
|
|
/*
|
|
* 1: preferred cylinder group
|
|
*/
|
|
result = (*allocator)(ip, cg, pref, size);
|
|
if (result)
|
|
return (result);
|
|
/*
|
|
* 2: quadratic rehash
|
|
*/
|
|
for (i = 1; i < fs->fs_ncg; i *= 2) {
|
|
cg += i;
|
|
if (cg >= fs->fs_ncg)
|
|
cg -= fs->fs_ncg;
|
|
result = (*allocator)(ip, cg, 0, size);
|
|
if (result)
|
|
return (result);
|
|
}
|
|
/*
|
|
* 3: brute force search
|
|
* Note that we start at i == 2, since 0 was checked initially,
|
|
* and 1 is always checked in the quadratic rehash.
|
|
*/
|
|
cg = (icg + 2) % fs->fs_ncg;
|
|
for (i = 2; i < fs->fs_ncg; i++) {
|
|
result = (*allocator)(ip, cg, 0, size);
|
|
if (result)
|
|
return (result);
|
|
cg++;
|
|
if (cg == fs->fs_ncg)
|
|
cg = 0;
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Determine whether a fragment can be extended.
|
|
*
|
|
* Check to see if the necessary fragments are available, and
|
|
* if they are, allocate them.
|
|
*/
|
|
daddr_t
|
|
fragextend(ip, cg, bprev, osize, nsize)
|
|
struct inode *ip;
|
|
int cg;
|
|
long bprev;
|
|
int osize, nsize;
|
|
{
|
|
register struct fs *fs;
|
|
register struct cg *cgp;
|
|
struct buf *bp;
|
|
long bno;
|
|
int frags, bbase;
|
|
int i, error;
|
|
|
|
fs = ip->i_fs;
|
|
if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
|
|
return (NULL);
|
|
frags = numfrags(fs, nsize);
|
|
bbase = fragnum(fs, bprev);
|
|
if (bbase > fragnum(fs, (bprev + frags - 1))) {
|
|
/* cannot extend across a block boundary */
|
|
return (NULL);
|
|
}
|
|
error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
|
|
(int)fs->fs_cgsize, NOCRED, &bp);
|
|
if (error) {
|
|
brelse(bp);
|
|
return (NULL);
|
|
}
|
|
cgp = (struct cg *)bp->b_data;
|
|
if (!cg_chkmagic(cgp)) {
|
|
brelse(bp);
|
|
return (NULL);
|
|
}
|
|
cgp->cg_time = time.tv_sec;
|
|
bno = dtogd(fs, bprev);
|
|
for (i = numfrags(fs, osize); i < frags; i++)
|
|
if (isclr(cg_blksfree(cgp), bno + i)) {
|
|
brelse(bp);
|
|
return (NULL);
|
|
}
|
|
/*
|
|
* the current fragment can be extended
|
|
* deduct the count on fragment being extended into
|
|
* increase the count on the remaining fragment (if any)
|
|
* allocate the extended piece
|
|
*/
|
|
for (i = frags; i < fs->fs_frag - bbase; i++)
|
|
if (isclr(cg_blksfree(cgp), bno + i))
|
|
break;
|
|
cgp->cg_frsum[i - numfrags(fs, osize)]--;
|
|
if (i != frags)
|
|
cgp->cg_frsum[i - frags]++;
|
|
for (i = numfrags(fs, osize); i < frags; i++) {
|
|
clrbit(cg_blksfree(cgp), bno + i);
|
|
cgp->cg_cs.cs_nffree--;
|
|
fs->fs_cstotal.cs_nffree--;
|
|
fs->fs_cs(fs, cg).cs_nffree--;
|
|
}
|
|
fs->fs_fmod++;
|
|
bdwrite(bp);
|
|
return (bprev);
|
|
}
|
|
|
|
/*
|
|
* Determine whether a block can be allocated.
|
|
*
|
|
* Check to see if a block of the apprpriate size is available,
|
|
* and if it is, allocate it.
|
|
*/
|
|
daddr_t
|
|
alloccg(ip, cg, bpref, size)
|
|
struct inode *ip;
|
|
int cg;
|
|
daddr_t bpref;
|
|
int size;
|
|
{
|
|
register struct fs *fs;
|
|
register struct cg *cgp;
|
|
struct buf *bp;
|
|
register int i;
|
|
int error, bno, frags, allocsiz;
|
|
|
|
fs = ip->i_fs;
|
|
if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
|
|
return (NULL);
|
|
error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
|
|
(int)fs->fs_cgsize, NOCRED, &bp);
|
|
if (error) {
|
|
brelse(bp);
|
|
return (NULL);
|
|
}
|
|
cgp = (struct cg *)bp->b_data;
|
|
if (!cg_chkmagic(cgp) ||
|
|
(cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
|
|
brelse(bp);
|
|
return (NULL);
|
|
}
|
|
cgp->cg_time = time.tv_sec;
|
|
if (size == fs->fs_bsize) {
|
|
bno = alloccgblk(fs, cgp, bpref);
|
|
bdwrite(bp);
|
|
return (bno);
|
|
}
|
|
/*
|
|
* check to see if any fragments are already available
|
|
* allocsiz is the size which will be allocated, hacking
|
|
* it down to a smaller size if necessary
|
|
*/
|
|
frags = numfrags(fs, size);
|
|
for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
|
|
if (cgp->cg_frsum[allocsiz] != 0)
|
|
break;
|
|
if (allocsiz == fs->fs_frag) {
|
|
/*
|
|
* no fragments were available, so a block will be
|
|
* allocated, and hacked up
|
|
*/
|
|
if (cgp->cg_cs.cs_nbfree == 0) {
|
|
brelse(bp);
|
|
return (NULL);
|
|
}
|
|
bno = alloccgblk(fs, cgp, bpref);
|
|
bpref = dtogd(fs, bno);
|
|
for (i = frags; i < fs->fs_frag; i++)
|
|
setbit(cg_blksfree(cgp), bpref + i);
|
|
i = fs->fs_frag - frags;
|
|
cgp->cg_cs.cs_nffree += i;
|
|
fs->fs_cstotal.cs_nffree += i;
|
|
fs->fs_cs(fs, cg).cs_nffree += i;
|
|
fs->fs_fmod++;
|
|
cgp->cg_frsum[i]++;
|
|
bdwrite(bp);
|
|
return (bno);
|
|
}
|
|
bno = mapsearch(fs, cgp, bpref, allocsiz);
|
|
if (bno < 0) {
|
|
brelse(bp);
|
|
return (NULL);
|
|
}
|
|
for (i = 0; i < frags; i++)
|
|
clrbit(cg_blksfree(cgp), bno + i);
|
|
cgp->cg_cs.cs_nffree -= frags;
|
|
fs->fs_cstotal.cs_nffree -= frags;
|
|
fs->fs_cs(fs, cg).cs_nffree -= frags;
|
|
fs->fs_fmod++;
|
|
cgp->cg_frsum[allocsiz]--;
|
|
if (frags != allocsiz)
|
|
cgp->cg_frsum[allocsiz - frags]++;
|
|
bdwrite(bp);
|
|
return (cg * fs->fs_fpg + bno);
|
|
}
|
|
|
|
/*
|
|
* Allocate a block in a cylinder group.
|
|
*
|
|
* This algorithm implements the following policy:
|
|
* 1) allocate the requested block.
|
|
* 2) allocate a rotationally optimal block in the same cylinder.
|
|
* 3) allocate the next available block on the block rotor for the
|
|
* specified cylinder group.
|
|
* Note that this routine only allocates fs_bsize blocks; these
|
|
* blocks may be fragmented by the routine that allocates them.
|
|
*/
|
|
daddr_t
|
|
alloccgblk(fs, cgp, bpref)
|
|
register struct fs *fs;
|
|
register struct cg *cgp;
|
|
daddr_t bpref;
|
|
{
|
|
daddr_t bno;
|
|
int cylno, pos, delta;
|
|
short *cylbp;
|
|
register int i;
|
|
|
|
if (bpref == 0) {
|
|
bpref = cgp->cg_rotor;
|
|
goto norot;
|
|
}
|
|
bpref = blknum(fs, bpref);
|
|
bpref = dtogd(fs, bpref);
|
|
/*
|
|
* if the requested block is available, use it
|
|
*/
|
|
if (isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) {
|
|
bno = bpref;
|
|
goto gotit;
|
|
}
|
|
/*
|
|
* check for a block available on the same cylinder
|
|
*/
|
|
cylno = cbtocylno(fs, bpref);
|
|
if (cg_blktot(cgp)[cylno] == 0)
|
|
goto norot;
|
|
if (fs->fs_cpc == 0) {
|
|
/*
|
|
* block layout info is not available, so just have
|
|
* to take any block in this cylinder.
|
|
*/
|
|
bpref = howmany(fs->fs_spc * cylno, NSPF(fs));
|
|
goto norot;
|
|
}
|
|
/*
|
|
* check the summary information to see if a block is
|
|
* available in the requested cylinder starting at the
|
|
* requested rotational position and proceeding around.
|
|
*/
|
|
cylbp = cg_blks(fs, cgp, cylno);
|
|
pos = cbtorpos(fs, bpref);
|
|
for (i = pos; i < fs->fs_nrpos; i++)
|
|
if (cylbp[i] > 0)
|
|
break;
|
|
if (i == fs->fs_nrpos)
|
|
for (i = 0; i < pos; i++)
|
|
if (cylbp[i] > 0)
|
|
break;
|
|
if (cylbp[i] > 0) {
|
|
/*
|
|
* found a rotational position, now find the actual
|
|
* block. A panic if none is actually there.
|
|
*/
|
|
pos = cylno % fs->fs_cpc;
|
|
bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
|
|
if (fs_postbl(fs, pos)[i] == -1) {
|
|
printf("pos = %d, i = %d, fs = %s\n",
|
|
pos, i, fs->fs_fsmnt);
|
|
panic("alloccgblk: cyl groups corrupted");
|
|
}
|
|
for (i = fs_postbl(fs, pos)[i];; ) {
|
|
if (isblock(fs, cg_blksfree(cgp), bno + i)) {
|
|
bno = blkstofrags(fs, (bno + i));
|
|
goto gotit;
|
|
}
|
|
delta = fs_rotbl(fs)[i];
|
|
if (delta <= 0 ||
|
|
delta + i > fragstoblks(fs, fs->fs_fpg))
|
|
break;
|
|
i += delta;
|
|
}
|
|
printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
|
|
panic("alloccgblk: can't find blk in cyl");
|
|
}
|
|
norot:
|
|
/*
|
|
* no blocks in the requested cylinder, so take next
|
|
* available one in this cylinder group.
|
|
*/
|
|
bno = mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
|
|
if (bno < 0)
|
|
return (NULL);
|
|
cgp->cg_rotor = bno;
|
|
gotit:
|
|
clrblock(fs, cg_blksfree(cgp), (long)fragstoblks(fs, bno));
|
|
cgp->cg_cs.cs_nbfree--;
|
|
fs->fs_cstotal.cs_nbfree--;
|
|
fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
|
|
cylno = cbtocylno(fs, bno);
|
|
cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
|
|
cg_blktot(cgp)[cylno]--;
|
|
fs->fs_fmod++;
|
|
return (cgp->cg_cgx * fs->fs_fpg + bno);
|
|
}
|
|
|
|
/*
|
|
* Determine whether an inode can be allocated.
|
|
*
|
|
* Check to see if an inode is available, and if it is,
|
|
* allocate it using the following policy:
|
|
* 1) allocate the requested inode.
|
|
* 2) allocate the next available inode after the requested
|
|
* inode in the specified cylinder group.
|
|
*/
|
|
ino_t
|
|
ialloccg(ip, cg, ipref, mode)
|
|
struct inode *ip;
|
|
int cg;
|
|
daddr_t ipref;
|
|
int mode;
|
|
{
|
|
register struct fs *fs;
|
|
register struct cg *cgp;
|
|
struct buf *bp;
|
|
int error, start, len, loc, map, i;
|
|
|
|
fs = ip->i_fs;
|
|
if (fs->fs_cs(fs, cg).cs_nifree == 0)
|
|
return (NULL);
|
|
error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
|
|
(int)fs->fs_cgsize, NOCRED, &bp);
|
|
if (error) {
|
|
brelse(bp);
|
|
return (NULL);
|
|
}
|
|
cgp = (struct cg *)bp->b_data;
|
|
if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
|
|
brelse(bp);
|
|
return (NULL);
|
|
}
|
|
cgp->cg_time = time.tv_sec;
|
|
if (ipref) {
|
|
ipref %= fs->fs_ipg;
|
|
if (isclr(cg_inosused(cgp), ipref))
|
|
goto gotit;
|
|
}
|
|
start = cgp->cg_irotor / NBBY;
|
|
len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
|
|
loc = skpc(0xff, len, &cg_inosused(cgp)[start]);
|
|
if (loc == 0) {
|
|
len = start + 1;
|
|
start = 0;
|
|
loc = skpc(0xff, len, &cg_inosused(cgp)[0]);
|
|
if (loc == 0) {
|
|
printf("cg = %s, irotor = %d, fs = %s\n",
|
|
cg, cgp->cg_irotor, fs->fs_fsmnt);
|
|
panic("ialloccg: map corrupted");
|
|
/* NOTREACHED */
|
|
}
|
|
}
|
|
i = start + len - loc;
|
|
map = cg_inosused(cgp)[i];
|
|
ipref = i * NBBY;
|
|
for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
|
|
if ((map & i) == 0) {
|
|
cgp->cg_irotor = ipref;
|
|
goto gotit;
|
|
}
|
|
}
|
|
printf("fs = %s\n", fs->fs_fsmnt);
|
|
panic("ialloccg: block not in map");
|
|
/* NOTREACHED */
|
|
gotit:
|
|
setbit(cg_inosused(cgp), ipref);
|
|
cgp->cg_cs.cs_nifree--;
|
|
fs->fs_cstotal.cs_nifree--;
|
|
fs->fs_cs(fs, cg).cs_nifree--;
|
|
fs->fs_fmod++;
|
|
if ((mode & IFMT) == IFDIR) {
|
|
cgp->cg_cs.cs_ndir++;
|
|
fs->fs_cstotal.cs_ndir++;
|
|
fs->fs_cs(fs, cg).cs_ndir++;
|
|
}
|
|
bdwrite(bp);
|
|
return (cg * fs->fs_ipg + ipref);
|
|
}
|
|
|
|
/*
|
|
* Free a block or fragment.
|
|
*
|
|
* The specified block or fragment is placed back in the
|
|
* free map. If a fragment is deallocated, a possible
|
|
* block reassembly is checked.
|
|
*/
|
|
blkfree(ip, bno, size)
|
|
register struct inode *ip;
|
|
daddr_t bno;
|
|
daddr_t size;
|
|
{
|
|
register struct fs *fs;
|
|
register struct cg *cgp;
|
|
struct buf *bp;
|
|
int error, cg, blk, frags, bbase;
|
|
register int i;
|
|
struct ucred *cred = curproc->p_ucred; /* XXX */
|
|
|
|
fs = ip->i_fs;
|
|
if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) {
|
|
printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
|
|
ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
|
|
panic("blkfree: bad size");
|
|
}
|
|
cg = dtog(fs, bno);
|
|
if ((unsigned)bno >= fs->fs_size) {
|
|
printf("bad block %d, ino %d\n", bno, ip->i_number);
|
|
fserr(fs, cred->cr_uid, "bad block");
|
|
return;
|
|
}
|
|
error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
|
|
(int)fs->fs_cgsize, NOCRED, &bp);
|
|
if (error) {
|
|
brelse(bp);
|
|
return;
|
|
}
|
|
cgp = (struct cg *)bp->b_data;
|
|
if (!cg_chkmagic(cgp)) {
|
|
brelse(bp);
|
|
return;
|
|
}
|
|
cgp->cg_time = time.tv_sec;
|
|
bno = dtogd(fs, bno);
|
|
if (size == fs->fs_bsize) {
|
|
if (isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bno))) {
|
|
printf("dev = 0x%x, block = %d, fs = %s\n",
|
|
ip->i_dev, bno, fs->fs_fsmnt);
|
|
panic("blkfree: freeing free block");
|
|
}
|
|
setblock(fs, cg_blksfree(cgp), fragstoblks(fs, bno));
|
|
cgp->cg_cs.cs_nbfree++;
|
|
fs->fs_cstotal.cs_nbfree++;
|
|
fs->fs_cs(fs, cg).cs_nbfree++;
|
|
i = cbtocylno(fs, bno);
|
|
cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
|
|
cg_blktot(cgp)[i]++;
|
|
} else {
|
|
bbase = bno - fragnum(fs, bno);
|
|
/*
|
|
* decrement the counts associated with the old frags
|
|
*/
|
|
blk = blkmap(fs, cg_blksfree(cgp), bbase);
|
|
fragacct(fs, blk, cgp->cg_frsum, -1);
|
|
/*
|
|
* deallocate the fragment
|
|
*/
|
|
frags = numfrags(fs, size);
|
|
for (i = 0; i < frags; i++) {
|
|
if (isset(cg_blksfree(cgp), bno + i)) {
|
|
printf("dev = 0x%x, block = %d, fs = %s\n",
|
|
ip->i_dev, bno + i, fs->fs_fsmnt);
|
|
panic("blkfree: freeing free frag");
|
|
}
|
|
setbit(cg_blksfree(cgp), bno + i);
|
|
}
|
|
cgp->cg_cs.cs_nffree += i;
|
|
fs->fs_cstotal.cs_nffree += i;
|
|
fs->fs_cs(fs, cg).cs_nffree += i;
|
|
/*
|
|
* add back in counts associated with the new frags
|
|
*/
|
|
blk = blkmap(fs, cg_blksfree(cgp), bbase);
|
|
fragacct(fs, blk, cgp->cg_frsum, 1);
|
|
/*
|
|
* if a complete block has been reassembled, account for it
|
|
*/
|
|
if (isblock(fs, cg_blksfree(cgp),
|
|
(daddr_t)fragstoblks(fs, bbase))) {
|
|
cgp->cg_cs.cs_nffree -= fs->fs_frag;
|
|
fs->fs_cstotal.cs_nffree -= fs->fs_frag;
|
|
fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
|
|
cgp->cg_cs.cs_nbfree++;
|
|
fs->fs_cstotal.cs_nbfree++;
|
|
fs->fs_cs(fs, cg).cs_nbfree++;
|
|
i = cbtocylno(fs, bbase);
|
|
cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
|
|
cg_blktot(cgp)[i]++;
|
|
}
|
|
}
|
|
fs->fs_fmod++;
|
|
bdwrite(bp);
|
|
}
|
|
|
|
/*
|
|
* Free an inode.
|
|
*
|
|
* The specified inode is placed back in the free map.
|
|
*/
|
|
ifree(ip, ino, mode)
|
|
struct inode *ip;
|
|
ino_t ino;
|
|
int mode;
|
|
{
|
|
register struct fs *fs;
|
|
register struct cg *cgp;
|
|
struct buf *bp;
|
|
int error, cg;
|
|
|
|
fs = ip->i_fs;
|
|
if ((unsigned)ino >= fs->fs_ipg*fs->fs_ncg) {
|
|
printf("dev = 0x%x, ino = %d, fs = %s\n",
|
|
ip->i_dev, ino, fs->fs_fsmnt);
|
|
panic("ifree: range");
|
|
}
|
|
cg = itog(fs, ino);
|
|
error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
|
|
(int)fs->fs_cgsize, NOCRED, &bp);
|
|
if (error) {
|
|
brelse(bp);
|
|
return;
|
|
}
|
|
cgp = (struct cg *)bp->b_data;
|
|
if (!cg_chkmagic(cgp)) {
|
|
brelse(bp);
|
|
return;
|
|
}
|
|
cgp->cg_time = time.tv_sec;
|
|
ino %= fs->fs_ipg;
|
|
if (isclr(cg_inosused(cgp), ino)) {
|
|
printf("dev = 0x%x, ino = %d, fs = %s\n",
|
|
ip->i_dev, ino, fs->fs_fsmnt);
|
|
if (fs->fs_ronly == 0)
|
|
panic("ifree: freeing free inode");
|
|
}
|
|
clrbit(cg_inosused(cgp), ino);
|
|
if (ino < cgp->cg_irotor)
|
|
cgp->cg_irotor = ino;
|
|
cgp->cg_cs.cs_nifree++;
|
|
fs->fs_cstotal.cs_nifree++;
|
|
fs->fs_cs(fs, cg).cs_nifree++;
|
|
if ((mode & IFMT) == IFDIR) {
|
|
cgp->cg_cs.cs_ndir--;
|
|
fs->fs_cstotal.cs_ndir--;
|
|
fs->fs_cs(fs, cg).cs_ndir--;
|
|
}
|
|
fs->fs_fmod++;
|
|
bdwrite(bp);
|
|
}
|
|
|
|
/*
|
|
* Find a block of the specified size in the specified cylinder group.
|
|
*
|
|
* It is a panic if a request is made to find a block if none are
|
|
* available.
|
|
*/
|
|
daddr_t
|
|
mapsearch(fs, cgp, bpref, allocsiz)
|
|
register struct fs *fs;
|
|
register struct cg *cgp;
|
|
daddr_t bpref;
|
|
int allocsiz;
|
|
{
|
|
daddr_t bno;
|
|
int start, len, loc, i;
|
|
int blk, field, subfield, pos;
|
|
|
|
/*
|
|
* find the fragment by searching through the free block
|
|
* map for an appropriate bit pattern
|
|
*/
|
|
if (bpref)
|
|
start = dtogd(fs, bpref) / NBBY;
|
|
else
|
|
start = cgp->cg_frotor / NBBY;
|
|
len = howmany(fs->fs_fpg, NBBY) - start;
|
|
loc = scanc((unsigned)len, (u_char *)&cg_blksfree(cgp)[start],
|
|
(u_char *)fragtbl[fs->fs_frag],
|
|
(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
|
|
if (loc == 0) {
|
|
len = start + 1;
|
|
start = 0;
|
|
loc = scanc((unsigned)len, (u_char *)&cg_blksfree(cgp)[0],
|
|
(u_char *)fragtbl[fs->fs_frag],
|
|
(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
|
|
if (loc == 0) {
|
|
printf("start = %d, len = %d, fs = %s\n",
|
|
start, len, fs->fs_fsmnt);
|
|
panic("alloccg: map corrupted");
|
|
/* NOTREACHED */
|
|
}
|
|
}
|
|
bno = (start + len - loc) * NBBY;
|
|
cgp->cg_frotor = bno;
|
|
/*
|
|
* found the byte in the map
|
|
* sift through the bits to find the selected frag
|
|
*/
|
|
for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
|
|
blk = blkmap(fs, cg_blksfree(cgp), bno);
|
|
blk <<= 1;
|
|
field = around[allocsiz];
|
|
subfield = inside[allocsiz];
|
|
for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
|
|
if ((blk & field) == subfield)
|
|
return (bno + pos);
|
|
field <<= 1;
|
|
subfield <<= 1;
|
|
}
|
|
}
|
|
printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
|
|
panic("alloccg: block not in map");
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* Fserr prints the name of a file system with an error diagnostic.
|
|
*
|
|
* The form of the error message is:
|
|
* fs: error message
|
|
*/
|
|
fserr(fs, uid, cp)
|
|
struct fs *fs;
|
|
uid_t uid;
|
|
char *cp;
|
|
{
|
|
|
|
log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
|
|
}
|