NetBSD/sys/arch/m68k/fpe/fpu_calcea.c

711 lines
17 KiB
C

/* $NetBSD: fpu_calcea.c,v 1.7 1996/10/16 06:27:05 scottr Exp $ */
/*
* Copyright (c) 1995 Gordon W. Ross
* portion Copyright (c) 1995 Ken Nakata
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
* 4. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Gordon Ross
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/param.h>
#include <sys/signal.h>
#include <sys/systm.h>
#include <machine/frame.h>
#include "fpu_emulate.h"
/*
* Prototypes of static functions
*/
static int decode_ea6 __P((struct frame *frame, struct instruction *insn,
struct insn_ea *ea, int modreg));
static int fetch_immed __P((struct frame *frame, struct instruction *insn,
int *dst));
static int fetch_disp __P((struct frame *frame, struct instruction *insn,
int size, int *res));
static int calc_ea __P((struct insn_ea *ea, char *ptr, char **eaddr));
/*
* Helper routines for dealing with "effective address" values.
*/
/*
* Decode an effective address into internal form.
* Returns zero on success, else signal number.
*/
int
fpu_decode_ea(frame, insn, ea, modreg)
struct frame *frame;
struct instruction *insn;
struct insn_ea *ea;
int modreg;
{
int sig;
#ifdef DEBUG
if (insn->is_datasize < 0) {
panic("decode_ea: called with uninitialized datasize\n");
}
#endif
sig = 0;
/* Set the most common value here. */
ea->ea_regnum = 8 + (modreg & 7);
switch (modreg & 070) {
case 0: /* Dn */
ea->ea_regnum &= 7;
case 010: /* An */
ea->ea_flags = EA_DIRECT;
if (fpu_debug_level & DL_DECODEEA) {
printf(" decode_ea: register direct reg=%d\n", ea->ea_regnum);
}
break;
case 020: /* (An) */
ea->ea_flags = 0;
if (fpu_debug_level & DL_DECODEEA) {
printf(" decode_ea: register indirect reg=%d\n", ea->ea_regnum);
}
break;
case 030: /* (An)+ */
ea->ea_flags = EA_POSTINCR;
if (fpu_debug_level & DL_DECODEEA) {
printf(" decode_ea: reg indirect postincrement reg=%d\n",
ea->ea_regnum);
}
break;
case 040: /* -(An) */
ea->ea_flags = EA_PREDECR;
if (fpu_debug_level & DL_DECODEEA) {
printf(" decode_ea: reg indirect predecrement reg=%d\n",
ea->ea_regnum);
}
break;
case 050: /* (d16,An) */
ea->ea_flags = EA_OFFSET;
sig = fetch_disp(frame, insn, 1, &ea->ea_offset);
if (fpu_debug_level & DL_DECODEEA) {
printf(" decode_ea: reg indirect with displacement reg=%d\n",
ea->ea_regnum);
}
break;
case 060: /* (d8,An,Xn) */
ea->ea_flags = EA_INDEXED;
sig = decode_ea6(frame, insn, ea, modreg);
break;
case 070: /* misc. */
ea->ea_regnum = (modreg & 7);
switch (modreg & 7) {
case 0: /* (xxxx).W */
ea->ea_flags = EA_ABS;
sig = fetch_disp(frame, insn, 1, &ea->ea_absaddr);
if (fpu_debug_level & DL_DECODEEA) {
printf(" decode_ea: absolute address (word)\n");
}
break;
case 1: /* (xxxxxxxx).L */
ea->ea_flags = EA_ABS;
sig = fetch_disp(frame, insn, 2, &ea->ea_absaddr);
if (fpu_debug_level & DL_DECODEEA) {
printf(" decode_ea: absolute address (long)\n");
}
break;
case 2: /* (d16,PC) */
ea->ea_flags = EA_PC_REL | EA_OFFSET;
sig = fetch_disp(frame, insn, 1, &ea->ea_absaddr);
if (fpu_debug_level & DL_DECODEEA) {
printf(" decode_ea: pc relative word displacement\n");
}
break;
case 3: /* (d8,PC,Xn) */
ea->ea_flags = EA_PC_REL | EA_INDEXED;
sig = decode_ea6(frame, insn, ea, modreg);
break;
case 4: /* #data */
ea->ea_flags = EA_IMMED;
sig = fetch_immed(frame, insn, &ea->ea_immed[0]);
if (fpu_debug_level & DL_DECODEEA) {
printf(" decode_ea: immediate size=%d\n", insn->is_datasize);
}
break;
default:
if (fpu_debug_level & DL_DECODEEA) {
printf(" decode_ea: invalid addr mode (7,%d)\n", modreg & 7);
}
return SIGILL;
} /* switch for mode 7 */
break;
} /* switch mode */
ea->ea_tdisp = 0;
return sig;
}
/*
* Decode Mode=6 address modes
*/
static int
decode_ea6(frame, insn, ea, modreg)
struct frame *frame;
struct instruction *insn;
struct insn_ea *ea;
int modreg;
{
int extword, idx;
int basedisp, outerdisp;
int bd_size, od_size;
int sig;
extword = fusword((void *) (frame->f_pc + insn->is_advance));
if (extword < 0) {
return SIGSEGV;
}
insn->is_advance += 2;
/* get register index */
ea->ea_idxreg = (extword >> 12) & 0xf;
idx = frame->f_regs[ea->ea_idxreg];
if ((extword & 0x0800) == 0) {
/* if word sized index, sign-extend */
idx &= 0xffff;
if (idx & 0x8000) {
idx |= 0xffff0000;
}
}
/* scale register index */
idx <<= ((extword >>9) & 3);
if ((extword & 0x100) == 0) {
/* brief extention word - sign-extend the displacement */
basedisp = (extword & 0xff);
if (basedisp & 0x80) {
basedisp |= 0xffffff00;
}
ea->ea_basedisp = idx + basedisp;
ea->ea_outerdisp = 0;
if (fpu_debug_level & DL_DECODEEA) {
printf(" decode_ea6: brief ext word idxreg=%d, basedisp=%08x\n",
ea->ea_idxreg, ea->ea_basedisp);
}
} else {
/* full extention word */
if (extword & 0x80) {
ea->ea_flags |= EA_BASE_SUPPRSS;
}
bd_size = ((extword >> 4) & 3) - 1;
od_size = (extword & 3) - 1;
sig = fetch_disp(frame, insn, bd_size, &basedisp);
if (sig) {
return sig;
}
if (od_size >= 0) {
ea->ea_flags |= EA_MEM_INDIR;
}
sig = fetch_disp(frame, insn, od_size, &outerdisp);
if (sig) {
return sig;
}
switch (extword & 0x44) {
case 0: /* preindexed */
ea->ea_basedisp = basedisp + idx;
ea->ea_outerdisp = outerdisp;
break;
case 4: /* postindexed */
ea->ea_basedisp = basedisp;
ea->ea_outerdisp = outerdisp + idx;
break;
case 0x40: /* no index */
ea->ea_basedisp = basedisp;
ea->ea_outerdisp = outerdisp;
break;
default:
#ifdef DEBUG
printf(" decode_ea6: invalid indirect mode: ext word %04x\n",
extword);
#endif
return SIGILL;
break;
}
if (fpu_debug_level & DL_DECODEEA) {
printf(" decode_ea6: full ext idxreg=%d, basedisp=%x, outerdisp=%x\n",
ea->ea_idxreg, ea->ea_basedisp, ea->ea_outerdisp);
}
}
if (fpu_debug_level & DL_DECODEEA) {
printf(" decode_ea6: regnum=%d, flags=%x\n",
ea->ea_regnum, ea->ea_flags);
}
return 0;
}
/*
* Load a value from an effective address.
* Returns zero on success, else signal number.
*/
int
fpu_load_ea(frame, insn, ea, dst)
struct frame *frame;
struct instruction *insn;
struct insn_ea *ea;
char *dst;
{
int *reg;
char *src;
int len, step;
int sig;
#ifdef DIAGNOSTIC
if (ea->ea_regnum & ~0xF) {
panic(" load_ea: bad regnum");
}
#endif
if (fpu_debug_level & DL_LOADEA) {
printf(" load_ea: frame at %p\n", frame);
}
/* The dst is always int or larger. */
len = insn->is_datasize;
if (len < 4) {
dst += (4 - len);
}
step = (len == 1 && ea->ea_regnum == 15 /* sp */) ? 2 : len;
if (ea->ea_flags & EA_DIRECT) {
if (len > 4) {
#ifdef DEBUG
printf(" load_ea: operand doesn't fit cpu reg\n");
#endif
return SIGILL;
}
if (ea->ea_tdisp > 0) {
#ifdef DEBUG
printf(" load_ea: more than one move from cpu reg\n");
#endif
return SIGILL;
}
src = (char *)&frame->f_regs[ea->ea_regnum];
/* The source is an int. */
if (len < 4) {
src += (4 - len);
if (fpu_debug_level & DL_LOADEA) {
printf(" load_ea: short/byte opr - addr adjusted\n");
}
}
if (fpu_debug_level & DL_LOADEA) {
printf(" load_ea: src %p\n", src);
}
bcopy(src, dst, len);
} else if (ea->ea_flags & EA_IMMED) {
if (fpu_debug_level & DL_LOADEA) {
printf(" load_ea: immed %08x%08x%08x size %d\n",
ea->ea_immed[0], ea->ea_immed[1], ea->ea_immed[2], len);
}
src = (char *)&ea->ea_immed[0];
if (len < 4) {
src += (4 - len);
if (fpu_debug_level & DL_LOADEA) {
printf(" load_ea: short/byte immed opr - addr adjusted\n");
}
}
bcopy(src, dst, len);
} else if (ea->ea_flags & EA_ABS) {
if (fpu_debug_level & DL_LOADEA) {
printf(" load_ea: abs addr %08x\n", ea->ea_absaddr);
}
src = (char *)ea->ea_absaddr;
copyin(src, dst, len);
} else /* register indirect */ {
if (ea->ea_flags & EA_PC_REL) {
if (fpu_debug_level & DL_LOADEA) {
printf(" load_ea: using PC\n");
}
reg = NULL;
/* Grab the register contents. 4 is offset to the first
extention word from the opcode */
src = (char *)frame->f_pc + 4;
if (fpu_debug_level & DL_LOADEA) {
printf(" load_ea: pc relative pc+4 = %p\n", src);
}
} else /* not PC relative */ {
if (fpu_debug_level & DL_LOADEA) {
printf(" load_ea: using register %c%d\n",
(ea->ea_regnum >= 8) ? 'a' : 'd', ea->ea_regnum & 7);
}
/* point to the register */
reg = &frame->f_regs[ea->ea_regnum];
if (ea->ea_flags & EA_PREDECR) {
if (fpu_debug_level & DL_LOADEA) {
printf(" load_ea: predecr mode - reg decremented\n");
}
*reg -= step;
ea->ea_tdisp = 0;
}
/* Grab the register contents. */
src = (char *)*reg;
if (fpu_debug_level & DL_LOADEA) {
printf(" load_ea: reg indirect reg = %p\n", src);
}
}
sig = calc_ea(ea, src, &src);
if (sig)
return sig;
copyin(src + ea->ea_tdisp, dst, len);
/* do post-increment */
if (ea->ea_flags & EA_POSTINCR) {
if (ea->ea_flags & EA_PC_REL) {
#ifdef DEBUG
printf(" load_ea: tried to postincrement PC\n");
#endif
return SIGILL;
}
*reg += step;
ea->ea_tdisp = 0;
if (fpu_debug_level & DL_LOADEA) {
printf(" load_ea: postinc mode - reg incremented\n");
}
} else {
ea->ea_tdisp += len;
}
}
return 0;
}
/*
* Store a value at the effective address.
* Returns zero on success, else signal number.
*/
int
fpu_store_ea(frame, insn, ea, src)
struct frame *frame;
struct instruction *insn;
struct insn_ea *ea;
char *src;
{
int *reg;
char *dst;
int len, step;
int sig;
#ifdef DIAGNOSTIC
if (ea->ea_regnum & ~0xF) {
panic(" store_ea: bad regnum");
}
#endif
if (ea->ea_flags & (EA_IMMED|EA_PC_REL)) {
/* not alterable address mode */
#ifdef DEBUG
printf(" store_ea: not alterable address mode\n");
#endif
return SIGILL;
}
if (fpu_debug_level & DL_STOREEA) {
printf(" store_ea: frame at %p\n", frame);
}
/* The src is always int or larger. */
len = insn->is_datasize;
if (len < 4) {
src += (4 - len);
}
step = (len == 1 && ea->ea_regnum == 15 /* sp */) ? 2 : len;
if (ea->ea_flags & EA_ABS) {
if (fpu_debug_level & DL_STOREEA) {
printf(" store_ea: abs addr %08x\n", ea->ea_absaddr);
}
dst = (char *)ea->ea_absaddr;
copyout(src, dst + ea->ea_tdisp, len);
ea->ea_tdisp += len;
} else if (ea->ea_flags & EA_DIRECT) {
if (len > 4) {
#ifdef DEBUG
printf(" store_ea: operand doesn't fit cpu reg\n");
#endif
return SIGILL;
}
if (ea->ea_tdisp > 0) {
#ifdef DEBUG
printf(" store_ea: more than one move to cpu reg\n");
#endif
return SIGILL;
}
dst = (char*)&frame->f_regs[ea->ea_regnum];
/* The destination is an int. */
if (len < 4) {
dst += (4 - len);
if (fpu_debug_level & DL_STOREEA) {
printf(" store_ea: short/byte opr - dst addr adjusted\n");
}
}
if (fpu_debug_level & DL_STOREEA) {
printf(" store_ea: dst %p\n", dst);
}
bcopy(src, dst, len);
} else /* One of MANY indirect forms... */ {
if (fpu_debug_level & DL_STOREEA) {
printf(" store_ea: using register %c%d\n",
(ea->ea_regnum >= 8) ? 'a' : 'd', ea->ea_regnum & 7);
}
/* point to the register */
reg = &(frame->f_regs[ea->ea_regnum]);
/* do pre-decrement */
if (ea->ea_flags & EA_PREDECR) {
if (fpu_debug_level & DL_STOREEA) {
printf(" store_ea: predecr mode - reg decremented\n");
}
*reg -= step;
ea->ea_tdisp = 0;
}
/* calculate the effective address */
sig = calc_ea(ea, (char *)*reg, &dst);
if (sig)
return sig;
if (fpu_debug_level & DL_STOREEA) {
printf(" store_ea: dst addr=%p+%d\n", dst, ea->ea_tdisp);
}
copyout(src, dst + ea->ea_tdisp, len);
/* do post-increment */
if (ea->ea_flags & EA_POSTINCR) {
*reg += step;
ea->ea_tdisp = 0;
if (fpu_debug_level & DL_STOREEA) {
printf(" store_ea: postinc mode - reg incremented\n");
}
} else {
ea->ea_tdisp += len;
}
}
return 0;
}
/*
* fetch_immed: fetch immediate operand
*/
static int
fetch_immed(frame, insn, dst)
struct frame *frame;
struct instruction *insn;
int *dst;
{
int data, ext_bytes;
ext_bytes = insn->is_datasize;
if (0 < ext_bytes) {
data = fusword((void *) (frame->f_pc + insn->is_advance));
if (data < 0) {
return SIGSEGV;
}
if (ext_bytes == 1) {
/* sign-extend byte to long */
data &= 0xff;
if (data & 0x80) {
data |= 0xffffff00;
}
} else if (ext_bytes == 2) {
/* sign-extend word to long */
data &= 0xffff;
if (data & 0x8000) {
data |= 0xffff0000;
}
}
insn->is_advance += 2;
dst[0] = data;
}
if (2 < ext_bytes) {
data = fusword((void *) (frame->f_pc + insn->is_advance));
if (data < 0) {
return SIGSEGV;
}
insn->is_advance += 2;
dst[0] <<= 16;
dst[0] |= data;
}
if (4 < ext_bytes) {
data = fusword((void *) (frame->f_pc + insn->is_advance));
if (data < 0) {
return SIGSEGV;
}
dst[1] = data << 16;
data = fusword((void *) (frame->f_pc + insn->is_advance + 2));
if (data < 0) {
return SIGSEGV;
}
insn->is_advance += 4;
dst[1] |= data;
}
if (8 < ext_bytes) {
data = fusword((void *) (frame->f_pc + insn->is_advance));
if (data < 0) {
return SIGSEGV;
}
dst[2] = data << 16;
data = fusword((void *) (frame->f_pc + insn->is_advance + 2));
if (data < 0) {
return SIGSEGV;
}
insn->is_advance += 4;
dst[2] |= data;
}
return 0;
}
/*
* fetch_disp: fetch displacement in full extention words
*/
static int
fetch_disp(frame, insn, size, res)
struct frame *frame;
struct instruction *insn;
int size, *res;
{
int disp, word;
if (size == 1) {
word = fusword((void *) (frame->f_pc + insn->is_advance));
if (word < 0) {
return SIGSEGV;
}
disp = word & 0xffff;
if (disp & 0x8000) {
/* sign-extend */
disp |= 0xffff0000;
}
insn->is_advance += 2;
} else if (size == 2) {
word = fusword((void *) (frame->f_pc + insn->is_advance));
if (word < 0) {
return SIGSEGV;
}
disp = word << 16;
word = fusword((void *) (frame->f_pc + insn->is_advance + 2));
if (word < 0) {
return SIGSEGV;
}
disp |= (word & 0xffff);
insn->is_advance += 4;
} else {
disp = 0;
}
*res = disp;
return 0;
}
/*
* Calculates an effective address for all address modes except for
* register direct, absolute, and immediate modes. However, it does
* not take care of predecrement/postincrement of register content.
* Returns a signal value (0 == no error).
*/
static int
calc_ea(ea, ptr, eaddr)
struct insn_ea *ea;
char *ptr; /* base address (usually a register content) */
char **eaddr; /* pointer to result pointer */
{
int data, word;
if (fpu_debug_level & DL_EA) {
printf(" calc_ea: reg indirect (reg) = %p\n", ptr);
}
if (ea->ea_flags & EA_OFFSET) {
/* apply the signed offset */
if (fpu_debug_level & DL_EA) {
printf(" calc_ea: offset %d\n", ea->ea_offset);
}
ptr += ea->ea_offset;
} else if (ea->ea_flags & EA_INDEXED) {
if (fpu_debug_level & DL_EA) {
printf(" calc_ea: indexed mode\n");
}
if (ea->ea_flags & EA_BASE_SUPPRSS) {
/* base register is suppressed */
ptr = (char *)ea->ea_basedisp;
} else {
ptr += ea->ea_basedisp;
}
if (ea->ea_flags & EA_MEM_INDIR) {
if (fpu_debug_level & DL_EA) {
printf(" calc_ea: mem indir mode: basedisp=%08x, outerdisp=%08x\n",
ea->ea_basedisp, ea->ea_outerdisp);
printf(" calc_ea: addr fetched from %p\n", ptr);
}
/* memory indirect modes */
word = fusword(ptr);
if (word < 0) {
return SIGSEGV;
}
word <<= 16;
data = fusword(ptr + 2);
if (data < 0) {
return SIGSEGV;
}
word |= data;
if (fpu_debug_level & DL_STOREEA) {
printf(" calc_ea: fetched ptr 0x%08x\n", word);
}
ptr = (char *)word + ea->ea_outerdisp;
}
}
*eaddr = ptr;
return 0;
}