81e49626c4
to avoid warnings about unused variables. Consistently use \t for the output function.
373 lines
12 KiB
C
373 lines
12 KiB
C
/* $NetBSD: nbperf-bdz.c,v 1.2 2009/08/17 14:15:07 joerg Exp $ */
|
|
/*-
|
|
* Copyright (c) 2009 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Joerg Sonnenberger.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
|
|
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__RCSID("$NetBSD: nbperf-bdz.c,v 1.2 2009/08/17 14:15:07 joerg Exp $");
|
|
|
|
#include <err.h>
|
|
#include <inttypes.h>
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
#include "nbperf.h"
|
|
|
|
/*
|
|
* A full description of the algorithm can be found in:
|
|
* "Simple and Space-Efficient Minimal Perfect Hash Functions"
|
|
* by Botelho, Pagh and Ziviani, proceeedings of WADS 2007.
|
|
*/
|
|
|
|
/*
|
|
* The algorithm is based on random, acyclic 3-graphs.
|
|
*
|
|
* Each edge in the represents a key. The vertices are the reminder of
|
|
* the hash function mod n. n = cm with c > 1.23. This ensures that
|
|
* can be found with a very high probality.
|
|
*
|
|
* An acyclic graph has an edge order, where at least one vertex of
|
|
* each edge hasn't been seen before. It is declares the first unvisited
|
|
* vertex as authoritive for the edge and assigns a 2bit value to unvisited
|
|
* vertices, so that the sum of all vertices of the edge modulo 4 is
|
|
* the index of the authoritive vertex.
|
|
*/
|
|
|
|
#include "graph3.h"
|
|
|
|
struct state {
|
|
struct graph3 graph;
|
|
uint32_t *visited;
|
|
uint32_t *holes64k;
|
|
uint16_t *holes256;
|
|
uint8_t *holes256_64;
|
|
uint8_t *holes256_128;
|
|
uint8_t *holes256_192;
|
|
uint8_t *g;
|
|
uint32_t *result_map;
|
|
};
|
|
|
|
static void
|
|
assign_nodes(struct state *state)
|
|
{
|
|
struct edge3 *e;
|
|
size_t i, j;
|
|
uint32_t t, r, holes;
|
|
|
|
for (i = 0; i < state->graph.v; ++i)
|
|
state->g[i] = 3;
|
|
|
|
for (i = 0; i < state->graph.e; ++i) {
|
|
j = state->graph.output_order[i];
|
|
e = &state->graph.edges[j];
|
|
if (!state->visited[e->left]) {
|
|
r = 0;
|
|
t = e->left;
|
|
} else if (!state->visited[e->middle]) {
|
|
r = 1;
|
|
t = e->middle;
|
|
} else {
|
|
if (state->visited[e->right])
|
|
abort();
|
|
r = 2;
|
|
t = e->right;
|
|
}
|
|
|
|
state->visited[t] = 2 + j;
|
|
if (state->visited[e->left] == 0)
|
|
state->visited[e->left] = 1;
|
|
if (state->visited[e->middle] == 0)
|
|
state->visited[e->middle] = 1;
|
|
if (state->visited[e->right] == 0)
|
|
state->visited[e->right] = 1;
|
|
|
|
state->g[t] = (9 + r - state->g[e->left] - state->g[e->middle]
|
|
- state->g[e->right]) % 3;
|
|
}
|
|
|
|
holes = 0;
|
|
for (i = 0; i < state->graph.v; ++i) {
|
|
if (i % 65536 == 0)
|
|
state->holes64k[i >> 16] = holes;
|
|
|
|
if (i % 256 == 0)
|
|
state->holes256[i >> 8] = holes - state->holes64k[i >> 16];
|
|
|
|
if (i % 256 == 64)
|
|
state->holes256_64[i >> 8] = holes - state->holes256[i >> 8] - state->holes64k[i >> 16];
|
|
|
|
if (i % 256 == 128)
|
|
state->holes256_128[i >> 8] = holes - state->holes256[i >> 8] - state->holes64k[i >> 16];
|
|
|
|
if (i % 256 == 192)
|
|
state->holes256_192[i >> 8] = holes - state->holes256[i >> 8] - state->holes64k[i >> 16];
|
|
|
|
if (state->visited[i] > 1) {
|
|
j = state->visited[i] - 2;
|
|
state->result_map[j] = i - holes;
|
|
}
|
|
|
|
if (state->g[i] == 3)
|
|
++holes;
|
|
}
|
|
|
|
if (i % 65536 != 0)
|
|
state->holes64k[(i >> 16) + 1] = holes;
|
|
|
|
if (i % 256 != 0)
|
|
state->holes256[(i >> 8) + 1] = holes - state->holes64k[((i >> 8) + 1) >> 8];
|
|
|
|
if (i % 256 != 64)
|
|
state->holes256_64[(i >> 8) + 1] = holes - state->holes256[(i >> 8) + 1] - state->holes64k[((i >> 8) + 1) >> 8];
|
|
|
|
if (i % 256 != 128)
|
|
state->holes256_128[(i >> 8) + 1] = holes - state->holes256[(i >> 8) + 1] - state->holes64k[((i >> 8) + 1) >> 8];
|
|
|
|
if (i % 256 != 192)
|
|
state->holes256_192[(i >> 8) + 1] = holes - state->holes256[(i >> 8) + 1] - state->holes64k[((i >> 8) + 1) >> 8];
|
|
}
|
|
|
|
static void
|
|
print_hash(struct nbperf *nbperf, struct state *state)
|
|
{
|
|
size_t i, j;
|
|
uint32_t sum;
|
|
|
|
fprintf(nbperf->output, "#include <stdlib.h>\n");
|
|
fprintf(nbperf->output, "#include <strings.h>\n\n");
|
|
|
|
fprintf(nbperf->output, "%suint32_t\n",
|
|
nbperf->static_hash ? "static " : "");
|
|
fprintf(nbperf->output,
|
|
"%s(const void * __restrict key, size_t keylen)\n",
|
|
nbperf->hash_name);
|
|
fprintf(nbperf->output, "{\n");
|
|
fprintf(nbperf->output,
|
|
"\tstatic const uint32_t g[%" PRId32 "] = {\n",
|
|
(state->graph.v + 15) / 16);
|
|
for (i = 0; i < state->graph.v; i += 16) {
|
|
for (j = 0, sum = 0; j < 16; ++j)
|
|
sum |= (uint32_t)state->g[i + j] << (2 * j);
|
|
|
|
fprintf(nbperf->output, "%s0x%08" PRIx32 "ULL,%s",
|
|
(i / 16 % 4 == 0 ? "\t " : " "),
|
|
sum,
|
|
(i / 16 % 4 == 3 ? "\n" : ""));
|
|
}
|
|
fprintf(nbperf->output, "%s\t};\n", (i / 16 % 4 ? "\n" : ""));
|
|
|
|
fprintf(nbperf->output,
|
|
"\tstatic const uint32_t holes64k[%" PRId32 "] = {\n",
|
|
(state->graph.v + 65535) / 65536);
|
|
for (i = 0; i < state->graph.v; i += 65536)
|
|
fprintf(nbperf->output, "%s0x%08" PRIx32 ",%s",
|
|
(i / 65536 % 4 == 0 ? "\t " : " "),
|
|
state->holes64k[i >> 16],
|
|
(i / 65536 % 4 == 3 ? "\n" : ""));
|
|
fprintf(nbperf->output, "%s\t};\n", (i / 65536 % 4 ? "\n" : ""));
|
|
|
|
fprintf(nbperf->output,
|
|
"\tstatic const uint16_t holes256[%" PRId32 "] = {\n",
|
|
(state->graph.v + 255) / 256);
|
|
for (i = 0; i < state->graph.v; i += 256)
|
|
fprintf(nbperf->output, "%s0x%04" PRIx32 ",%s",
|
|
(i / 256 % 4 == 0 ? "\t " : " "),
|
|
state->holes256[i >> 8],
|
|
(i / 256 % 4 == 3 ? "\n" : ""));
|
|
fprintf(nbperf->output, "%s\t};\n", (i / 256 % 4 ? "\n" : ""));
|
|
|
|
fprintf(nbperf->output,
|
|
"\tstatic const uint8_t holes256_64[%" PRId32 "] = {\n",
|
|
(state->graph.v + 255) / 256);
|
|
for (i = 64; i < state->graph.v; i += 256)
|
|
fprintf(nbperf->output, "%s0x%02" PRIx32 ",%s",
|
|
(i / 256 % 4 == 0 ? "\t " : " "),
|
|
state->holes256_64[i >> 8],
|
|
(i / 256 % 4 == 3 ? "\n" : ""));
|
|
fprintf(nbperf->output, "%s\t};\n", (i / 256 % 4 ? "\n" : ""));
|
|
|
|
fprintf(nbperf->output,
|
|
"\tstatic const uint8_t holes256_128[%" PRId32 "] = {\n",
|
|
(state->graph.v + 255) / 256);
|
|
for (i = 128; i < state->graph.v; i += 256)
|
|
fprintf(nbperf->output, "%s0x%02" PRIx32 ",%s",
|
|
(i / 256 % 4 == 0 ? "\t " : " "),
|
|
state->holes256_128[i >> 8],
|
|
(i / 256 % 4 == 3 ? "\n" : ""));
|
|
fprintf(nbperf->output, "%s\t};\n", (i / 256 % 4 ? "\n" : ""));
|
|
|
|
fprintf(nbperf->output,
|
|
"\tstatic const uint8_t holes256_192[%" PRId32 "] = {\n",
|
|
(state->graph.v + 255) / 256);
|
|
for (i = 192; i < state->graph.v; i += 256)
|
|
fprintf(nbperf->output, "%s0x%02" PRIx32 ",%s",
|
|
(i / 256 % 4 == 0 ? "\t " : " "),
|
|
state->holes256_192[i >> 8],
|
|
(i / 256 % 4 == 3 ? "\n" : ""));
|
|
fprintf(nbperf->output, "%s\t};\n", (i / 256 % 4 ? "\n" : ""));
|
|
|
|
fprintf(nbperf->output, "\tuint32_t h[%zu];\n\n", nbperf->hash_size);
|
|
fprintf(nbperf->output, "\tuint32_t m;\n");
|
|
fprintf(nbperf->output, "\tuint32_t a1, a2, b1, b2, c1, c2, idx, idx2;\n\n");
|
|
|
|
(*nbperf->print_hash)(nbperf, "\t", "key", "keylen", "h");
|
|
|
|
fprintf(nbperf->output, "\n\th[0] = h[0] %% %" PRIu32 ";\n", state->graph.v);
|
|
fprintf(nbperf->output, "\th[1] = h[1] %% %" PRIu32 ";\n", state->graph.v);
|
|
fprintf(nbperf->output, "\th[2] = h[2] %% %" PRIu32 ";\n", state->graph.v);
|
|
|
|
fprintf(nbperf->output, "\n\ta1 = h[0] >> 4;\n");
|
|
fprintf(nbperf->output, "\ta2 = 2 * (h[0] & 15);\n");
|
|
fprintf(nbperf->output, "\tb1 = h[1] >> 4;\n");
|
|
fprintf(nbperf->output, "\tb2 = 2 * (h[1] & 15);\n");
|
|
fprintf(nbperf->output, "\tc1 = h[2] >> 4;\n");
|
|
fprintf(nbperf->output, "\tc2 = 2 * (h[2] & 15);\n");
|
|
|
|
fprintf(nbperf->output,
|
|
"\tidx = h[(((g[a1] >> a2) & 3) + ((g[b1] >> b2) & 3) +\n"
|
|
"\t ((g[c1] >> c2) & 3)) %% 3];\n\n");
|
|
|
|
fprintf(nbperf->output,
|
|
"\tswitch ((idx >> 5) & 7) {\n"
|
|
"\tcase 0:\n"
|
|
"\t\tidx2 = idx - holes64k[idx >> 16] - holes256[idx >> 8];\n"
|
|
"\t\tbreak;\n"
|
|
"\tcase 1: case 2:\n"
|
|
"\t\tidx2 = idx - holes64k[idx >> 16] - holes256[idx >> 8]\n"
|
|
"\t\t - holes256_64[idx >> 8];\n"
|
|
"\t\tbreak;\n"
|
|
"\tcase 3: case 4:\n"
|
|
"\t\tidx2 = idx - holes64k[idx >> 16] - holes256[idx >> 8]\n"
|
|
"\t\t - holes256_128[idx >> 8];\n"
|
|
"\t\tbreak;\n"
|
|
"\tcase 5: case 6:\n"
|
|
"\t\tidx2 = idx - holes64k[idx >> 16] - holes256[idx >> 8]\n"
|
|
"\t\t - holes256_192[idx >> 8];\n"
|
|
"\t\tbreak;\n"
|
|
"\tcase 7:\n"
|
|
"\t\tidx2 = idx - holes64k[(idx + 32) >> 16] -\n"
|
|
"\t\t holes256[(idx + 32) >> 8];\n"
|
|
"\t\tbreak;\n"
|
|
"\tdefault:\n"
|
|
"\t\tabort();\n"
|
|
"\t}\n"
|
|
"\tswitch ((idx >> 4) & 3) {\n"
|
|
"\tcase 1:\n"
|
|
"\t\tm = (g[(idx >> 4) - 1] & (g[(idx >> 4) - 1] >> 1) & 0x55555555U);\n"
|
|
"\t\tidx2 -= popcount32(m);\n"
|
|
"\tcase 0:\n"
|
|
"\t\tm = (g[idx >> 4] & (g[idx >> 4] >> 1) & 0x55555555U);\n"
|
|
"\t\tm &= ((2U << (2 * (idx & 15))) - 1);\n"
|
|
"\t\tidx2 -= popcount32(m);\n"
|
|
"\t\tbreak;\n"
|
|
"\tcase 2:\n"
|
|
"\t\tm = (g[(idx >> 4) + 1] & (g[(idx >> 4) + 1] >> 1) & 0x55555555U);\n"
|
|
"\t\tidx2 += popcount32(m);\n"
|
|
"\tcase 3:\n"
|
|
"\t\tm = (g[idx >> 4] & (g[idx >> 4] >> 1) & 0x55555555U);\n"
|
|
"\t\tm &= ~((2U << (2 * (idx & 15))) - 1);\n"
|
|
"\t\tidx2 += popcount32(m);\n"
|
|
"\t\tbreak;\n"
|
|
"\t}\n\n");
|
|
|
|
fprintf(nbperf->output,
|
|
"\treturn idx2;\n");
|
|
fprintf(nbperf->output, "}\n");
|
|
|
|
if (nbperf->map_output != NULL) {
|
|
for (i = 0; i < state->graph.e; ++i)
|
|
fprintf(nbperf->map_output, "%" PRIu32 "\n",
|
|
state->result_map[i]);
|
|
}
|
|
}
|
|
|
|
int
|
|
bdz_compute(struct nbperf *nbperf)
|
|
{
|
|
struct state state;
|
|
int retval = -1;
|
|
uint32_t v, e;
|
|
|
|
if (nbperf->c == 0)
|
|
nbperf->c = 1.24;
|
|
if (nbperf->c < 1.24)
|
|
errx(1, "The argument for option -c must be at least 1.24");
|
|
if (nbperf->hash_size < 3)
|
|
errx(1, "The hash function must generate at least 3 values");
|
|
|
|
(*nbperf->seed_hash)(nbperf);
|
|
e = nbperf->n;
|
|
v = nbperf->c * nbperf->n;
|
|
if (1.24 * nbperf->n > v)
|
|
++v;
|
|
if (v < 10)
|
|
v = 10;
|
|
|
|
graph3_setup(&state.graph, v, e);
|
|
|
|
state.holes64k = calloc(sizeof(uint32_t), (v + 65535) / 65536 + 1);
|
|
state.holes256 = calloc(sizeof(uint16_t), (v + 255) / 256 + 1);
|
|
state.holes256_64 = calloc(sizeof(uint8_t), (v + 255) / 256 + 1);
|
|
state.holes256_128 = calloc(sizeof(uint8_t), (v + 255) / 256 + 1);
|
|
state.holes256_192 = calloc(sizeof(uint8_t), (v + 255) / 256 + 1);
|
|
state.g = calloc(sizeof(uint32_t), v);
|
|
state.visited = calloc(sizeof(uint32_t), v);
|
|
state.result_map = calloc(sizeof(uint32_t), e);
|
|
|
|
if (state.holes64k == NULL || state.holes256 == NULL ||
|
|
state.holes256_64 == NULL || state.holes256_128 == NULL ||
|
|
state.holes256_192 == NULL || state.g == NULL ||
|
|
state.visited == NULL || state.result_map == NULL)
|
|
err(1, "malloc failed");
|
|
|
|
if (graph3_hash(nbperf, &state.graph))
|
|
goto failed;
|
|
if (graph3_output_order(&state.graph))
|
|
goto failed;
|
|
assign_nodes(&state);
|
|
print_hash(nbperf, &state);
|
|
|
|
retval = 0;
|
|
|
|
failed:
|
|
graph3_free(&state.graph);
|
|
free(state.visited);
|
|
free(state.g);
|
|
free(state.holes64k);
|
|
free(state.holes256);
|
|
free(state.holes256_64);
|
|
free(state.holes256_128);
|
|
free(state.holes256_192);
|
|
free(state.result_map);
|
|
return retval;
|
|
}
|