NetBSD/sys/dev/pci/if_sip.c
thorpej 4bd8f1566c Be a little nicer about memory usage:
* Don't allocate receive buffers until the interface is actually brought
  up, and release all of them if the interface is taken down.
* Add a knob (defaults to off) which will copy an incoming packet to
  a single header mbuf if it is small enough to fit in one, rather than
  burning an entire cluster on it.  Note that this change will be mostly
  moot if/when sbcompress() it changed to handle compressing clusters.
1999-08-03 17:25:51 +00:00

1986 lines
48 KiB
C

/* $NetBSD: if_sip.c,v 1.2 1999/08/03 17:25:52 thorpej Exp $ */
/*-
* Copyright (c) 1999 Network Computer, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Network Computer, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Device driver for the Silicon Integrated Systems SiS900 10/100 PCI
* Ethernet controller.
*
* Written by Jason R. Thorpe for Network Computer, Inc.
*/
#include "opt_inet.h"
#include "opt_ns.h"
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/device.h>
#include <sys/queue.h>
#include <vm/vm.h> /* for PAGE_SIZE */
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_ether.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#ifdef INET
#include <netinet/in.h>
#include <netinet/if_inarp.h>
#endif
#ifdef NS
#include <netns/ns.h>
#include <netns/ns_if.h>
#endif
#include <machine/bus.h>
#include <machine/intr.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/if_sipreg.h>
/*
* Devices supported by this driver.
*/
const struct sip_product {
pci_vendor_id_t sip_vendor;
pci_product_id_t sip_product;
const char *sip_name;
} sip_products[] = {
{ PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
"SiS 900 10/100 Ethernet" },
{ 0, 0,
NULL },
};
/*
* Transmit descriptor list size. This is arbitrary, but allocate
* enough descriptors for 64 pending transmissions, and 16 segments
* per packet. This MUST work out to a power of 2.
*/
#define SIP_NTXSEGS 16
#define SIP_TXQUEUELEN 64
#define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS)
#define SIP_NTXDESC_MASK (SIP_NTXDESC - 1)
#define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK)
/*
* Receive descriptor list size. We have one Rx buffer per incoming
* packet, so this logic is a little simpler.
*/
#define SIP_NRXDESC 64
#define SIP_NRXDESC_MASK (SIP_NRXDESC - 1)
#define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK)
/*
* Control structures are DMA'd to the SiS900 chip. We allocate them in
* a single clump that maps to a single DMA segment to make several things
* easier.
*/
struct sip_control_data {
/*
* The transmit descriptors.
*/
struct sip_desc scd_txdescs[SIP_NTXDESC];
/*
* The receive descriptors.
*/
struct sip_desc scd_rxdescs[SIP_NRXDESC];
};
#define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
#define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
#define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
/*
* Software state for transmit jobs.
*/
struct sip_txsoft {
struct mbuf *txs_mbuf; /* head of our mbuf chain */
bus_dmamap_t txs_dmamap; /* our DMA map */
int txs_firstdesc; /* first descriptor in packet */
int txs_lastdesc; /* last descriptor in packet */
SIMPLEQ_ENTRY(sip_txsoft) txs_q;
};
SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
/*
* Software state for receive jobs.
*/
struct sip_rxsoft {
struct mbuf *rxs_mbuf; /* head of our mbuf chain */
bus_dmamap_t rxs_dmamap; /* our DMA map */
};
/*
* Software state per device.
*/
struct sip_softc {
struct device sc_dev; /* generic device information */
bus_space_tag_t sc_st; /* bus space tag */
bus_space_handle_t sc_sh; /* bus space handle */
bus_dma_tag_t sc_dmat; /* bus DMA tag */
struct ethercom sc_ethercom; /* ethernet common data */
void *sc_sdhook; /* shutdown hook */
void *sc_ih; /* interrupt cookie */
struct mii_data sc_mii; /* MII/media information */
bus_dmamap_t sc_cddmamap; /* control data DMA map */
#define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
/*
* Software state for transmit and receive descriptors.
*/
struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
/*
* Control data structures.
*/
struct sip_control_data *sc_control_data;
#define sc_txdescs sc_control_data->scd_txdescs
#define sc_rxdescs sc_control_data->scd_rxdescs
u_int32_t sc_txcfg; /* prototype TXCFG register */
u_int32_t sc_rxcfg; /* prototype RXCFG register */
u_int32_t sc_imr; /* prototype IMR register */
u_int32_t sc_rfcr; /* prototype RFCR register */
u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
int sc_flags; /* misc. flags; see below */
int sc_txfree; /* number of free Tx descriptors */
int sc_txnext; /* next ready Tx descriptor */
struct sip_txsq sc_txfreeq; /* free Tx descsofts */
struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
int sc_rxptr; /* next ready Rx descriptor/descsoft */
};
/* sc_flags */
#define SIPF_PAUSED 0x00000001 /* paused (802.3x flow control) */
#define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
#define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
#define SIP_CDTXSYNC(sc, x, n, ops) \
do { \
int __x, __n; \
\
__x = (x); \
__n = (n); \
\
/* If it will wrap around, sync to the end of the ring. */ \
if ((__x + __n) > SIP_NTXDESC) { \
bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
(SIP_NTXDESC - __x), (ops)); \
__n -= (SIP_NTXDESC - __x); \
__x = 0; \
} \
\
/* Now sync whatever is left. */ \
bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
} while (0)
#define SIP_CDRXSYNC(sc, x, ops) \
bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
/*
* Note we rely on MCLBYTES being a power of two below.
*/
#define SIP_INIT_RXDESC(sc, x) \
do { \
struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \
\
__sipd->sipd_link = SIP_CDRXADDR((sc), SIP_NEXTRX((x))); \
__sipd->sipd_bufptr = __rxs->rxs_dmamap->dm_segs[0].ds_addr; \
__sipd->sipd_cmdsts = CMDSTS_INTR | \
((MCLBYTES - 1) & CMDSTS_SIZE_MASK); \
SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
} while (0)
void sip_start __P((struct ifnet *));
void sip_watchdog __P((struct ifnet *));
int sip_ioctl __P((struct ifnet *, u_long, caddr_t));
void sip_shutdown __P((void *));
void sip_reset __P((struct sip_softc *));
int sip_init __P((struct sip_softc *));
void sip_stop __P((struct sip_softc *, int));
void sip_rxdrain __P((struct sip_softc *));
int sip_add_rxbuf __P((struct sip_softc *, int));
void sip_read_eeprom __P((struct sip_softc *, int, int, u_int16_t *));
void sip_set_filter __P((struct sip_softc *));
void sip_tick __P((void *));
int sip_intr __P((void *));
void sip_txintr __P((struct sip_softc *));
void sip_rxintr __P((struct sip_softc *));
int sip_mii_readreg __P((struct device *, int, int));
void sip_mii_writereg __P((struct device *, int, int, int));
void sip_mii_statchg __P((struct device *));
int sip_mediachange __P((struct ifnet *));
void sip_mediastatus __P((struct ifnet *, struct ifmediareq *));
int sip_match __P((struct device *, struct cfdata *, void *));
void sip_attach __P((struct device *, struct device *, void *));
int sip_copy_small = 0;
struct cfattach sip_ca = {
sizeof(struct sip_softc), sip_match, sip_attach,
};
const struct sip_product *sip_lookup __P((const struct pci_attach_args *));
const struct sip_product *
sip_lookup(pa)
const struct pci_attach_args *pa;
{
const struct sip_product *sip;
for (sip = sip_products; sip->sip_name != NULL; sip++) {
if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
PCI_PRODUCT(pa->pa_id) == sip->sip_product)
return (sip);
}
return (NULL);
}
int
sip_match(parent, cf, aux)
struct device *parent;
struct cfdata *cf;
void *aux;
{
struct pci_attach_args *pa = aux;
if (sip_lookup(pa) != NULL)
return (1);
return (0);
}
void
sip_attach(parent, self, aux)
struct device *parent, *self;
void *aux;
{
struct sip_softc *sc = (struct sip_softc *) self;
struct pci_attach_args *pa = aux;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
pci_chipset_tag_t pc = pa->pa_pc;
pci_intr_handle_t ih;
const char *intrstr = NULL;
bus_space_tag_t iot, memt;
bus_space_handle_t ioh, memh;
bus_dma_segment_t seg;
int ioh_valid, memh_valid;
int i, rseg, error;
const struct sip_product *sip;
pcireg_t pmode;
u_int16_t enaddr[ETHER_ADDR_LEN / 2];
sip = sip_lookup(pa);
if (sip == NULL) {
printf("\n");
panic("sip_attach: impossible");
}
printf(": %s\n", sip->sip_name);
/*
* Map the device.
*/
ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
PCI_MAPREG_TYPE_IO, 0,
&iot, &ioh, NULL, NULL) == 0);
memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
&memt, &memh, NULL, NULL) == 0);
if (memh_valid) {
sc->sc_st = memt;
sc->sc_sh = memh;
} else if (ioh_valid) {
sc->sc_st = iot;
sc->sc_sh = ioh;
} else {
printf("%s: unable to map device registers\n",
sc->sc_dev.dv_xname);
return;
}
sc->sc_dmat = pa->pa_dmat;
/* Enable bus mastering. */
pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
PCI_COMMAND_MASTER_ENABLE);
/* Get it out of power save mode if needed. */
if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, 0, 0)) {
pmode = pci_conf_read(pc, pa->pa_tag, SIP_PCI_CFGPMCSR) & 0x3;
if (pmode == 3) {
/*
* The card has lost all configuration data in
* this state, so punt.
*/
printf("%s: unable to wake up from power state D3\n",
sc->sc_dev.dv_xname);
return;
}
if (pmode != 0) {
printf("%s: waking up from power state D%d\n",
sc->sc_dev.dv_xname, pmode);
pci_conf_write(pc, pa->pa_tag, SIP_PCI_CFGPMCSR, 0);
}
}
/*
* Map and establish our interrupt.
*/
if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
pa->pa_intrline, &ih)) {
printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
return;
}
intrstr = pci_intr_string(pc, ih);
sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sip_intr, sc);
if (sc->sc_ih == NULL) {
printf("%s: unable to establish interrupt",
sc->sc_dev.dv_xname);
if (intrstr != NULL)
printf(" at %s", intrstr);
printf("\n");
return;
}
printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
SIMPLEQ_INIT(&sc->sc_txfreeq);
SIMPLEQ_INIT(&sc->sc_txdirtyq);
/*
* Allocate the control data structures, and create and load the
* DMA map for it.
*/
if ((error = bus_dmamem_alloc(sc->sc_dmat,
sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
0)) != 0) {
printf("%s: unable to allocate control data, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail_0;
}
if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
BUS_DMA_COHERENT)) != 0) {
printf("%s: unable to map control data, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail_1;
}
if ((error = bus_dmamap_create(sc->sc_dmat,
sizeof(struct sip_control_data), 1,
sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
printf("%s: unable to create control data DMA map, "
"error = %d\n", sc->sc_dev.dv_xname, error);
goto fail_2;
}
if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
sc->sc_control_data, sizeof(struct sip_control_data), NULL,
0)) != 0) {
printf("%s: unable to load control data DMA map, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail_3;
}
/*
* Create the transmit buffer DMA maps.
*/
for (i = 0; i < SIP_TXQUEUELEN; i++) {
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
SIP_NTXSEGS, MCLBYTES, 0, 0,
&sc->sc_txsoft[i].txs_dmamap)) != 0) {
printf("%s: unable to create tx DMA map %d, "
"error = %d\n", sc->sc_dev.dv_xname, i, error);
goto fail_4;
}
}
/*
* Create the receive buffer DMA maps.
*/
for (i = 0; i < SIP_NRXDESC; i++) {
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
printf("%s: unable to create rx DMA map %d, "
"error = %d\n", sc->sc_dev.dv_xname, i, error);
goto fail_5;
}
sc->sc_rxsoft[i].rxs_mbuf = NULL;
}
/*
* Reset the chip to a known state.
*/
sip_reset(sc);
/*
* Read the Ethernet address from the EEPROM.
*/
sip_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
sizeof(enaddr) / sizeof(enaddr[0]), enaddr);
printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
ether_sprintf((u_int8_t *)enaddr));
/*
* Initialize our media structures and probe the MII.
*/
sc->sc_mii.mii_ifp = ifp;
sc->sc_mii.mii_readreg = sip_mii_readreg;
sc->sc_mii.mii_writereg = sip_mii_writereg;
sc->sc_mii.mii_statchg = sip_mii_statchg;
ifmedia_init(&sc->sc_mii.mii_media, 0, sip_mediachange,
sip_mediastatus);
mii_phy_probe(&sc->sc_dev, &sc->sc_mii, 0xffffffff);
if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
} else
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
ifp = &sc->sc_ethercom.ec_if;
strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = sip_ioctl;
ifp->if_start = sip_start;
ifp->if_watchdog = sip_watchdog;
/*
* Attach the interface.
*/
if_attach(ifp);
ether_ifattach(ifp, (u_int8_t *)enaddr);
#if NBPFILTER > 0
bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
sizeof(struct ether_header));
#endif
/*
* Make sure the interface is shutdown during reboot.
*/
sc->sc_sdhook = shutdownhook_establish(sip_shutdown, sc);
if (sc->sc_sdhook == NULL)
printf("%s: WARNING: unable to establish shutdown hook\n",
sc->sc_dev.dv_xname);
return;
/*
* Free any resources we've allocated during the failed attach
* attempt. Do this in reverse order and fall through.
*/
fail_5:
for (i = 0; i < SIP_NRXDESC; i++) {
if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
bus_dmamap_destroy(sc->sc_dmat,
sc->sc_rxsoft[i].rxs_dmamap);
}
fail_4:
for (i = 0; i < SIP_TXQUEUELEN; i++) {
if (sc->sc_txsoft[i].txs_dmamap != NULL)
bus_dmamap_destroy(sc->sc_dmat,
sc->sc_txsoft[i].txs_dmamap);
}
bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
fail_3:
bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
fail_2:
bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
sizeof(struct sip_control_data));
fail_1:
bus_dmamem_free(sc->sc_dmat, &seg, rseg);
fail_0:
return;
}
/*
* sip_shutdown:
*
* Make sure the interface is stopped at reboot time.
*/
void
sip_shutdown(arg)
void *arg;
{
struct sip_softc *sc = arg;
sip_stop(sc, 1);
}
/*
* sip_start: [ifnet interface function]
*
* Start packet transmission on the interface.
*/
void
sip_start(ifp)
struct ifnet *ifp;
{
struct sip_softc *sc = ifp->if_softc;
struct mbuf *m0, *m;
struct sip_txsoft *txs;
bus_dmamap_t dmamap;
int error, firsttx, nexttx, lasttx, ofree, seg;
/*
* If we've been told to pause, don't transmit any more packets.
*/
if (sc->sc_flags & SIPF_PAUSED)
ifp->if_flags |= IFF_OACTIVE;
if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
return;
/*
* Remember the previous number of free descriptors and
* the first descriptor we'll use.
*/
ofree = sc->sc_txfree;
firsttx = sc->sc_txnext;
/*
* Loop through the send queue, setting up transmit descriptors
* until we drain the queue, or use up all available transmit
* descriptors.
*/
while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
sc->sc_txfree != 0) {
/*
* Grab a packet off the queue.
*/
IF_DEQUEUE(&ifp->if_snd, m0);
if (m0 == NULL)
break;
dmamap = txs->txs_dmamap;
/*
* Load the DMA map. If this fails, the packet either
* didn't fit in the alloted number of segments, or we
* were short on resources. In this case, we'll copy
* and try again.
*/
if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
BUS_DMA_NOWAIT) != 0) {
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
printf("%s: unable to allocate Tx mbuf\n",
sc->sc_dev.dv_xname);
IF_PREPEND(&ifp->if_snd, m0);
break;
}
if (m0->m_pkthdr.len > MHLEN) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
printf("%s: unable to allocate Tx "
"cluster\n", sc->sc_dev.dv_xname);
m_freem(m);
IF_PREPEND(&ifp->if_snd, m0);
break;
}
}
m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
m_freem(m0);
m0 = m;
error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
m0, BUS_DMA_NOWAIT);
if (error) {
printf("%s: unable to load Tx buffer, "
"error = %d\n", sc->sc_dev.dv_xname, error);
IF_PREPEND(&ifp->if_snd, m0);
break;
}
}
/*
* Ensure we have enough descriptors free to describe
* the packet.
*/
if (dmamap->dm_nsegs > sc->sc_txfree) {
/*
* Not enough free descriptors to transmit this
* packet. We haven't committed anything yet,
* so just unload the DMA map, put the packet
* back on the queue, and punt. Notify the upper
* layer that there are not more slots left.
*
* XXX We could allocate an mbuf and copy, but
* XXX is it worth it?
*/
ifp->if_flags |= IFF_OACTIVE;
bus_dmamap_unload(sc->sc_dmat, dmamap);
IF_PREPEND(&ifp->if_snd, m0);
break;
}
/*
* WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
*/
/* Sync the DMA map. */
bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
BUS_DMASYNC_PREWRITE);
/*
* Initialize the transmit descriptors.
*/
for (nexttx = sc->sc_txnext, seg = 0;
seg < dmamap->dm_nsegs;
seg++, nexttx = SIP_NEXTTX(nexttx)) {
/*
* If this is the first descriptor we're
* enqueueing, don't set the OWN bit just
* yet. That could cause a race condition.
* We'll do it below.
*/
sc->sc_txdescs[nexttx].sipd_bufptr =
dmamap->dm_segs[seg].ds_addr;
sc->sc_txdescs[nexttx].sipd_cmdsts =
(nexttx == firsttx ? 0 : CMDSTS_OWN) |
CMDSTS_MORE | dmamap->dm_segs[seg].ds_len;
lasttx = nexttx;
}
/* Clear the MORE bit on the last segment. */
sc->sc_txdescs[lasttx].sipd_cmdsts &= ~CMDSTS_MORE;
/* Sync the descriptors we're using. */
SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/*
* Store a pointer to the packet so we can free it later,
* and remember what txdirty will be once the packet is
* done.
*/
txs->txs_mbuf = m0;
txs->txs_firstdesc = sc->sc_txnext;
txs->txs_lastdesc = lasttx;
/* Advance the tx pointer. */
sc->sc_txfree -= dmamap->dm_nsegs;
sc->sc_txnext = nexttx;
SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
#if NBPFILTER > 0
/*
* Pass the packet to any BPF listeners.
*/
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m0);
#endif /* NBPFILTER > 0 */
}
if (txs == NULL || sc->sc_txfree == 0) {
/* No more slots left; notify upper layer. */
ifp->if_flags |= IFF_OACTIVE;
}
if (sc->sc_txfree != ofree) {
/*
* Cause a descriptor interrupt to happen on the
* last packet we enqueued.
*/
sc->sc_txdescs[lasttx].sipd_cmdsts |= CMDSTS_INTR;
SIP_CDTXSYNC(sc, lasttx, 1,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/*
* The entire packet chain is set up. Give the
* first descrptor to the chip now.
*/
sc->sc_txdescs[firsttx].sipd_cmdsts |= CMDSTS_OWN;
SIP_CDTXSYNC(sc, firsttx, 1,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/* Start the transmit process. */
if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
CR_TXE) == 0) {
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
SIP_CDTXADDR(sc, firsttx));
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
}
/* Set a watchdog timer in case the chip flakes out. */
ifp->if_timer = 5;
}
}
/*
* sip_watchdog: [ifnet interface function]
*
* Watchdog timer handler.
*/
void
sip_watchdog(ifp)
struct ifnet *ifp;
{
struct sip_softc *sc = ifp->if_softc;
/*
* The chip seems to ignore the CMDSTS_INTR bit sometimes!
* If we get a timeout, try and sweep up transmit descriptors.
* If we manage to sweep them all up, ignore the lack of
* interrupt.
*/
sip_txintr(sc);
if (sc->sc_txfree != SIP_NTXDESC) {
printf("%s: device timeout\n", sc->sc_dev.dv_xname);
ifp->if_oerrors++;
/* Reset the interface. */
(void) sip_init(sc);
} else if (ifp->if_flags & IFF_DEBUG)
printf("%s: recovered from device timeout\n",
sc->sc_dev.dv_xname);
/* Try to get more packets going. */
sip_start(ifp);
}
/*
* sip_ioctl: [ifnet interface function]
*
* Handle control requests from the operator.
*/
int
sip_ioctl(ifp, cmd, data)
struct ifnet *ifp;
u_long cmd;
caddr_t data;
{
struct sip_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
struct ifaddr *ifa = (struct ifaddr *)data;
int s, error = 0;
s = splnet();
switch (cmd) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
if ((error = sip_init(sc)) != 0)
break;
arp_ifinit(ifp, ifa);
break;
#endif /* INET */
#ifdef NS
case AF_NS:
{
struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
if (ns_nullhost(*ina))
ina->x_host = *(union ns_host *)
LLADDR(ifp->if_sadl);
else
memcpy(LLADDR(ifp->if_sadl),
ina->x_host.c_host, ifp->if_addrlen);
error = sip_init(sc);
break;
}
#endif /* NS */
default:
error = sip_init(sc);
break;
}
break;
case SIOCSIFMTU:
if (ifr->ifr_mtu > ETHERMTU)
error = EINVAL;
else
ifp->if_mtu = ifr->ifr_mtu;
break;
case SIOCSIFFLAGS:
if ((ifp->if_flags & IFF_UP) == 0 &&
(ifp->if_flags & IFF_RUNNING) != 0) {
/*
* If interface is marked down and it is running, then
* stop it.
*/
sip_stop(sc, 1);
} else if ((ifp->if_flags & IFF_UP) != 0 &&
(ifp->if_flags & IFF_RUNNING) == 0) {
/*
* If interfase it marked up and it is stopped, then
* start it.
*/
error = sip_init(sc);
} else if ((ifp->if_flags & IFF_UP) != 0) {
/*
* Reset the interface to pick up changes in any other
* flags that affect the hardware state.
*/
error = sip_init(sc);
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
error = (cmd == SIOCADDMULTI) ?
ether_addmulti(ifr, &sc->sc_ethercom) :
ether_delmulti(ifr, &sc->sc_ethercom);
if (error == ENETRESET) {
/*
* Multicast list has changed; set the hardware filter
* accordingly.
*/
sip_set_filter(sc);
error = 0;
}
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
break;
default:
error = EINVAL;
break;
}
/* Try to get more packets going. */
sip_start(ifp);
splx(s);
return (error);
}
/*
* sip_intr:
*
* Interrupt service routine.
*/
int
sip_intr(arg)
void *arg;
{
struct sip_softc *sc = arg;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
u_int32_t isr;
int handled = 0;
for (;;) {
/* Reading clears interrupt. */
isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
if ((isr & sc->sc_imr) == 0)
break;
handled = 1;
if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
/* Grab any new packets. */
sip_rxintr(sc);
if (isr & ISR_RXORN) {
printf("%s: receive FIFO overrun\n",
sc->sc_dev.dv_xname);
/* XXX adjust rx_drain_thresh? */
}
if (isr & ISR_RXIDLE) {
printf("%s: receive ring overrun\n",
sc->sc_dev.dv_xname);
/* Get the receive process going again. */
bus_space_write_4(sc->sc_st, sc->sc_sh,
SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
bus_space_write_4(sc->sc_st, sc->sc_sh,
SIP_CR, CR_RXE);
}
}
if (isr & (ISR_TXURN|ISR_TXDESC)) {
/* Sweep up transmit descriptors. */
sip_txintr(sc);
if (isr & ISR_TXURN) {
u_int32_t thresh;
printf("%s: transmit FIFO underrun",
sc->sc_dev.dv_xname);
thresh = sc->sc_tx_drain_thresh + 1;
if (thresh <= TXCFG_DRTH &&
(thresh * 32) <= (SIP_TXFIFO_SIZE -
(sc->sc_tx_fill_thresh * 32))) {
printf("; increasing Tx drain "
"threshold to %u bytes\n",
thresh * 32);
sc->sc_tx_drain_thresh = thresh;
(void) sip_init(sc);
} else {
(void) sip_init(sc);
printf("\n");
}
}
}
if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
if (isr & ISR_PAUSE_ST) {
sc->sc_flags |= SIPF_PAUSED;
ifp->if_flags |= IFF_OACTIVE;
}
if (isr & ISR_PAUSE_END) {
sc->sc_flags &= ~SIPF_PAUSED;
ifp->if_flags &= ~IFF_OACTIVE;
}
}
if (isr & ISR_HIBERR) {
#define PRINTERR(bit, str) \
if (isr & (bit)) \
printf("%s: %s\n", sc->sc_dev.dv_xname, str)
PRINTERR(ISR_DPERR, "parity error");
PRINTERR(ISR_SSERR, "system error");
PRINTERR(ISR_RMABT, "master abort");
PRINTERR(ISR_RTABT, "target abort");
PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
(void) sip_init(sc);
#undef PRINTERR
}
}
/* Try to get more packets going. */
sip_start(ifp);
return (handled);
}
/*
* sip_txintr:
*
* Helper; handle transmit interrupts.
*/
void
sip_txintr(sc)
struct sip_softc *sc;
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct sip_txsoft *txs;
u_int32_t cmdsts;
if ((sc->sc_flags & SIPF_PAUSED) == 0)
ifp->if_flags &= ~IFF_OACTIVE;
/*
* Go through our Tx list and free mbufs for those
* frames which have been transmitted.
*/
while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
cmdsts = sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts;
if (cmdsts & CMDSTS_OWN)
break;
SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
m_freem(txs->txs_mbuf);
txs->txs_mbuf = NULL;
SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
/*
* Check for errors and collisions.
*/
if (cmdsts &
(CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
if (ifp->if_flags & IFF_DEBUG) {
if (CMDSTS_Tx_ED)
printf("%s: excessive deferral\n",
sc->sc_dev.dv_xname);
if (CMDSTS_Tx_EC) {
printf("%s: excessive collisions\n",
sc->sc_dev.dv_xname);
ifp->if_collisions += 16;
}
}
} else {
/* Packet was transmitted successfully. */
ifp->if_opackets++;
ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
}
}
/*
* If there are no more pending transmissions, cancel the watchdog
* timer.
*/
if (txs == NULL)
ifp->if_timer = 0;
}
/*
* sip_rxintr:
*
* Helper; handle receive interrupts.
*/
void
sip_rxintr(sc)
struct sip_softc *sc;
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct ether_header *eh;
struct sip_rxsoft *rxs;
struct mbuf *m;
u_int32_t cmdsts;
int i, len;
for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
rxs = &sc->sc_rxsoft[i];
SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
cmdsts = sc->sc_rxdescs[i].sipd_cmdsts;
/*
* NOTE: OWN is set if owned by _consumer_. We're the
* consumer of the receive ring, so if the bit is clear,
* we have processed all of the packets.
*/
if ((cmdsts & CMDSTS_OWN) == 0) {
/*
* We have processed all of the receive buffers.
*/
break;
}
/*
* If any collisions were seen on the wire, count one.
*/
if (cmdsts & CMDSTS_Rx_COL)
ifp->if_collisions++;
/*
* If an error occurred, update stats, clear the status
* word, and leave the packet buffer in place. It will
* simply be reused the next time the ring comes around.
*/
if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_LONG|CMDSTS_Rx_RUNT|
CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
ifp->if_ierrors++;
if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
(cmdsts & CMDSTS_Rx_RXO) == 0) {
/* Receive overrun handled elsewhere. */
printf("%s: receive descriptor error\n",
sc->sc_dev.dv_xname);
}
#define PRINTERR(bit, str) \
if (cmdsts & (bit)) \
printf("%s: %s\n", sc->sc_dev.dv_xname, str)
PRINTERR(CMDSTS_Rx_LONG, "packet too long");
PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
#undef PRINTERR
SIP_INIT_RXDESC(sc, i);
continue;
}
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
/*
* No errors; receive the packet. Note, the SiS 900
* includes the CRC with every packet; trim it.
*/
len = CMDSTS_SIZE(cmdsts) - ETHER_CRC_LEN;
#ifdef __NO_STRICT_ALIGNMENT
/*
* If the packet is small enough to fit in a
* single header mbuf, allocate one and copy
* the data into it. This greatly reduces
* memory consumption when we receive lots
* of small packets.
*
* Otherwise, we add a new buffer to the receive
* chain. If this fails, we drop the packet and
* recycle the old buffer.
*/
if (sip_copy_small != 0 && len <= MHLEN) {
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
goto dropit;
memcpy(mtod(m, caddr_t),
mtod(rxs->rxs_mbuf, caddr_t), len);
SIP_INIT_RXDESC(sc, i);
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize,
BUS_DMASYNC_PREREAD);
} else {
m = rxs->rxs_mbuf;
if (sip_add_rxbuf(sc, i) != 0) {
dropit:
ifp->if_ierrors++;
SIP_INIT_RXDESC(sc, i);
bus_dmamap_sync(sc->sc_dmat,
rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize,
BUS_DMASYNC_PREREAD);
continue;
}
}
#else
/*
* The SiS 900's receive buffers must be 4-byte aligned.
* But this means that the data after the Ethernet header
* is misaligned. We must allocate a new buffer and
* copy the data, shifted forward 2 bytes.
*/
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
dropit:
ifp->if_ierrors++;
SIP_INIT_RXDESC(sc, i);
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
continue;
}
if (len > (MHLEN - 2)) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
goto dropit;
}
}
m->m_data += 2;
/*
* Note that we use clusters for incoming frames, so the
* buffer is virtually contiguous.
*/
memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
/* Allow the receive descriptor to continue using its mbuf. */
SIP_INIT_RXDESC(sc, i);
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
#endif /* __NO_STRICT_ALIGNMENT */
ifp->if_ipackets++;
eh = mtod(m, struct ether_header *);
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = len;
#if NBPFILTER > 0
/*
* Pass this up to any BPF listeners, but only
* pass if up the stack if it's for us.
*/
if (ifp->if_bpf) {
bpf_mtap(ifp->if_bpf, m);
if ((ifp->if_flags & IFF_PROMISC) != 0 &&
(cmdsts & CMDSTS_Rx_DEST) == CMDSTS_Rx_DEST_REJ) {
m_freem(m);
continue;
}
}
#endif /* NBPFILTER > 0 */
/* Pass it on. */
(*ifp->if_input)(ifp, m);
}
/* Update the receive pointer. */
sc->sc_rxptr = i;
}
/*
* sip_tick:
*
* One second timer, used to tick the MII.
*/
void
sip_tick(arg)
void *arg;
{
struct sip_softc *sc = arg;
int s;
s = splnet();
mii_tick(&sc->sc_mii);
splx(s);
timeout(sip_tick, sc, hz);
}
/*
* sip_reset:
*
* Perform a soft reset on the SiS 900.
*/
void
sip_reset(sc)
struct sip_softc *sc;
{
bus_space_tag_t st = sc->sc_st;
bus_space_handle_t sh = sc->sc_sh;
int i;
bus_space_write_4(st, sh, SIP_CR, CR_RST);
for (i = 0; i < 1000; i++) {
if ((bus_space_read_4(st, sh, SIP_ISR) &
(ISR_TXRCMP|ISR_RXRCMP)) == (ISR_TXRCMP|ISR_RXRCMP))
return;
delay(2);
}
printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
}
/*
* sip_init:
*
* Initialize the interface. Must be called at splnet().
*/
int
sip_init(sc)
struct sip_softc *sc;
{
bus_space_tag_t st = sc->sc_st;
bus_space_handle_t sh = sc->sc_sh;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct sip_txsoft *txs;
struct sip_rxsoft *rxs;
struct sip_desc *sipd;
u_int32_t cfg;
int i, error = 0;
/*
* Cancel any pending I/O.
*/
sip_stop(sc, 0);
/*
* Reset the chip to a known state.
*/
sip_reset(sc);
/*
* Initialize the transmit descriptor ring.
*/
for (i = 0; i < SIP_NTXDESC; i++) {
sipd = &sc->sc_txdescs[i];
memset(sipd, 0, sizeof(struct sip_desc));
sipd->sipd_link = SIP_CDTXADDR(sc, SIP_NEXTTX(i));
}
SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
sc->sc_txfree = SIP_NTXDESC;
sc->sc_txnext = 0;
/*
* Initialize the transmit job descriptors.
*/
SIMPLEQ_INIT(&sc->sc_txfreeq);
SIMPLEQ_INIT(&sc->sc_txdirtyq);
for (i = 0; i < SIP_TXQUEUELEN; i++) {
txs = &sc->sc_txsoft[i];
txs->txs_mbuf = NULL;
SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
}
/*
* Initialize the receive descriptor and receive job
* descriptor rings.
*/
for (i = 0; i < SIP_NRXDESC; i++) {
rxs = &sc->sc_rxsoft[i];
if (rxs->rxs_mbuf == NULL) {
if ((error = sip_add_rxbuf(sc, i)) != 0) {
printf("%s: unable to allocate or map rx "
"buffer %d, error = %d\n",
sc->sc_dev.dv_xname, i, error);
/*
* XXX Should attempt to run with fewer receive
* XXX buffers instead of just failing.
*/
sip_rxdrain(sc);
goto out;
}
}
}
sc->sc_rxptr = 0;
/*
* Initialize the configuration register: aggressive PCI
* bus request algorithm, default backoff, default OW timer,
* default parity error detection.
*/
cfg = 0;
#if BYTE_ORDER == BIG_ENDIAN
/*
* ...descriptors in big-endian mode.
*/
cfg |= CFG_BEM;
#endif
bus_space_write_4(st, sh, SIP_CFG, cfg);
/*
* Initialize the transmit fill and drain thresholds if
* we have never done so.
*/
if (sc->sc_tx_fill_thresh == 0) {
/*
* XXX This value should be tuned. This is the
* minimum (32 bytes), and we may be able to
* improve performance by increasing it.
*/
sc->sc_tx_fill_thresh = 1;
}
if (sc->sc_tx_drain_thresh == 0) {
/*
* Start at a drain threshold of 128 bytes. We will
* increase it if a DMA underrun occurs.
*
* XXX The minimum value of this variable should be
* tuned. We may be able to improve performance
* by starting with a lower value. That, however,
* may trash the first few outgoing packets if the
* PCI bus is saturated.
*/
sc->sc_tx_drain_thresh = 4;
}
/*
* Initialize the prototype TXCFG register.
*/
sc->sc_txcfg = TXCFG_ATP | TXCFG_MXDMA_512 |
(sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
sc->sc_tx_drain_thresh;
bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
/*
* Initialize the receive drain threshold if we have never
* done so.
*/
if (sc->sc_rx_drain_thresh == 0) {
/*
* XXX This value should be tuned. This is set to the
* maximum of 248 bytes, and we may be able to improve
* performance by decreasing it (although we should never
* set this value lower than 2; 14 bytes are required to
* filter the packet).
*/
sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
}
/*
* Initialize the prototype RXCFG register.
*/
sc->sc_rxcfg = RXCFG_MXDMA_512 |
(sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
/* Set up the receive filter. */
sip_set_filter(sc);
/*
* Give the transmit and receive rings to the chip.
*/
bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
/*
* Initialize the interrupt mask.
*/
sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
ISR_TXURN|ISR_TXDESC|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
/*
* Set the current media. Do this after initializing the prototype
* IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
* control.
*/
mii_mediachg(&sc->sc_mii);
/*
* Enable interrupts.
*/
bus_space_write_4(st, sh, SIP_IER, IER_IE);
/*
* Start the transmit and receive processes.
*/
bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
/*
* Start the one second MII clock.
*/
timeout(sip_tick, sc, hz);
/*
* ...all done!
*/
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
out:
if (error)
printf("%s: interface not running\n", sc->sc_dev.dv_xname);
return (error);
}
/*
* sip_drain:
*
* Drain the receive queue.
*/
void
sip_rxdrain(sc)
struct sip_softc *sc;
{
struct sip_rxsoft *rxs;
int i;
for (i = 0; i < SIP_NRXDESC; i++) {
rxs = &sc->sc_rxsoft[i];
if (rxs->rxs_mbuf != NULL) {
bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
m_freem(rxs->rxs_mbuf);
rxs->rxs_mbuf = NULL;
}
}
}
/*
* sip_stop:
*
* Stop transmission on the interface.
*/
void
sip_stop(sc, drain)
struct sip_softc *sc;
{
bus_space_tag_t st = sc->sc_st;
bus_space_handle_t sh = sc->sc_sh;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct sip_txsoft *txs;
u_int32_t cmdsts = 0; /* DEBUG */
/*
* Stop the one second clock.
*/
untimeout(sip_tick, sc);
/*
* Disable interrupts.
*/
bus_space_write_4(st, sh, SIP_IER, 0);
/*
* Stop receiver and transmitter.
*/
bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
/*
* Release any queued transmit buffers.
*/
while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
if ((ifp->if_flags & IFF_DEBUG) != 0 &&
SIMPLEQ_NEXT(txs, txs_q) == NULL &&
(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts &
CMDSTS_INTR) == 0)
printf("%s: sip_stop: last descriptor does not "
"have INTR bit set\n", sc->sc_dev.dv_xname);
SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
#ifdef DIAGNOSTIC
if (txs->txs_mbuf == NULL) {
printf("%s: dirty txsoft with no mbuf chain\n",
sc->sc_dev.dv_xname);
panic("sip_stop");
}
#endif
cmdsts |= /* DEBUG */
sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts;
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
m_freem(txs->txs_mbuf);
txs->txs_mbuf = NULL;
SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
}
if (drain) {
/*
* Release the receive buffers.
*/
sip_rxdrain(sc);
}
/*
* Mark the interface down and cancel the watchdog timer.
*/
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ifp->if_timer = 0;
if ((ifp->if_flags & IFF_DEBUG) != 0 &&
(cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
printf("%s: sip_stop: no INTR bits set in dirty tx "
"descriptors\n", sc->sc_dev.dv_xname);
}
/*
* sip_read_eeprom:
*
* Read data from the serial EEPROM.
*/
void
sip_read_eeprom(sc, word, wordcnt, data)
struct sip_softc *sc;
int word, wordcnt;
u_int16_t *data;
{
bus_space_tag_t st = sc->sc_st;
bus_space_handle_t sh = sc->sc_sh;
u_int16_t reg;
int i, x;
for (i = 0; i < wordcnt; i++) {
/* Send CHIP SELECT. */
reg = EROMAR_EECS;
bus_space_write_4(st, sh, SIP_EROMAR, reg);
/* Shift in the READ opcode. */
for (x = 3; x > 0; x--) {
if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
reg |= EROMAR_EEDI;
else
reg &= ~EROMAR_EEDI;
bus_space_write_4(st, sh, SIP_EROMAR, reg);
bus_space_write_4(st, sh, SIP_EROMAR,
reg | EROMAR_EESK);
delay(4);
bus_space_write_4(st, sh, SIP_EROMAR, reg);
delay(4);
}
/* Shift in address. */
for (x = 6; x > 0; x--) {
if ((word + i) & (1 << (x - 1)))
reg |= EROMAR_EEDI;
else
reg &= ~EROMAR_EEDI;
bus_space_write_4(st, sh, SIP_EROMAR, reg);
bus_space_write_4(st, sh, SIP_EROMAR,
reg | EROMAR_EESK);
delay(4);
bus_space_write_4(st, sh, SIP_EROMAR, reg);
delay(4);
}
/* Shift out data. */
reg = EROMAR_EECS;
data[i] = 0;
for (x = 16; x > 0; x--) {
bus_space_write_4(st, sh, SIP_EROMAR,
reg | EROMAR_EESK);
delay(4);
if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
data[i] |= (1 << (x - 1));
bus_space_write_4(st, sh, SIP_EROMAR, reg);
}
/* Clear CHIP SELECT. */
bus_space_write_4(st, sh, SIP_EROMAR, 0);
delay(4);
}
}
/*
* sip_add_rxbuf:
*
* Add a receive buffer to the indicated descriptor.
*/
int
sip_add_rxbuf(sc, idx)
struct sip_softc *sc;
int idx;
{
struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
struct mbuf *m;
int error;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
return (ENOBUFS);
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
return (ENOBUFS);
}
if (rxs->rxs_mbuf != NULL)
bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
rxs->rxs_mbuf = m;
error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
if (error) {
printf("%s: can't load rx DMA map %d, error = %d\n",
sc->sc_dev.dv_xname, idx, error);
panic("sip_add_rxbuf"); /* XXX */
}
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
SIP_INIT_RXDESC(sc, idx);
return (0);
}
/*
* sip_set_filter:
*
* Set up the receive filter.
*/
void
sip_set_filter(sc)
struct sip_softc *sc;
{
bus_space_tag_t st = sc->sc_st;
bus_space_handle_t sh = sc->sc_sh;
struct ethercom *ec = &sc->sc_ethercom;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct ether_multi *enm;
struct ether_multistep step;
u_int8_t *cp;
u_int32_t crc, mchash[8];
int len;
static const u_int32_t crctab[] = {
0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
};
/*
* Initialize the prototype RFCR.
*/
sc->sc_rfcr = RFCR_RFEN;
if (ifp->if_flags & IFF_BROADCAST)
sc->sc_rfcr |= RFCR_AAB;
if (ifp->if_flags & IFF_PROMISC) {
sc->sc_rfcr |= RFCR_AAP;
goto allmulti;
}
/*
* Set up the multicast address filter by passing all multicast
* addresses through a CRC generator, and then using the high-order
* 6 bits as an index into the 128 bit multicast hash table (only
* the lower 16 bits of each 32 bit multicast hash register are
* valid). The high order bits select the register, while the
* rest of the bits select the bit within the register.
*/
memset(mchash, 0, sizeof(mchash));
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
/*
* We must listen to a range of multicast addresses.
* For now, just accept all multicasts, rather than
* trying to set only those filter bits needed to match
* the range. (At this time, the only use of address
* ranges is for IP multicast routing, for which the
* range is big enough to require all bits set.)
*/
goto allmulti;
}
cp = enm->enm_addrlo;
crc = 0xffffffff;
for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
crc ^= *cp++;
crc = (crc >> 4) ^ crctab[crc & 0xf];
crc = (crc >> 4) ^ crctab[crc & 0xf];
}
/* Just want the 7 most significant bits. */
crc >>= 25;
/* Set the corresponding bit in the hash table. */
mchash[crc >> 4] |= 1 << (crc & 0xf);
ETHER_NEXT_MULTI(step, enm);
}
ifp->if_flags &= ~IFF_ALLMULTI;
goto setit;
allmulti:
ifp->if_flags |= IFF_ALLMULTI;
sc->sc_rfcr |= RFCR_AAM;
setit:
#define FILTER_EMIT(addr, data) \
bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
bus_space_write_4(st, sh, SIP_RFDR, (data))
/*
* Disable receive filter, and program the node address.
*/
cp = LLADDR(ifp->if_sadl);
FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
/*
* Program the multicast hash table.
*/
FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
}
#undef FILTER_EMIT
/*
* Re-enable the receiver filter.
*/
bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
}
/*
* sip_mii_readreg: [mii interface function]
*
* Read a PHY register on the MII.
*/
int
sip_mii_readreg(self, phy, reg)
struct device *self;
int phy, reg;
{
struct sip_softc *sc = (struct sip_softc *) self;
u_int32_t enphy;
/*
* The SiS 900 has only an internal PHY on the MII. Only allow
* MII address 0.
*/
if (phy != 0)
return (0);
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
(reg << ENPHY_REGADDR_SHIFT) | ENPHY_RWCMD | ENPHY_ACCESS);
do {
enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
} while (enphy & ENPHY_ACCESS);
return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
}
/*
* sip_mii_writereg: [mii interface function]
*
* Write a PHY register on the MII.
*/
void
sip_mii_writereg(self, phy, reg, val)
struct device *self;
int phy, reg, val;
{
struct sip_softc *sc = (struct sip_softc *) self;
u_int32_t enphy;
/*
* The SiS 900 has only an internal PHY on the MII. Only allow
* MII address 0.
*/
if (phy != 0)
return;
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
(val << ENPHY_DATA_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
ENPHY_ACCESS);
do {
enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
} while (enphy & ENPHY_ACCESS);
}
/*
* sip_mii_statchg: [mii interface function]
*
* Callback from MII layer when media changes.
*/
void
sip_mii_statchg(self)
struct device *self;
{
struct sip_softc *sc = (struct sip_softc *) self;
u_int32_t flowctl;
/*
* Update TXCFG for full-duplex operation.
*/
if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
else
sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
/*
* Update RXCFG for full-duplex or loopback.
*/
if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
sc->sc_rxcfg |= RXCFG_ATX;
else
sc->sc_rxcfg &= ~RXCFG_ATX;
/*
* Update IMR for use of 802.3x flow control.
*/
if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
flowctl = FLOWCTL_FLOWEN;
} else {
sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
flowctl = 0;
}
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
/* XXX Update ifp->if_baudrate */
}
/*
* sip_mediastatus: [ifmedia interface function]
*
* Get the current interface media status.
*/
void
sip_mediastatus(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct sip_softc *sc = ifp->if_softc;
mii_pollstat(&sc->sc_mii);
ifmr->ifm_status = sc->sc_mii.mii_media_status;
ifmr->ifm_active = sc->sc_mii.mii_media_active;
}
/*
* sip_mediachange: [ifmedia interface function]
*
* Set hardware to newly-selected media.
*/
int
sip_mediachange(ifp)
struct ifnet *ifp;
{
struct sip_softc *sc = ifp->if_softc;
if (ifp->if_flags & IFF_UP)
mii_mediachg(&sc->sc_mii);
return (0);
}