3082 lines
75 KiB
C
3082 lines
75 KiB
C
/* $NetBSD: kern_proc.c,v 1.255 2020/06/11 19:20:46 ad Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 1999, 2006, 2007, 2008, 2020 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
|
|
* NASA Ames Research Center, and by Andrew Doran.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1982, 1986, 1989, 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.255 2020/06/11 19:20:46 ad Exp $");
|
|
|
|
#ifdef _KERNEL_OPT
|
|
#include "opt_kstack.h"
|
|
#include "opt_maxuprc.h"
|
|
#include "opt_dtrace.h"
|
|
#include "opt_compat_netbsd32.h"
|
|
#include "opt_kaslr.h"
|
|
#endif
|
|
|
|
#if defined(__HAVE_COMPAT_NETBSD32) && !defined(COMPAT_NETBSD32) \
|
|
&& !defined(_RUMPKERNEL)
|
|
#define COMPAT_NETBSD32
|
|
#endif
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/acct.h>
|
|
#include <sys/wait.h>
|
|
#include <sys/file.h>
|
|
#include <ufs/ufs/quota.h>
|
|
#include <sys/uio.h>
|
|
#include <sys/pool.h>
|
|
#include <sys/pset.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/tty.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/ras.h>
|
|
#include <sys/filedesc.h>
|
|
#include <sys/syscall_stats.h>
|
|
#include <sys/kauth.h>
|
|
#include <sys/sleepq.h>
|
|
#include <sys/atomic.h>
|
|
#include <sys/kmem.h>
|
|
#include <sys/namei.h>
|
|
#include <sys/dtrace_bsd.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/exec.h>
|
|
#include <sys/cpu.h>
|
|
#include <sys/compat_stub.h>
|
|
#include <sys/futex.h>
|
|
#include <sys/pserialize.h>
|
|
|
|
#include <uvm/uvm_extern.h>
|
|
#include <uvm/uvm.h>
|
|
|
|
/*
|
|
* Process lists.
|
|
*/
|
|
|
|
struct proclist allproc __cacheline_aligned;
|
|
struct proclist zombproc __cacheline_aligned;
|
|
|
|
kmutex_t proc_lock __cacheline_aligned;
|
|
static pserialize_t proc_psz;
|
|
|
|
/*
|
|
* pid to lwp/proc lookup is done by indexing the pid_table array.
|
|
* Since pid numbers are only allocated when an empty slot
|
|
* has been found, there is no need to search any lists ever.
|
|
* (an orphaned pgrp will lock the slot, a session will lock
|
|
* the pgrp with the same number.)
|
|
* If the table is too small it is reallocated with twice the
|
|
* previous size and the entries 'unzipped' into the two halves.
|
|
* A linked list of free entries is passed through the pt_lwp
|
|
* field of 'free' items - set odd to be an invalid ptr. Two
|
|
* additional bits are also used to indicate if the slot is
|
|
* currently occupied by a proc or lwp, and if the PID is
|
|
* hidden from certain kinds of lookups. We thus require a
|
|
* minimum alignment for proc and lwp structures (LWPs are
|
|
* at least 32-byte aligned).
|
|
*/
|
|
|
|
struct pid_table {
|
|
uintptr_t pt_slot;
|
|
struct pgrp *pt_pgrp;
|
|
pid_t pt_pid;
|
|
};
|
|
|
|
#define PT_F_FREE ((uintptr_t)__BIT(0))
|
|
#define PT_F_LWP 0 /* pseudo-flag */
|
|
#define PT_F_PROC ((uintptr_t)__BIT(1))
|
|
|
|
#define PT_F_TYPEBITS (PT_F_FREE|PT_F_PROC)
|
|
#define PT_F_ALLBITS (PT_F_FREE|PT_F_PROC)
|
|
|
|
#define PT_VALID(s) (((s) & PT_F_FREE) == 0)
|
|
#define PT_RESERVED(s) ((s) == 0)
|
|
#define PT_NEXT(s) ((u_int)(s) >> 1)
|
|
#define PT_SET_FREE(pid) (((pid) << 1) | PT_F_FREE)
|
|
#define PT_SET_LWP(l) ((uintptr_t)(l))
|
|
#define PT_SET_PROC(p) (((uintptr_t)(p)) | PT_F_PROC)
|
|
#define PT_SET_RESERVED 0
|
|
#define PT_GET_LWP(s) ((struct lwp *)((s) & ~PT_F_ALLBITS))
|
|
#define PT_GET_PROC(s) ((struct proc *)((s) & ~PT_F_ALLBITS))
|
|
#define PT_GET_TYPE(s) ((s) & PT_F_TYPEBITS)
|
|
#define PT_IS_LWP(s) (PT_GET_TYPE(s) == PT_F_LWP && (s) != 0)
|
|
#define PT_IS_PROC(s) (PT_GET_TYPE(s) == PT_F_PROC)
|
|
|
|
#define MIN_PROC_ALIGNMENT (PT_F_ALLBITS + 1)
|
|
|
|
/*
|
|
* Table of process IDs (PIDs).
|
|
*/
|
|
static struct pid_table *pid_table __read_mostly;
|
|
|
|
#define INITIAL_PID_TABLE_SIZE (1 << 5)
|
|
|
|
/* Table mask, threshold for growing and number of allocated PIDs. */
|
|
static u_int pid_tbl_mask __read_mostly;
|
|
static u_int pid_alloc_lim __read_mostly;
|
|
static u_int pid_alloc_cnt __cacheline_aligned;
|
|
|
|
/* Next free, last free and maximum PIDs. */
|
|
static u_int next_free_pt __cacheline_aligned;
|
|
static u_int last_free_pt __cacheline_aligned;
|
|
static pid_t pid_max __read_mostly;
|
|
|
|
/* Components of the first process -- never freed. */
|
|
|
|
extern struct emul emul_netbsd; /* defined in kern_exec.c */
|
|
|
|
struct session session0 = {
|
|
.s_count = 1,
|
|
.s_sid = 0,
|
|
};
|
|
struct pgrp pgrp0 = {
|
|
.pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
|
|
.pg_session = &session0,
|
|
};
|
|
filedesc_t filedesc0;
|
|
struct cwdinfo cwdi0 = {
|
|
.cwdi_cmask = CMASK,
|
|
.cwdi_refcnt = 1,
|
|
};
|
|
struct plimit limit0;
|
|
struct pstats pstat0;
|
|
struct vmspace vmspace0;
|
|
struct sigacts sigacts0;
|
|
struct proc proc0 = {
|
|
.p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
|
|
.p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
|
|
.p_nlwps = 1,
|
|
.p_nrlwps = 1,
|
|
.p_pgrp = &pgrp0,
|
|
.p_comm = "system",
|
|
/*
|
|
* Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
|
|
* when they exit. init(8) can easily wait them out for us.
|
|
*/
|
|
.p_flag = PK_SYSTEM | PK_NOCLDWAIT,
|
|
.p_stat = SACTIVE,
|
|
.p_nice = NZERO,
|
|
.p_emul = &emul_netbsd,
|
|
.p_cwdi = &cwdi0,
|
|
.p_limit = &limit0,
|
|
.p_fd = &filedesc0,
|
|
.p_vmspace = &vmspace0,
|
|
.p_stats = &pstat0,
|
|
.p_sigacts = &sigacts0,
|
|
#ifdef PROC0_MD_INITIALIZERS
|
|
PROC0_MD_INITIALIZERS
|
|
#endif
|
|
};
|
|
kauth_cred_t cred0;
|
|
|
|
static const int nofile = NOFILE;
|
|
static const int maxuprc = MAXUPRC;
|
|
|
|
static int sysctl_doeproc(SYSCTLFN_PROTO);
|
|
static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
|
|
static int sysctl_security_expose_address(SYSCTLFN_PROTO);
|
|
|
|
#ifdef KASLR
|
|
static int kern_expose_address = 0;
|
|
#else
|
|
static int kern_expose_address = 1;
|
|
#endif
|
|
/*
|
|
* The process list descriptors, used during pid allocation and
|
|
* by sysctl. No locking on this data structure is needed since
|
|
* it is completely static.
|
|
*/
|
|
const struct proclist_desc proclists[] = {
|
|
{ &allproc },
|
|
{ &zombproc },
|
|
{ NULL },
|
|
};
|
|
|
|
static struct pgrp * pg_remove(pid_t);
|
|
static void pg_delete(pid_t);
|
|
static void orphanpg(struct pgrp *);
|
|
|
|
static specificdata_domain_t proc_specificdata_domain;
|
|
|
|
static pool_cache_t proc_cache;
|
|
|
|
static kauth_listener_t proc_listener;
|
|
|
|
static void fill_proc(const struct proc *, struct proc *, bool);
|
|
static int fill_pathname(struct lwp *, pid_t, void *, size_t *);
|
|
static int fill_cwd(struct lwp *, pid_t, void *, size_t *);
|
|
|
|
static int
|
|
proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
|
|
void *arg0, void *arg1, void *arg2, void *arg3)
|
|
{
|
|
struct proc *p;
|
|
int result;
|
|
|
|
result = KAUTH_RESULT_DEFER;
|
|
p = arg0;
|
|
|
|
switch (action) {
|
|
case KAUTH_PROCESS_CANSEE: {
|
|
enum kauth_process_req req;
|
|
|
|
req = (enum kauth_process_req)(uintptr_t)arg1;
|
|
|
|
switch (req) {
|
|
case KAUTH_REQ_PROCESS_CANSEE_ARGS:
|
|
case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
|
|
case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
|
|
case KAUTH_REQ_PROCESS_CANSEE_EPROC:
|
|
result = KAUTH_RESULT_ALLOW;
|
|
break;
|
|
|
|
case KAUTH_REQ_PROCESS_CANSEE_ENV:
|
|
if (kauth_cred_getuid(cred) !=
|
|
kauth_cred_getuid(p->p_cred) ||
|
|
kauth_cred_getuid(cred) !=
|
|
kauth_cred_getsvuid(p->p_cred))
|
|
break;
|
|
|
|
result = KAUTH_RESULT_ALLOW;
|
|
|
|
break;
|
|
|
|
case KAUTH_REQ_PROCESS_CANSEE_KPTR:
|
|
if (!kern_expose_address)
|
|
break;
|
|
|
|
if (kern_expose_address == 1 && !(p->p_flag & PK_KMEM))
|
|
break;
|
|
|
|
result = KAUTH_RESULT_ALLOW;
|
|
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case KAUTH_PROCESS_FORK: {
|
|
int lnprocs = (int)(unsigned long)arg2;
|
|
|
|
/*
|
|
* Don't allow a nonprivileged user to use the last few
|
|
* processes. The variable lnprocs is the current number of
|
|
* processes, maxproc is the limit.
|
|
*/
|
|
if (__predict_false((lnprocs >= maxproc - 5)))
|
|
break;
|
|
|
|
result = KAUTH_RESULT_ALLOW;
|
|
|
|
break;
|
|
}
|
|
|
|
case KAUTH_PROCESS_CORENAME:
|
|
case KAUTH_PROCESS_STOPFLAG:
|
|
if (proc_uidmatch(cred, p->p_cred) == 0)
|
|
result = KAUTH_RESULT_ALLOW;
|
|
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static int
|
|
proc_ctor(void *arg __unused, void *obj, int flags __unused)
|
|
{
|
|
memset(obj, 0, sizeof(struct proc));
|
|
return 0;
|
|
}
|
|
|
|
static pid_t proc_alloc_pid_slot(struct proc *, uintptr_t);
|
|
|
|
/*
|
|
* Initialize global process hashing structures.
|
|
*/
|
|
void
|
|
procinit(void)
|
|
{
|
|
const struct proclist_desc *pd;
|
|
u_int i;
|
|
#define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
|
|
|
|
for (pd = proclists; pd->pd_list != NULL; pd++)
|
|
LIST_INIT(pd->pd_list);
|
|
|
|
mutex_init(&proc_lock, MUTEX_DEFAULT, IPL_NONE);
|
|
|
|
proc_psz = pserialize_create();
|
|
|
|
pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
|
|
* sizeof(struct pid_table), KM_SLEEP);
|
|
pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
|
|
pid_max = PID_MAX;
|
|
|
|
/* Set free list running through table...
|
|
Preset 'use count' above PID_MAX so we allocate pid 1 next. */
|
|
for (i = 0; i <= pid_tbl_mask; i++) {
|
|
pid_table[i].pt_slot = PT_SET_FREE(LINK_EMPTY + i + 1);
|
|
pid_table[i].pt_pgrp = 0;
|
|
pid_table[i].pt_pid = 0;
|
|
}
|
|
/* slot 0 is just grabbed */
|
|
next_free_pt = 1;
|
|
/* Need to fix last entry. */
|
|
last_free_pt = pid_tbl_mask;
|
|
pid_table[last_free_pt].pt_slot = PT_SET_FREE(LINK_EMPTY);
|
|
/* point at which we grow table - to avoid reusing pids too often */
|
|
pid_alloc_lim = pid_tbl_mask - 1;
|
|
#undef LINK_EMPTY
|
|
|
|
/* Reserve PID 1 for init(8). */ /* XXX slightly gross */
|
|
mutex_enter(&proc_lock);
|
|
if (proc_alloc_pid_slot(&proc0, PT_SET_RESERVED) != 1)
|
|
panic("failed to reserve PID 1 for init(8)");
|
|
mutex_exit(&proc_lock);
|
|
|
|
proc_specificdata_domain = specificdata_domain_create();
|
|
KASSERT(proc_specificdata_domain != NULL);
|
|
|
|
size_t proc_alignment = coherency_unit;
|
|
if (proc_alignment < MIN_PROC_ALIGNMENT)
|
|
proc_alignment = MIN_PROC_ALIGNMENT;
|
|
|
|
proc_cache = pool_cache_init(sizeof(struct proc), proc_alignment, 0, 0,
|
|
"procpl", NULL, IPL_NONE, proc_ctor, NULL, NULL);
|
|
|
|
proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
|
|
proc_listener_cb, NULL);
|
|
}
|
|
|
|
void
|
|
procinit_sysctl(void)
|
|
{
|
|
static struct sysctllog *clog;
|
|
|
|
sysctl_createv(&clog, 0, NULL, NULL,
|
|
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
|
|
CTLTYPE_INT, "expose_address",
|
|
SYSCTL_DESCR("Enable exposing kernel addresses"),
|
|
sysctl_security_expose_address, 0,
|
|
&kern_expose_address, 0, CTL_KERN, CTL_CREATE, CTL_EOL);
|
|
sysctl_createv(&clog, 0, NULL, NULL,
|
|
CTLFLAG_PERMANENT,
|
|
CTLTYPE_NODE, "proc",
|
|
SYSCTL_DESCR("System-wide process information"),
|
|
sysctl_doeproc, 0, NULL, 0,
|
|
CTL_KERN, KERN_PROC, CTL_EOL);
|
|
sysctl_createv(&clog, 0, NULL, NULL,
|
|
CTLFLAG_PERMANENT,
|
|
CTLTYPE_NODE, "proc2",
|
|
SYSCTL_DESCR("Machine-independent process information"),
|
|
sysctl_doeproc, 0, NULL, 0,
|
|
CTL_KERN, KERN_PROC2, CTL_EOL);
|
|
sysctl_createv(&clog, 0, NULL, NULL,
|
|
CTLFLAG_PERMANENT,
|
|
CTLTYPE_NODE, "proc_args",
|
|
SYSCTL_DESCR("Process argument information"),
|
|
sysctl_kern_proc_args, 0, NULL, 0,
|
|
CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
|
|
|
|
/*
|
|
"nodes" under these:
|
|
|
|
KERN_PROC_ALL
|
|
KERN_PROC_PID pid
|
|
KERN_PROC_PGRP pgrp
|
|
KERN_PROC_SESSION sess
|
|
KERN_PROC_TTY tty
|
|
KERN_PROC_UID uid
|
|
KERN_PROC_RUID uid
|
|
KERN_PROC_GID gid
|
|
KERN_PROC_RGID gid
|
|
|
|
all in all, probably not worth the effort...
|
|
*/
|
|
}
|
|
|
|
/*
|
|
* Initialize process 0.
|
|
*/
|
|
void
|
|
proc0_init(void)
|
|
{
|
|
struct proc *p;
|
|
struct pgrp *pg;
|
|
struct rlimit *rlim;
|
|
rlim_t lim;
|
|
int i;
|
|
|
|
p = &proc0;
|
|
pg = &pgrp0;
|
|
|
|
mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
|
|
mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
|
|
p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
|
|
|
|
rw_init(&p->p_reflock);
|
|
cv_init(&p->p_waitcv, "wait");
|
|
cv_init(&p->p_lwpcv, "lwpwait");
|
|
|
|
LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling);
|
|
|
|
KASSERT(lwp0.l_lid == 0);
|
|
pid_table[lwp0.l_lid].pt_slot = PT_SET_LWP(&lwp0);
|
|
LIST_INSERT_HEAD(&allproc, p, p_list);
|
|
|
|
pid_table[lwp0.l_lid].pt_pgrp = pg;
|
|
LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
|
|
|
|
#ifdef __HAVE_SYSCALL_INTERN
|
|
(*p->p_emul->e_syscall_intern)(p);
|
|
#endif
|
|
|
|
/* Create credentials. */
|
|
cred0 = kauth_cred_alloc();
|
|
p->p_cred = cred0;
|
|
|
|
/* Create the CWD info. */
|
|
rw_init(&cwdi0.cwdi_lock);
|
|
|
|
/* Create the limits structures. */
|
|
mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
|
|
|
|
rlim = limit0.pl_rlimit;
|
|
for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) {
|
|
rlim[i].rlim_cur = RLIM_INFINITY;
|
|
rlim[i].rlim_max = RLIM_INFINITY;
|
|
}
|
|
|
|
rlim[RLIMIT_NOFILE].rlim_max = maxfiles;
|
|
rlim[RLIMIT_NOFILE].rlim_cur = maxfiles < nofile ? maxfiles : nofile;
|
|
|
|
rlim[RLIMIT_NPROC].rlim_max = maxproc;
|
|
rlim[RLIMIT_NPROC].rlim_cur = maxproc < maxuprc ? maxproc : maxuprc;
|
|
|
|
lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvm_availmem(false)));
|
|
rlim[RLIMIT_RSS].rlim_max = lim;
|
|
rlim[RLIMIT_MEMLOCK].rlim_max = lim;
|
|
rlim[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
|
|
|
|
rlim[RLIMIT_NTHR].rlim_max = maxlwp;
|
|
rlim[RLIMIT_NTHR].rlim_cur = maxlwp < maxuprc ? maxlwp : maxuprc;
|
|
|
|
/* Note that default core name has zero length. */
|
|
limit0.pl_corename = defcorename;
|
|
limit0.pl_cnlen = 0;
|
|
limit0.pl_refcnt = 1;
|
|
limit0.pl_writeable = false;
|
|
limit0.pl_sv_limit = NULL;
|
|
|
|
/* Configure virtual memory system, set vm rlimits. */
|
|
uvm_init_limits(p);
|
|
|
|
/* Initialize file descriptor table for proc0. */
|
|
fd_init(&filedesc0);
|
|
|
|
/*
|
|
* Initialize proc0's vmspace, which uses the kernel pmap.
|
|
* All kernel processes (which never have user space mappings)
|
|
* share proc0's vmspace, and thus, the kernel pmap.
|
|
*/
|
|
uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
|
|
trunc_page(VM_MAXUSER_ADDRESS),
|
|
#ifdef __USE_TOPDOWN_VM
|
|
true
|
|
#else
|
|
false
|
|
#endif
|
|
);
|
|
|
|
/* Initialize signal state for proc0. XXX IPL_SCHED */
|
|
mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
|
|
siginit(p);
|
|
|
|
proc_initspecific(p);
|
|
kdtrace_proc_ctor(NULL, p);
|
|
}
|
|
|
|
/*
|
|
* Session reference counting.
|
|
*/
|
|
|
|
void
|
|
proc_sesshold(struct session *ss)
|
|
{
|
|
|
|
KASSERT(mutex_owned(&proc_lock));
|
|
ss->s_count++;
|
|
}
|
|
|
|
void
|
|
proc_sessrele(struct session *ss)
|
|
{
|
|
struct pgrp *pg;
|
|
|
|
KASSERT(mutex_owned(&proc_lock));
|
|
KASSERT(ss->s_count > 0);
|
|
|
|
/*
|
|
* We keep the pgrp with the same id as the session in order to
|
|
* stop a process being given the same pid. Since the pgrp holds
|
|
* a reference to the session, it must be a 'zombie' pgrp by now.
|
|
*/
|
|
if (--ss->s_count == 0) {
|
|
pg = pg_remove(ss->s_sid);
|
|
} else {
|
|
pg = NULL;
|
|
ss = NULL;
|
|
}
|
|
|
|
mutex_exit(&proc_lock);
|
|
|
|
if (pg)
|
|
kmem_free(pg, sizeof(struct pgrp));
|
|
if (ss)
|
|
kmem_free(ss, sizeof(struct session));
|
|
}
|
|
|
|
/*
|
|
* Check that the specified process group is in the session of the
|
|
* specified process.
|
|
* Treats -ve ids as process ids.
|
|
* Used to validate TIOCSPGRP requests.
|
|
*/
|
|
int
|
|
pgid_in_session(struct proc *p, pid_t pg_id)
|
|
{
|
|
struct pgrp *pgrp;
|
|
struct session *session;
|
|
int error;
|
|
|
|
mutex_enter(&proc_lock);
|
|
if (pg_id < 0) {
|
|
struct proc *p1 = proc_find(-pg_id);
|
|
if (p1 == NULL) {
|
|
error = EINVAL;
|
|
goto fail;
|
|
}
|
|
pgrp = p1->p_pgrp;
|
|
} else {
|
|
pgrp = pgrp_find(pg_id);
|
|
if (pgrp == NULL) {
|
|
error = EINVAL;
|
|
goto fail;
|
|
}
|
|
}
|
|
session = pgrp->pg_session;
|
|
error = (session != p->p_pgrp->pg_session) ? EPERM : 0;
|
|
fail:
|
|
mutex_exit(&proc_lock);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* p_inferior: is p an inferior of q?
|
|
*/
|
|
static inline bool
|
|
p_inferior(struct proc *p, struct proc *q)
|
|
{
|
|
|
|
KASSERT(mutex_owned(&proc_lock));
|
|
|
|
for (; p != q; p = p->p_pptr)
|
|
if (p->p_pid == 0)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* proc_find_lwp: locate an lwp in said proc by the ID.
|
|
*
|
|
* => Must be called with p::p_lock held.
|
|
* => LSIDL lwps are not returned because they are only partially
|
|
* constructed while occupying the slot.
|
|
* => Callers need to be careful about lwp::l_stat of the returned
|
|
* lwp.
|
|
*/
|
|
struct lwp *
|
|
proc_find_lwp(proc_t *p, pid_t pid)
|
|
{
|
|
struct pid_table *pt;
|
|
struct lwp *l = NULL;
|
|
uintptr_t slot;
|
|
int s;
|
|
|
|
KASSERT(mutex_owned(p->p_lock));
|
|
|
|
/*
|
|
* Look in the pid_table. This is done unlocked inside a pserialize
|
|
* read section covering pid_table's memory allocation only, so take
|
|
* care to read the slot atomically and only once. This issues a
|
|
* memory barrier for dependent loads on alpha.
|
|
*/
|
|
s = pserialize_read_enter();
|
|
pt = &pid_table[pid & pid_tbl_mask];
|
|
slot = atomic_load_consume(&pt->pt_slot);
|
|
if (__predict_false(!PT_IS_LWP(slot))) {
|
|
pserialize_read_exit(s);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Check to see if the LWP is from the correct process. We won't
|
|
* see entries in pid_table from a prior process that also used "p",
|
|
* by virtue of the fact that allocating "p" means all prior updates
|
|
* to dependant data structures are visible to this thread.
|
|
*/
|
|
l = PT_GET_LWP(slot);
|
|
if (__predict_false(atomic_load_relaxed(&l->l_proc) != p)) {
|
|
pserialize_read_exit(s);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* We now know that p->p_lock holds this LWP stable.
|
|
*
|
|
* If the status is not LSIDL, it means the LWP is intended to be
|
|
* findable by LID and l_lid cannot change behind us.
|
|
*
|
|
* No need to acquire the LWP's lock to check for LSIDL, as
|
|
* p->p_lock must be held to transition in and out of LSIDL.
|
|
* Any other observed state of is no particular interest.
|
|
*/
|
|
pserialize_read_exit(s);
|
|
return l->l_stat != LSIDL && l->l_lid == pid ? l : NULL;
|
|
}
|
|
|
|
/*
|
|
* proc_find_lwp_unlocked: locate an lwp in said proc by the ID.
|
|
*
|
|
* => Called in a pserialize read section with no locks held.
|
|
* => LSIDL lwps are not returned because they are only partially
|
|
* constructed while occupying the slot.
|
|
* => Callers need to be careful about lwp::l_stat of the returned
|
|
* lwp.
|
|
* => If an LWP is found, it's returned locked.
|
|
*/
|
|
struct lwp *
|
|
proc_find_lwp_unlocked(proc_t *p, pid_t pid)
|
|
{
|
|
struct pid_table *pt;
|
|
struct lwp *l = NULL;
|
|
uintptr_t slot;
|
|
|
|
KASSERT(pserialize_in_read_section());
|
|
|
|
/*
|
|
* Look in the pid_table. This is done unlocked inside a pserialize
|
|
* read section covering pid_table's memory allocation only, so take
|
|
* care to read the slot atomically and only once. This issues a
|
|
* memory barrier for dependent loads on alpha.
|
|
*/
|
|
pt = &pid_table[pid & pid_tbl_mask];
|
|
slot = atomic_load_consume(&pt->pt_slot);
|
|
if (__predict_false(!PT_IS_LWP(slot))) {
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Lock the LWP we found to get it stable. If it's embryonic or
|
|
* reaped (LSIDL) then none of the other fields can safely be
|
|
* checked.
|
|
*/
|
|
l = PT_GET_LWP(slot);
|
|
lwp_lock(l);
|
|
if (__predict_false(l->l_stat == LSIDL)) {
|
|
lwp_unlock(l);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* l_proc and l_lid are now known stable because the LWP is not
|
|
* LSIDL, so check those fields too to make sure we found the
|
|
* right thing.
|
|
*/
|
|
if (__predict_false(l->l_proc != p || l->l_lid != pid)) {
|
|
lwp_unlock(l);
|
|
return NULL;
|
|
}
|
|
|
|
/* Everything checks out, return it locked. */
|
|
return l;
|
|
}
|
|
|
|
/*
|
|
* proc_find_lwp_acquire_proc: locate an lwp and acquire a lock
|
|
* on its containing proc.
|
|
*
|
|
* => Similar to proc_find_lwp(), but does not require you to have
|
|
* the proc a priori.
|
|
* => Also returns proc * to caller, with p::p_lock held.
|
|
* => Same caveats apply.
|
|
*/
|
|
struct lwp *
|
|
proc_find_lwp_acquire_proc(pid_t pid, struct proc **pp)
|
|
{
|
|
struct pid_table *pt;
|
|
struct proc *p = NULL;
|
|
struct lwp *l = NULL;
|
|
uintptr_t slot;
|
|
|
|
KASSERT(pp != NULL);
|
|
mutex_enter(&proc_lock);
|
|
pt = &pid_table[pid & pid_tbl_mask];
|
|
|
|
slot = pt->pt_slot;
|
|
if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid)) {
|
|
l = PT_GET_LWP(slot);
|
|
p = l->l_proc;
|
|
mutex_enter(p->p_lock);
|
|
if (__predict_false(l->l_stat == LSIDL)) {
|
|
mutex_exit(p->p_lock);
|
|
l = NULL;
|
|
p = NULL;
|
|
}
|
|
}
|
|
mutex_exit(&proc_lock);
|
|
|
|
KASSERT(p == NULL || mutex_owned(p->p_lock));
|
|
*pp = p;
|
|
return l;
|
|
}
|
|
|
|
/*
|
|
* proc_find_raw_pid_table_locked: locate a process by the ID.
|
|
*
|
|
* => Must be called with proc_lock held.
|
|
*/
|
|
static proc_t *
|
|
proc_find_raw_pid_table_locked(pid_t pid, bool any_lwpid)
|
|
{
|
|
struct pid_table *pt;
|
|
proc_t *p = NULL;
|
|
uintptr_t slot;
|
|
|
|
/* No - used by DDB. KASSERT(mutex_owned(&proc_lock)); */
|
|
pt = &pid_table[pid & pid_tbl_mask];
|
|
|
|
slot = pt->pt_slot;
|
|
if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid)) {
|
|
/*
|
|
* When looking up processes, require a direct match
|
|
* on the PID assigned to the proc, not just one of
|
|
* its LWPs.
|
|
*
|
|
* N.B. We require lwp::l_proc of LSIDL LWPs to be
|
|
* valid here.
|
|
*/
|
|
p = PT_GET_LWP(slot)->l_proc;
|
|
if (__predict_false(p->p_pid != pid && !any_lwpid))
|
|
p = NULL;
|
|
} else if (PT_IS_PROC(slot) && pt->pt_pid == pid) {
|
|
p = PT_GET_PROC(slot);
|
|
}
|
|
return p;
|
|
}
|
|
|
|
proc_t *
|
|
proc_find_raw(pid_t pid)
|
|
{
|
|
|
|
return proc_find_raw_pid_table_locked(pid, false);
|
|
}
|
|
|
|
static proc_t *
|
|
proc_find_internal(pid_t pid, bool any_lwpid)
|
|
{
|
|
proc_t *p;
|
|
|
|
KASSERT(mutex_owned(&proc_lock));
|
|
|
|
p = proc_find_raw_pid_table_locked(pid, any_lwpid);
|
|
if (__predict_false(p == NULL)) {
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Only allow live processes to be found by PID.
|
|
* XXX: p_stat might change, since proc unlocked.
|
|
*/
|
|
if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) {
|
|
return p;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
proc_t *
|
|
proc_find(pid_t pid)
|
|
{
|
|
return proc_find_internal(pid, false);
|
|
}
|
|
|
|
proc_t *
|
|
proc_find_lwpid(pid_t pid)
|
|
{
|
|
return proc_find_internal(pid, true);
|
|
}
|
|
|
|
/*
|
|
* pgrp_find: locate a process group by the ID.
|
|
*
|
|
* => Must be called with proc_lock held.
|
|
*/
|
|
struct pgrp *
|
|
pgrp_find(pid_t pgid)
|
|
{
|
|
struct pgrp *pg;
|
|
|
|
KASSERT(mutex_owned(&proc_lock));
|
|
|
|
pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
|
|
|
|
/*
|
|
* Cannot look up a process group that only exists because the
|
|
* session has not died yet (traditional).
|
|
*/
|
|
if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
|
|
return NULL;
|
|
}
|
|
return pg;
|
|
}
|
|
|
|
static void
|
|
expand_pid_table(void)
|
|
{
|
|
size_t pt_size, tsz;
|
|
struct pid_table *n_pt, *new_pt;
|
|
uintptr_t slot;
|
|
struct pgrp *pgrp;
|
|
pid_t pid, rpid;
|
|
u_int i;
|
|
uint new_pt_mask;
|
|
|
|
KASSERT(mutex_owned(&proc_lock));
|
|
|
|
/* Unlock the pid_table briefly to allocate memory. */
|
|
pt_size = pid_tbl_mask + 1;
|
|
mutex_exit(&proc_lock);
|
|
|
|
tsz = pt_size * 2 * sizeof(struct pid_table);
|
|
new_pt = kmem_alloc(tsz, KM_SLEEP);
|
|
new_pt_mask = pt_size * 2 - 1;
|
|
|
|
/* XXX For now. The pratical limit is much lower anyway. */
|
|
KASSERT(new_pt_mask <= FUTEX_TID_MASK);
|
|
|
|
mutex_enter(&proc_lock);
|
|
if (pt_size != pid_tbl_mask + 1) {
|
|
/* Another process beat us to it... */
|
|
mutex_exit(&proc_lock);
|
|
kmem_free(new_pt, tsz);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Copy entries from old table into new one.
|
|
* If 'pid' is 'odd' we need to place in the upper half,
|
|
* even pid's to the lower half.
|
|
* Free items stay in the low half so we don't have to
|
|
* fixup the reference to them.
|
|
* We stuff free items on the front of the freelist
|
|
* because we can't write to unmodified entries.
|
|
* Processing the table backwards maintains a semblance
|
|
* of issuing pid numbers that increase with time.
|
|
*/
|
|
i = pt_size - 1;
|
|
n_pt = new_pt + i;
|
|
for (; ; i--, n_pt--) {
|
|
slot = pid_table[i].pt_slot;
|
|
pgrp = pid_table[i].pt_pgrp;
|
|
if (!PT_VALID(slot)) {
|
|
/* Up 'use count' so that link is valid */
|
|
pid = (PT_NEXT(slot) + pt_size) & ~pt_size;
|
|
rpid = 0;
|
|
slot = PT_SET_FREE(pid);
|
|
if (pgrp)
|
|
pid = pgrp->pg_id;
|
|
} else {
|
|
pid = pid_table[i].pt_pid;
|
|
rpid = pid;
|
|
}
|
|
|
|
/* Save entry in appropriate half of table */
|
|
n_pt[pid & pt_size].pt_slot = slot;
|
|
n_pt[pid & pt_size].pt_pgrp = pgrp;
|
|
n_pt[pid & pt_size].pt_pid = rpid;
|
|
|
|
/* Put other piece on start of free list */
|
|
pid = (pid ^ pt_size) & ~pid_tbl_mask;
|
|
n_pt[pid & pt_size].pt_slot =
|
|
PT_SET_FREE((pid & ~pt_size) | next_free_pt);
|
|
n_pt[pid & pt_size].pt_pgrp = 0;
|
|
n_pt[pid & pt_size].pt_pid = 0;
|
|
|
|
next_free_pt = i | (pid & pt_size);
|
|
if (i == 0)
|
|
break;
|
|
}
|
|
|
|
/* Save old table size and switch tables */
|
|
tsz = pt_size * sizeof(struct pid_table);
|
|
n_pt = pid_table;
|
|
pid_table = new_pt;
|
|
pid_tbl_mask = new_pt_mask;
|
|
|
|
/*
|
|
* pid_max starts as PID_MAX (= 30000), once we have 16384
|
|
* allocated pids we need it to be larger!
|
|
*/
|
|
if (pid_tbl_mask > PID_MAX) {
|
|
pid_max = pid_tbl_mask * 2 + 1;
|
|
pid_alloc_lim |= pid_alloc_lim << 1;
|
|
} else
|
|
pid_alloc_lim <<= 1; /* doubles number of free slots... */
|
|
|
|
mutex_exit(&proc_lock);
|
|
|
|
/*
|
|
* Make sure that unlocked access to the old pid_table is complete
|
|
* and then free it.
|
|
*/
|
|
pserialize_perform(proc_psz);
|
|
kmem_free(n_pt, tsz);
|
|
|
|
out: /* Return with proc_lock held again. */
|
|
mutex_enter(&proc_lock);
|
|
}
|
|
|
|
struct proc *
|
|
proc_alloc(void)
|
|
{
|
|
struct proc *p;
|
|
|
|
p = pool_cache_get(proc_cache, PR_WAITOK);
|
|
p->p_stat = SIDL; /* protect against others */
|
|
proc_initspecific(p);
|
|
kdtrace_proc_ctor(NULL, p);
|
|
|
|
/*
|
|
* Allocate a placeholder in the pid_table. When we create the
|
|
* first LWP for this process, it will take ownership of the
|
|
* slot.
|
|
*/
|
|
if (__predict_false(proc_alloc_pid(p) == -1)) {
|
|
/* Allocating the PID failed; unwind. */
|
|
proc_finispecific(p);
|
|
proc_free_mem(p);
|
|
p = NULL;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
* proc_alloc_pid_slot: allocate PID and record the occcupant so that
|
|
* proc_find_raw() can find it by the PID.
|
|
*/
|
|
static pid_t __noinline
|
|
proc_alloc_pid_slot(struct proc *p, uintptr_t slot)
|
|
{
|
|
struct pid_table *pt;
|
|
pid_t pid;
|
|
int nxt;
|
|
|
|
KASSERT(mutex_owned(&proc_lock));
|
|
|
|
for (;;expand_pid_table()) {
|
|
if (__predict_false(pid_alloc_cnt >= pid_alloc_lim)) {
|
|
/* ensure pids cycle through 2000+ values */
|
|
continue;
|
|
}
|
|
/*
|
|
* The first user process *must* be given PID 1.
|
|
* it has already been reserved for us. This
|
|
* will be coming in from the proc_alloc() call
|
|
* above, and the entry will be usurped later when
|
|
* the first user LWP is created.
|
|
* XXX this is slightly gross.
|
|
*/
|
|
if (__predict_false(PT_RESERVED(pid_table[1].pt_slot) &&
|
|
p != &proc0)) {
|
|
KASSERT(PT_IS_PROC(slot));
|
|
pt = &pid_table[1];
|
|
pt->pt_slot = slot;
|
|
return 1;
|
|
}
|
|
pt = &pid_table[next_free_pt];
|
|
#ifdef DIAGNOSTIC
|
|
if (__predict_false(PT_VALID(pt->pt_slot) || pt->pt_pgrp))
|
|
panic("proc_alloc: slot busy");
|
|
#endif
|
|
nxt = PT_NEXT(pt->pt_slot);
|
|
if (nxt & pid_tbl_mask)
|
|
break;
|
|
/* Table full - expand (NB last entry not used....) */
|
|
}
|
|
|
|
/* pid is 'saved use count' + 'size' + entry */
|
|
pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
|
|
if ((uint)pid > (uint)pid_max)
|
|
pid &= pid_tbl_mask;
|
|
next_free_pt = nxt & pid_tbl_mask;
|
|
|
|
/* XXX For now. The pratical limit is much lower anyway. */
|
|
KASSERT(pid <= FUTEX_TID_MASK);
|
|
|
|
/* Grab table slot */
|
|
pt->pt_slot = slot;
|
|
|
|
KASSERT(pt->pt_pid == 0);
|
|
pt->pt_pid = pid;
|
|
pid_alloc_cnt++;
|
|
|
|
return pid;
|
|
}
|
|
|
|
pid_t
|
|
proc_alloc_pid(struct proc *p)
|
|
{
|
|
pid_t pid;
|
|
|
|
KASSERT((((uintptr_t)p) & PT_F_ALLBITS) == 0);
|
|
KASSERT(p->p_stat == SIDL);
|
|
|
|
mutex_enter(&proc_lock);
|
|
pid = proc_alloc_pid_slot(p, PT_SET_PROC(p));
|
|
if (pid != -1)
|
|
p->p_pid = pid;
|
|
mutex_exit(&proc_lock);
|
|
|
|
return pid;
|
|
}
|
|
|
|
pid_t
|
|
proc_alloc_lwpid(struct proc *p, struct lwp *l)
|
|
{
|
|
struct pid_table *pt;
|
|
pid_t pid;
|
|
|
|
KASSERT((((uintptr_t)l) & PT_F_ALLBITS) == 0);
|
|
KASSERT(l->l_proc == p);
|
|
KASSERT(l->l_stat == LSIDL);
|
|
|
|
/*
|
|
* For unlocked lookup in proc_find_lwp(), make sure l->l_proc
|
|
* is globally visible before the LWP becomes visible via the
|
|
* pid_table.
|
|
*/
|
|
#ifndef __HAVE_ATOMIC_AS_MEMBAR
|
|
membar_producer();
|
|
#endif
|
|
|
|
/*
|
|
* If the slot for p->p_pid currently points to the proc,
|
|
* then we should usurp this ID for the LWP. This happens
|
|
* at least once per process (for the first LWP), and can
|
|
* happen again if the first LWP for a process exits and
|
|
* before the process creates another.
|
|
*/
|
|
mutex_enter(&proc_lock);
|
|
pid = p->p_pid;
|
|
pt = &pid_table[pid & pid_tbl_mask];
|
|
KASSERT(pt->pt_pid == pid);
|
|
if (PT_IS_PROC(pt->pt_slot)) {
|
|
KASSERT(PT_GET_PROC(pt->pt_slot) == p);
|
|
l->l_lid = pid;
|
|
pt->pt_slot = PT_SET_LWP(l);
|
|
} else {
|
|
/* Need to allocate a new slot. */
|
|
pid = proc_alloc_pid_slot(p, PT_SET_LWP(l));
|
|
if (pid != -1)
|
|
l->l_lid = pid;
|
|
}
|
|
mutex_exit(&proc_lock);
|
|
|
|
return pid;
|
|
}
|
|
|
|
static void __noinline
|
|
proc_free_pid_internal(pid_t pid, uintptr_t type __diagused)
|
|
{
|
|
struct pid_table *pt;
|
|
|
|
pt = &pid_table[pid & pid_tbl_mask];
|
|
|
|
KASSERT(PT_GET_TYPE(pt->pt_slot) == type);
|
|
KASSERT(pt->pt_pid == pid);
|
|
|
|
/* save pid use count in slot */
|
|
pt->pt_slot = PT_SET_FREE(pid & ~pid_tbl_mask);
|
|
pt->pt_pid = 0;
|
|
|
|
if (pt->pt_pgrp == NULL) {
|
|
/* link last freed entry onto ours */
|
|
pid &= pid_tbl_mask;
|
|
pt = &pid_table[last_free_pt];
|
|
pt->pt_slot = PT_SET_FREE(PT_NEXT(pt->pt_slot) | pid);
|
|
pt->pt_pid = 0;
|
|
last_free_pt = pid;
|
|
pid_alloc_cnt--;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Free a process id - called from proc_free (in kern_exit.c)
|
|
*
|
|
* Called with the proc_lock held.
|
|
*/
|
|
void
|
|
proc_free_pid(pid_t pid)
|
|
{
|
|
|
|
KASSERT(mutex_owned(&proc_lock));
|
|
proc_free_pid_internal(pid, PT_F_PROC);
|
|
}
|
|
|
|
/*
|
|
* Free a process id used by an LWP. If this was the process's
|
|
* first LWP, we convert the slot to point to the process; the
|
|
* entry will get cleaned up later when the process finishes exiting.
|
|
*
|
|
* If not, then it's the same as proc_free_pid().
|
|
*/
|
|
void
|
|
proc_free_lwpid(struct proc *p, pid_t pid)
|
|
{
|
|
|
|
KASSERT(mutex_owned(&proc_lock));
|
|
|
|
if (__predict_true(p->p_pid == pid)) {
|
|
struct pid_table *pt;
|
|
|
|
pt = &pid_table[pid & pid_tbl_mask];
|
|
|
|
KASSERT(pt->pt_pid == pid);
|
|
KASSERT(PT_IS_LWP(pt->pt_slot));
|
|
KASSERT(PT_GET_LWP(pt->pt_slot)->l_proc == p);
|
|
|
|
pt->pt_slot = PT_SET_PROC(p);
|
|
return;
|
|
}
|
|
proc_free_pid_internal(pid, PT_F_LWP);
|
|
}
|
|
|
|
void
|
|
proc_free_mem(struct proc *p)
|
|
{
|
|
|
|
kdtrace_proc_dtor(NULL, p);
|
|
pool_cache_put(proc_cache, p);
|
|
}
|
|
|
|
/*
|
|
* proc_enterpgrp: move p to a new or existing process group (and session).
|
|
*
|
|
* If we are creating a new pgrp, the pgid should equal
|
|
* the calling process' pid.
|
|
* If is only valid to enter a process group that is in the session
|
|
* of the process.
|
|
* Also mksess should only be set if we are creating a process group
|
|
*
|
|
* Only called from sys_setsid, sys_setpgid and posix_spawn/spawn_return.
|
|
*/
|
|
int
|
|
proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
|
|
{
|
|
struct pgrp *new_pgrp, *pgrp;
|
|
struct session *sess;
|
|
struct proc *p;
|
|
int rval;
|
|
pid_t pg_id = NO_PGID;
|
|
|
|
/* Allocate data areas we might need before doing any validity checks */
|
|
sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
|
|
new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
|
|
|
|
mutex_enter(&proc_lock);
|
|
rval = EPERM; /* most common error (to save typing) */
|
|
|
|
/* Check pgrp exists or can be created */
|
|
pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
|
|
if (pgrp != NULL && pgrp->pg_id != pgid)
|
|
goto done;
|
|
|
|
/* Can only set another process under restricted circumstances. */
|
|
if (pid != curp->p_pid) {
|
|
/* Must exist and be one of our children... */
|
|
p = proc_find_internal(pid, false);
|
|
if (p == NULL || !p_inferior(p, curp)) {
|
|
rval = ESRCH;
|
|
goto done;
|
|
}
|
|
/* ... in the same session... */
|
|
if (sess != NULL || p->p_session != curp->p_session)
|
|
goto done;
|
|
/* ... existing pgid must be in same session ... */
|
|
if (pgrp != NULL && pgrp->pg_session != p->p_session)
|
|
goto done;
|
|
/* ... and not done an exec. */
|
|
if (p->p_flag & PK_EXEC) {
|
|
rval = EACCES;
|
|
goto done;
|
|
}
|
|
} else {
|
|
/* ... setsid() cannot re-enter a pgrp */
|
|
if (mksess && (curp->p_pgid == curp->p_pid ||
|
|
pgrp_find(curp->p_pid)))
|
|
goto done;
|
|
p = curp;
|
|
}
|
|
|
|
/* Changing the process group/session of a session
|
|
leader is definitely off limits. */
|
|
if (SESS_LEADER(p)) {
|
|
if (sess == NULL && p->p_pgrp == pgrp)
|
|
/* unless it's a definite noop */
|
|
rval = 0;
|
|
goto done;
|
|
}
|
|
|
|
/* Can only create a process group with id of process */
|
|
if (pgrp == NULL && pgid != pid)
|
|
goto done;
|
|
|
|
/* Can only create a session if creating pgrp */
|
|
if (sess != NULL && pgrp != NULL)
|
|
goto done;
|
|
|
|
/* Check we allocated memory for a pgrp... */
|
|
if (pgrp == NULL && new_pgrp == NULL)
|
|
goto done;
|
|
|
|
/* Don't attach to 'zombie' pgrp */
|
|
if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
|
|
goto done;
|
|
|
|
/* Expect to succeed now */
|
|
rval = 0;
|
|
|
|
if (pgrp == p->p_pgrp)
|
|
/* nothing to do */
|
|
goto done;
|
|
|
|
/* Ok all setup, link up required structures */
|
|
|
|
if (pgrp == NULL) {
|
|
pgrp = new_pgrp;
|
|
new_pgrp = NULL;
|
|
if (sess != NULL) {
|
|
sess->s_sid = p->p_pid;
|
|
sess->s_leader = p;
|
|
sess->s_count = 1;
|
|
sess->s_ttyvp = NULL;
|
|
sess->s_ttyp = NULL;
|
|
sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
|
|
memcpy(sess->s_login, p->p_session->s_login,
|
|
sizeof(sess->s_login));
|
|
p->p_lflag &= ~PL_CONTROLT;
|
|
} else {
|
|
sess = p->p_pgrp->pg_session;
|
|
proc_sesshold(sess);
|
|
}
|
|
pgrp->pg_session = sess;
|
|
sess = NULL;
|
|
|
|
pgrp->pg_id = pgid;
|
|
LIST_INIT(&pgrp->pg_members);
|
|
#ifdef DIAGNOSTIC
|
|
if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
|
|
panic("enterpgrp: pgrp table slot in use");
|
|
if (__predict_false(mksess && p != curp))
|
|
panic("enterpgrp: mksession and p != curproc");
|
|
#endif
|
|
pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
|
|
pgrp->pg_jobc = 0;
|
|
}
|
|
|
|
/*
|
|
* Adjust eligibility of affected pgrps to participate in job control.
|
|
* Increment eligibility counts before decrementing, otherwise we
|
|
* could reach 0 spuriously during the first call.
|
|
*/
|
|
fixjobc(p, pgrp, 1);
|
|
fixjobc(p, p->p_pgrp, 0);
|
|
|
|
/* Interlock with ttread(). */
|
|
mutex_spin_enter(&tty_lock);
|
|
|
|
/* Move process to requested group. */
|
|
LIST_REMOVE(p, p_pglist);
|
|
if (LIST_EMPTY(&p->p_pgrp->pg_members))
|
|
/* defer delete until we've dumped the lock */
|
|
pg_id = p->p_pgrp->pg_id;
|
|
p->p_pgrp = pgrp;
|
|
LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
|
|
|
|
/* Done with the swap; we can release the tty mutex. */
|
|
mutex_spin_exit(&tty_lock);
|
|
|
|
done:
|
|
if (pg_id != NO_PGID) {
|
|
/* Releases proc_lock. */
|
|
pg_delete(pg_id);
|
|
} else {
|
|
mutex_exit(&proc_lock);
|
|
}
|
|
if (sess != NULL)
|
|
kmem_free(sess, sizeof(*sess));
|
|
if (new_pgrp != NULL)
|
|
kmem_free(new_pgrp, sizeof(*new_pgrp));
|
|
#ifdef DEBUG_PGRP
|
|
if (__predict_false(rval))
|
|
printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
|
|
pid, pgid, mksess, curp->p_pid, rval);
|
|
#endif
|
|
return rval;
|
|
}
|
|
|
|
/*
|
|
* proc_leavepgrp: remove a process from its process group.
|
|
* => must be called with the proc_lock held, which will be released;
|
|
*/
|
|
void
|
|
proc_leavepgrp(struct proc *p)
|
|
{
|
|
struct pgrp *pgrp;
|
|
|
|
KASSERT(mutex_owned(&proc_lock));
|
|
|
|
/* Interlock with ttread() */
|
|
mutex_spin_enter(&tty_lock);
|
|
pgrp = p->p_pgrp;
|
|
LIST_REMOVE(p, p_pglist);
|
|
p->p_pgrp = NULL;
|
|
mutex_spin_exit(&tty_lock);
|
|
|
|
if (LIST_EMPTY(&pgrp->pg_members)) {
|
|
/* Releases proc_lock. */
|
|
pg_delete(pgrp->pg_id);
|
|
} else {
|
|
mutex_exit(&proc_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* pg_remove: remove a process group from the table.
|
|
* => must be called with the proc_lock held;
|
|
* => returns process group to free;
|
|
*/
|
|
static struct pgrp *
|
|
pg_remove(pid_t pg_id)
|
|
{
|
|
struct pgrp *pgrp;
|
|
struct pid_table *pt;
|
|
|
|
KASSERT(mutex_owned(&proc_lock));
|
|
|
|
pt = &pid_table[pg_id & pid_tbl_mask];
|
|
pgrp = pt->pt_pgrp;
|
|
|
|
KASSERT(pgrp != NULL);
|
|
KASSERT(pgrp->pg_id == pg_id);
|
|
KASSERT(LIST_EMPTY(&pgrp->pg_members));
|
|
|
|
pt->pt_pgrp = NULL;
|
|
|
|
if (!PT_VALID(pt->pt_slot)) {
|
|
/* Orphaned pgrp, put slot onto free list. */
|
|
KASSERT((PT_NEXT(pt->pt_slot) & pid_tbl_mask) == 0);
|
|
pg_id &= pid_tbl_mask;
|
|
pt = &pid_table[last_free_pt];
|
|
pt->pt_slot = PT_SET_FREE(PT_NEXT(pt->pt_slot) | pg_id);
|
|
KASSERT(pt->pt_pid == 0);
|
|
last_free_pt = pg_id;
|
|
pid_alloc_cnt--;
|
|
}
|
|
return pgrp;
|
|
}
|
|
|
|
/*
|
|
* pg_delete: delete and free a process group.
|
|
* => must be called with the proc_lock held, which will be released.
|
|
*/
|
|
static void
|
|
pg_delete(pid_t pg_id)
|
|
{
|
|
struct pgrp *pg;
|
|
struct tty *ttyp;
|
|
struct session *ss;
|
|
|
|
KASSERT(mutex_owned(&proc_lock));
|
|
|
|
pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
|
|
if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
|
|
mutex_exit(&proc_lock);
|
|
return;
|
|
}
|
|
|
|
ss = pg->pg_session;
|
|
|
|
/* Remove reference (if any) from tty to this process group */
|
|
mutex_spin_enter(&tty_lock);
|
|
ttyp = ss->s_ttyp;
|
|
if (ttyp != NULL && ttyp->t_pgrp == pg) {
|
|
ttyp->t_pgrp = NULL;
|
|
KASSERT(ttyp->t_session == ss);
|
|
}
|
|
mutex_spin_exit(&tty_lock);
|
|
|
|
/*
|
|
* The leading process group in a session is freed by proc_sessrele(),
|
|
* if last reference. It will also release the locks.
|
|
*/
|
|
pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
|
|
proc_sessrele(ss);
|
|
|
|
if (pg != NULL) {
|
|
/* Free it, if was not done above. */
|
|
kmem_free(pg, sizeof(struct pgrp));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Adjust pgrp jobc counters when specified process changes process group.
|
|
* We count the number of processes in each process group that "qualify"
|
|
* the group for terminal job control (those with a parent in a different
|
|
* process group of the same session). If that count reaches zero, the
|
|
* process group becomes orphaned. Check both the specified process'
|
|
* process group and that of its children.
|
|
* entering == 0 => p is leaving specified group.
|
|
* entering == 1 => p is entering specified group.
|
|
*
|
|
* Call with proc_lock held.
|
|
*/
|
|
void
|
|
fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
|
|
{
|
|
struct pgrp *hispgrp;
|
|
struct session *mysession = pgrp->pg_session;
|
|
struct proc *child;
|
|
|
|
KASSERT(mutex_owned(&proc_lock));
|
|
|
|
/*
|
|
* Check p's parent to see whether p qualifies its own process
|
|
* group; if so, adjust count for p's process group.
|
|
*/
|
|
hispgrp = p->p_pptr->p_pgrp;
|
|
if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
|
|
if (entering) {
|
|
pgrp->pg_jobc++;
|
|
p->p_lflag &= ~PL_ORPHANPG;
|
|
} else {
|
|
KASSERT(pgrp->pg_jobc > 0);
|
|
if (--pgrp->pg_jobc == 0)
|
|
orphanpg(pgrp);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check this process' children to see whether they qualify
|
|
* their process groups; if so, adjust counts for children's
|
|
* process groups.
|
|
*/
|
|
LIST_FOREACH(child, &p->p_children, p_sibling) {
|
|
hispgrp = child->p_pgrp;
|
|
if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
|
|
!P_ZOMBIE(child)) {
|
|
if (entering) {
|
|
child->p_lflag &= ~PL_ORPHANPG;
|
|
hispgrp->pg_jobc++;
|
|
} else {
|
|
KASSERT(hispgrp->pg_jobc > 0);
|
|
if (--hispgrp->pg_jobc == 0)
|
|
orphanpg(hispgrp);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* A process group has become orphaned;
|
|
* if there are any stopped processes in the group,
|
|
* hang-up all process in that group.
|
|
*
|
|
* Call with proc_lock held.
|
|
*/
|
|
static void
|
|
orphanpg(struct pgrp *pg)
|
|
{
|
|
struct proc *p;
|
|
|
|
KASSERT(mutex_owned(&proc_lock));
|
|
|
|
LIST_FOREACH(p, &pg->pg_members, p_pglist) {
|
|
if (p->p_stat == SSTOP) {
|
|
p->p_lflag |= PL_ORPHANPG;
|
|
psignal(p, SIGHUP);
|
|
psignal(p, SIGCONT);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef DDB
|
|
#include <ddb/db_output.h>
|
|
void pidtbl_dump(void);
|
|
void
|
|
pidtbl_dump(void)
|
|
{
|
|
struct pid_table *pt;
|
|
struct proc *p;
|
|
struct pgrp *pgrp;
|
|
uintptr_t slot;
|
|
int id;
|
|
|
|
db_printf("pid table %p size %x, next %x, last %x\n",
|
|
pid_table, pid_tbl_mask+1,
|
|
next_free_pt, last_free_pt);
|
|
for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
|
|
slot = pt->pt_slot;
|
|
if (!PT_VALID(slot) && !pt->pt_pgrp)
|
|
continue;
|
|
if (PT_IS_LWP(slot)) {
|
|
p = PT_GET_LWP(slot)->l_proc;
|
|
} else if (PT_IS_PROC(slot)) {
|
|
p = PT_GET_PROC(slot);
|
|
} else {
|
|
p = NULL;
|
|
}
|
|
db_printf(" id %x: ", id);
|
|
if (p != NULL)
|
|
db_printf("slotpid %d proc %p id %d (0x%x) %s\n",
|
|
pt->pt_pid, p, p->p_pid, p->p_pid, p->p_comm);
|
|
else
|
|
db_printf("next %x use %x\n",
|
|
PT_NEXT(slot) & pid_tbl_mask,
|
|
PT_NEXT(slot) & ~pid_tbl_mask);
|
|
if ((pgrp = pt->pt_pgrp)) {
|
|
db_printf("\tsession %p, sid %d, count %d, login %s\n",
|
|
pgrp->pg_session, pgrp->pg_session->s_sid,
|
|
pgrp->pg_session->s_count,
|
|
pgrp->pg_session->s_login);
|
|
db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
|
|
pgrp, pgrp->pg_id, pgrp->pg_jobc,
|
|
LIST_FIRST(&pgrp->pg_members));
|
|
LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
|
|
db_printf("\t\tpid %d addr %p pgrp %p %s\n",
|
|
p->p_pid, p, p->p_pgrp, p->p_comm);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif /* DDB */
|
|
|
|
#ifdef KSTACK_CHECK_MAGIC
|
|
|
|
#define KSTACK_MAGIC 0xdeadbeaf
|
|
|
|
/* XXX should be per process basis? */
|
|
static int kstackleftmin = KSTACK_SIZE;
|
|
static int kstackleftthres = KSTACK_SIZE / 8;
|
|
|
|
void
|
|
kstack_setup_magic(const struct lwp *l)
|
|
{
|
|
uint32_t *ip;
|
|
uint32_t const *end;
|
|
|
|
KASSERT(l != NULL);
|
|
KASSERT(l != &lwp0);
|
|
|
|
/*
|
|
* fill all the stack with magic number
|
|
* so that later modification on it can be detected.
|
|
*/
|
|
ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
|
|
end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
|
|
for (; ip < end; ip++) {
|
|
*ip = KSTACK_MAGIC;
|
|
}
|
|
}
|
|
|
|
void
|
|
kstack_check_magic(const struct lwp *l)
|
|
{
|
|
uint32_t const *ip, *end;
|
|
int stackleft;
|
|
|
|
KASSERT(l != NULL);
|
|
|
|
/* don't check proc0 */ /*XXX*/
|
|
if (l == &lwp0)
|
|
return;
|
|
|
|
#ifdef __MACHINE_STACK_GROWS_UP
|
|
/* stack grows upwards (eg. hppa) */
|
|
ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
|
|
end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
|
|
for (ip--; ip >= end; ip--)
|
|
if (*ip != KSTACK_MAGIC)
|
|
break;
|
|
|
|
stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
|
|
#else /* __MACHINE_STACK_GROWS_UP */
|
|
/* stack grows downwards (eg. i386) */
|
|
ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
|
|
end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
|
|
for (; ip < end; ip++)
|
|
if (*ip != KSTACK_MAGIC)
|
|
break;
|
|
|
|
stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
|
|
#endif /* __MACHINE_STACK_GROWS_UP */
|
|
|
|
if (kstackleftmin > stackleft) {
|
|
kstackleftmin = stackleft;
|
|
if (stackleft < kstackleftthres)
|
|
printf("warning: kernel stack left %d bytes"
|
|
"(pid %u:lid %u)\n", stackleft,
|
|
(u_int)l->l_proc->p_pid, (u_int)l->l_lid);
|
|
}
|
|
|
|
if (stackleft <= 0) {
|
|
panic("magic on the top of kernel stack changed for "
|
|
"pid %u, lid %u: maybe kernel stack overflow",
|
|
(u_int)l->l_proc->p_pid, (u_int)l->l_lid);
|
|
}
|
|
}
|
|
#endif /* KSTACK_CHECK_MAGIC */
|
|
|
|
int
|
|
proclist_foreach_call(struct proclist *list,
|
|
int (*callback)(struct proc *, void *arg), void *arg)
|
|
{
|
|
struct proc marker;
|
|
struct proc *p;
|
|
int ret = 0;
|
|
|
|
marker.p_flag = PK_MARKER;
|
|
mutex_enter(&proc_lock);
|
|
for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
|
|
if (p->p_flag & PK_MARKER) {
|
|
p = LIST_NEXT(p, p_list);
|
|
continue;
|
|
}
|
|
LIST_INSERT_AFTER(p, &marker, p_list);
|
|
ret = (*callback)(p, arg);
|
|
KASSERT(mutex_owned(&proc_lock));
|
|
p = LIST_NEXT(&marker, p_list);
|
|
LIST_REMOVE(&marker, p_list);
|
|
}
|
|
mutex_exit(&proc_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
proc_vmspace_getref(struct proc *p, struct vmspace **vm)
|
|
{
|
|
|
|
/* XXXCDC: how should locking work here? */
|
|
|
|
/* curproc exception is for coredump. */
|
|
|
|
if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
|
|
(p->p_vmspace->vm_refcnt < 1)) {
|
|
return EFAULT;
|
|
}
|
|
|
|
uvmspace_addref(p->p_vmspace);
|
|
*vm = p->p_vmspace;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Acquire a write lock on the process credential.
|
|
*/
|
|
void
|
|
proc_crmod_enter(void)
|
|
{
|
|
struct lwp *l = curlwp;
|
|
struct proc *p = l->l_proc;
|
|
kauth_cred_t oc;
|
|
|
|
/* Reset what needs to be reset in plimit. */
|
|
if (p->p_limit->pl_corename != defcorename) {
|
|
lim_setcorename(p, defcorename, 0);
|
|
}
|
|
|
|
mutex_enter(p->p_lock);
|
|
|
|
/* Ensure the LWP cached credentials are up to date. */
|
|
if ((oc = l->l_cred) != p->p_cred) {
|
|
kauth_cred_hold(p->p_cred);
|
|
l->l_cred = p->p_cred;
|
|
kauth_cred_free(oc);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set in a new process credential, and drop the write lock. The credential
|
|
* must have a reference already. Optionally, free a no-longer required
|
|
* credential. The scheduler also needs to inspect p_cred, so we also
|
|
* briefly acquire the sched state mutex.
|
|
*/
|
|
void
|
|
proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
|
|
{
|
|
struct lwp *l = curlwp, *l2;
|
|
struct proc *p = l->l_proc;
|
|
kauth_cred_t oc;
|
|
|
|
KASSERT(mutex_owned(p->p_lock));
|
|
|
|
/* Is there a new credential to set in? */
|
|
if (scred != NULL) {
|
|
p->p_cred = scred;
|
|
LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
|
|
if (l2 != l)
|
|
l2->l_prflag |= LPR_CRMOD;
|
|
}
|
|
|
|
/* Ensure the LWP cached credentials are up to date. */
|
|
if ((oc = l->l_cred) != scred) {
|
|
kauth_cred_hold(scred);
|
|
l->l_cred = scred;
|
|
}
|
|
} else
|
|
oc = NULL; /* XXXgcc */
|
|
|
|
if (sugid) {
|
|
/*
|
|
* Mark process as having changed credentials, stops
|
|
* tracing etc.
|
|
*/
|
|
p->p_flag |= PK_SUGID;
|
|
}
|
|
|
|
mutex_exit(p->p_lock);
|
|
|
|
/* If there is a credential to be released, free it now. */
|
|
if (fcred != NULL) {
|
|
KASSERT(scred != NULL);
|
|
kauth_cred_free(fcred);
|
|
if (oc != scred)
|
|
kauth_cred_free(oc);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* proc_specific_key_create --
|
|
* Create a key for subsystem proc-specific data.
|
|
*/
|
|
int
|
|
proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
|
|
{
|
|
|
|
return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
|
|
}
|
|
|
|
/*
|
|
* proc_specific_key_delete --
|
|
* Delete a key for subsystem proc-specific data.
|
|
*/
|
|
void
|
|
proc_specific_key_delete(specificdata_key_t key)
|
|
{
|
|
|
|
specificdata_key_delete(proc_specificdata_domain, key);
|
|
}
|
|
|
|
/*
|
|
* proc_initspecific --
|
|
* Initialize a proc's specificdata container.
|
|
*/
|
|
void
|
|
proc_initspecific(struct proc *p)
|
|
{
|
|
int error __diagused;
|
|
|
|
error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
|
|
KASSERT(error == 0);
|
|
}
|
|
|
|
/*
|
|
* proc_finispecific --
|
|
* Finalize a proc's specificdata container.
|
|
*/
|
|
void
|
|
proc_finispecific(struct proc *p)
|
|
{
|
|
|
|
specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
|
|
}
|
|
|
|
/*
|
|
* proc_getspecific --
|
|
* Return proc-specific data corresponding to the specified key.
|
|
*/
|
|
void *
|
|
proc_getspecific(struct proc *p, specificdata_key_t key)
|
|
{
|
|
|
|
return (specificdata_getspecific(proc_specificdata_domain,
|
|
&p->p_specdataref, key));
|
|
}
|
|
|
|
/*
|
|
* proc_setspecific --
|
|
* Set proc-specific data corresponding to the specified key.
|
|
*/
|
|
void
|
|
proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
|
|
{
|
|
|
|
specificdata_setspecific(proc_specificdata_domain,
|
|
&p->p_specdataref, key, data);
|
|
}
|
|
|
|
int
|
|
proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
|
|
{
|
|
int r = 0;
|
|
|
|
if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
|
|
kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
|
|
/*
|
|
* suid proc of ours or proc not ours
|
|
*/
|
|
r = EPERM;
|
|
} else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
|
|
/*
|
|
* sgid proc has sgid back to us temporarily
|
|
*/
|
|
r = EPERM;
|
|
} else {
|
|
/*
|
|
* our rgid must be in target's group list (ie,
|
|
* sub-processes started by a sgid process)
|
|
*/
|
|
int ismember = 0;
|
|
|
|
if (kauth_cred_ismember_gid(cred,
|
|
kauth_cred_getgid(target), &ismember) != 0 ||
|
|
!ismember)
|
|
r = EPERM;
|
|
}
|
|
|
|
return (r);
|
|
}
|
|
|
|
/*
|
|
* sysctl stuff
|
|
*/
|
|
|
|
#define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
|
|
|
|
static const u_int sysctl_flagmap[] = {
|
|
PK_ADVLOCK, P_ADVLOCK,
|
|
PK_EXEC, P_EXEC,
|
|
PK_NOCLDWAIT, P_NOCLDWAIT,
|
|
PK_32, P_32,
|
|
PK_CLDSIGIGN, P_CLDSIGIGN,
|
|
PK_SUGID, P_SUGID,
|
|
0
|
|
};
|
|
|
|
static const u_int sysctl_sflagmap[] = {
|
|
PS_NOCLDSTOP, P_NOCLDSTOP,
|
|
PS_WEXIT, P_WEXIT,
|
|
PS_STOPFORK, P_STOPFORK,
|
|
PS_STOPEXEC, P_STOPEXEC,
|
|
PS_STOPEXIT, P_STOPEXIT,
|
|
0
|
|
};
|
|
|
|
static const u_int sysctl_slflagmap[] = {
|
|
PSL_TRACED, P_TRACED,
|
|
PSL_CHTRACED, P_CHTRACED,
|
|
PSL_SYSCALL, P_SYSCALL,
|
|
0
|
|
};
|
|
|
|
static const u_int sysctl_lflagmap[] = {
|
|
PL_CONTROLT, P_CONTROLT,
|
|
PL_PPWAIT, P_PPWAIT,
|
|
0
|
|
};
|
|
|
|
static const u_int sysctl_stflagmap[] = {
|
|
PST_PROFIL, P_PROFIL,
|
|
0
|
|
|
|
};
|
|
|
|
/* used by kern_lwp also */
|
|
const u_int sysctl_lwpflagmap[] = {
|
|
LW_SINTR, L_SINTR,
|
|
LW_SYSTEM, L_SYSTEM,
|
|
0
|
|
};
|
|
|
|
/*
|
|
* Find the most ``active'' lwp of a process and return it for ps display
|
|
* purposes
|
|
*/
|
|
static struct lwp *
|
|
proc_active_lwp(struct proc *p)
|
|
{
|
|
static const int ostat[] = {
|
|
0,
|
|
2, /* LSIDL */
|
|
6, /* LSRUN */
|
|
5, /* LSSLEEP */
|
|
4, /* LSSTOP */
|
|
0, /* LSZOMB */
|
|
1, /* LSDEAD */
|
|
7, /* LSONPROC */
|
|
3 /* LSSUSPENDED */
|
|
};
|
|
|
|
struct lwp *l, *lp = NULL;
|
|
LIST_FOREACH(l, &p->p_lwps, l_sibling) {
|
|
KASSERT(l->l_stat >= 0 && l->l_stat < __arraycount(ostat));
|
|
if (lp == NULL ||
|
|
ostat[l->l_stat] > ostat[lp->l_stat] ||
|
|
(ostat[l->l_stat] == ostat[lp->l_stat] &&
|
|
l->l_cpticks > lp->l_cpticks)) {
|
|
lp = l;
|
|
continue;
|
|
}
|
|
}
|
|
return lp;
|
|
}
|
|
|
|
static int
|
|
sysctl_doeproc(SYSCTLFN_ARGS)
|
|
{
|
|
union {
|
|
struct kinfo_proc kproc;
|
|
struct kinfo_proc2 kproc2;
|
|
} *kbuf;
|
|
struct proc *p, *next, *marker;
|
|
char *where, *dp;
|
|
int type, op, arg, error;
|
|
u_int elem_size, kelem_size, elem_count;
|
|
size_t buflen, needed;
|
|
bool match, zombie, mmmbrains;
|
|
const bool allowaddr = get_expose_address(curproc);
|
|
|
|
if (namelen == 1 && name[0] == CTL_QUERY)
|
|
return (sysctl_query(SYSCTLFN_CALL(rnode)));
|
|
|
|
dp = where = oldp;
|
|
buflen = where != NULL ? *oldlenp : 0;
|
|
error = 0;
|
|
needed = 0;
|
|
type = rnode->sysctl_num;
|
|
|
|
if (type == KERN_PROC) {
|
|
if (namelen == 0)
|
|
return EINVAL;
|
|
switch (op = name[0]) {
|
|
case KERN_PROC_ALL:
|
|
if (namelen != 1)
|
|
return EINVAL;
|
|
arg = 0;
|
|
break;
|
|
default:
|
|
if (namelen != 2)
|
|
return EINVAL;
|
|
arg = name[1];
|
|
break;
|
|
}
|
|
elem_count = 0; /* Hush little compiler, don't you cry */
|
|
kelem_size = elem_size = sizeof(kbuf->kproc);
|
|
} else {
|
|
if (namelen != 4)
|
|
return EINVAL;
|
|
op = name[0];
|
|
arg = name[1];
|
|
elem_size = name[2];
|
|
elem_count = name[3];
|
|
kelem_size = sizeof(kbuf->kproc2);
|
|
}
|
|
|
|
sysctl_unlock();
|
|
|
|
kbuf = kmem_zalloc(sizeof(*kbuf), KM_SLEEP);
|
|
marker = kmem_alloc(sizeof(*marker), KM_SLEEP);
|
|
marker->p_flag = PK_MARKER;
|
|
|
|
mutex_enter(&proc_lock);
|
|
/*
|
|
* Start with zombies to prevent reporting processes twice, in case they
|
|
* are dying and being moved from the list of alive processes to zombies.
|
|
*/
|
|
mmmbrains = true;
|
|
for (p = LIST_FIRST(&zombproc);; p = next) {
|
|
if (p == NULL) {
|
|
if (mmmbrains) {
|
|
p = LIST_FIRST(&allproc);
|
|
mmmbrains = false;
|
|
}
|
|
if (p == NULL)
|
|
break;
|
|
}
|
|
next = LIST_NEXT(p, p_list);
|
|
if ((p->p_flag & PK_MARKER) != 0)
|
|
continue;
|
|
|
|
/*
|
|
* Skip embryonic processes.
|
|
*/
|
|
if (p->p_stat == SIDL)
|
|
continue;
|
|
|
|
mutex_enter(p->p_lock);
|
|
error = kauth_authorize_process(l->l_cred,
|
|
KAUTH_PROCESS_CANSEE, p,
|
|
KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_EPROC), NULL, NULL);
|
|
if (error != 0) {
|
|
mutex_exit(p->p_lock);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Hande all the operations in one switch on the cost of
|
|
* algorithm complexity is on purpose. The win splitting this
|
|
* function into several similar copies makes maintenance burden
|
|
* burden, code grow and boost is neglible in practical systems.
|
|
*/
|
|
switch (op) {
|
|
case KERN_PROC_PID:
|
|
match = (p->p_pid == (pid_t)arg);
|
|
break;
|
|
|
|
case KERN_PROC_PGRP:
|
|
match = (p->p_pgrp->pg_id == (pid_t)arg);
|
|
break;
|
|
|
|
case KERN_PROC_SESSION:
|
|
match = (p->p_session->s_sid == (pid_t)arg);
|
|
break;
|
|
|
|
case KERN_PROC_TTY:
|
|
match = true;
|
|
if (arg == (int) KERN_PROC_TTY_REVOKE) {
|
|
if ((p->p_lflag & PL_CONTROLT) == 0 ||
|
|
p->p_session->s_ttyp == NULL ||
|
|
p->p_session->s_ttyvp != NULL) {
|
|
match = false;
|
|
}
|
|
} else if ((p->p_lflag & PL_CONTROLT) == 0 ||
|
|
p->p_session->s_ttyp == NULL) {
|
|
if ((dev_t)arg != KERN_PROC_TTY_NODEV) {
|
|
match = false;
|
|
}
|
|
} else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) {
|
|
match = false;
|
|
}
|
|
break;
|
|
|
|
case KERN_PROC_UID:
|
|
match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg);
|
|
break;
|
|
|
|
case KERN_PROC_RUID:
|
|
match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg);
|
|
break;
|
|
|
|
case KERN_PROC_GID:
|
|
match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg);
|
|
break;
|
|
|
|
case KERN_PROC_RGID:
|
|
match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg);
|
|
break;
|
|
|
|
case KERN_PROC_ALL:
|
|
match = true;
|
|
/* allow everything */
|
|
break;
|
|
|
|
default:
|
|
error = EINVAL;
|
|
mutex_exit(p->p_lock);
|
|
goto cleanup;
|
|
}
|
|
if (!match) {
|
|
mutex_exit(p->p_lock);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Grab a hold on the process.
|
|
*/
|
|
if (mmmbrains) {
|
|
zombie = true;
|
|
} else {
|
|
zombie = !rw_tryenter(&p->p_reflock, RW_READER);
|
|
}
|
|
if (zombie) {
|
|
LIST_INSERT_AFTER(p, marker, p_list);
|
|
}
|
|
|
|
if (buflen >= elem_size &&
|
|
(type == KERN_PROC || elem_count > 0)) {
|
|
ruspace(p); /* Update process vm resource use */
|
|
|
|
if (type == KERN_PROC) {
|
|
fill_proc(p, &kbuf->kproc.kp_proc, allowaddr);
|
|
fill_eproc(p, &kbuf->kproc.kp_eproc, zombie,
|
|
allowaddr);
|
|
} else {
|
|
fill_kproc2(p, &kbuf->kproc2, zombie,
|
|
allowaddr);
|
|
elem_count--;
|
|
}
|
|
mutex_exit(p->p_lock);
|
|
mutex_exit(&proc_lock);
|
|
/*
|
|
* Copy out elem_size, but not larger than kelem_size
|
|
*/
|
|
error = sysctl_copyout(l, kbuf, dp,
|
|
uimin(kelem_size, elem_size));
|
|
mutex_enter(&proc_lock);
|
|
if (error) {
|
|
goto bah;
|
|
}
|
|
dp += elem_size;
|
|
buflen -= elem_size;
|
|
} else {
|
|
mutex_exit(p->p_lock);
|
|
}
|
|
needed += elem_size;
|
|
|
|
/*
|
|
* Release reference to process.
|
|
*/
|
|
if (zombie) {
|
|
next = LIST_NEXT(marker, p_list);
|
|
LIST_REMOVE(marker, p_list);
|
|
} else {
|
|
rw_exit(&p->p_reflock);
|
|
next = LIST_NEXT(p, p_list);
|
|
}
|
|
|
|
/*
|
|
* Short-circuit break quickly!
|
|
*/
|
|
if (op == KERN_PROC_PID)
|
|
break;
|
|
}
|
|
mutex_exit(&proc_lock);
|
|
|
|
if (where != NULL) {
|
|
*oldlenp = dp - where;
|
|
if (needed > *oldlenp) {
|
|
error = ENOMEM;
|
|
goto out;
|
|
}
|
|
} else {
|
|
needed += KERN_PROCSLOP;
|
|
*oldlenp = needed;
|
|
}
|
|
kmem_free(kbuf, sizeof(*kbuf));
|
|
kmem_free(marker, sizeof(*marker));
|
|
sysctl_relock();
|
|
return 0;
|
|
bah:
|
|
if (zombie)
|
|
LIST_REMOVE(marker, p_list);
|
|
else
|
|
rw_exit(&p->p_reflock);
|
|
cleanup:
|
|
mutex_exit(&proc_lock);
|
|
out:
|
|
kmem_free(kbuf, sizeof(*kbuf));
|
|
kmem_free(marker, sizeof(*marker));
|
|
sysctl_relock();
|
|
return error;
|
|
}
|
|
|
|
int
|
|
copyin_psstrings(struct proc *p, struct ps_strings *arginfo)
|
|
{
|
|
#if !defined(_RUMPKERNEL)
|
|
int retval;
|
|
|
|
if (p->p_flag & PK_32) {
|
|
MODULE_HOOK_CALL(kern_proc32_copyin_hook, (p, arginfo),
|
|
enosys(), retval);
|
|
return retval;
|
|
}
|
|
#endif /* !defined(_RUMPKERNEL) */
|
|
|
|
return copyin_proc(p, (void *)p->p_psstrp, arginfo, sizeof(*arginfo));
|
|
}
|
|
|
|
static int
|
|
copy_procargs_sysctl_cb(void *cookie_, const void *src, size_t off, size_t len)
|
|
{
|
|
void **cookie = cookie_;
|
|
struct lwp *l = cookie[0];
|
|
char *dst = cookie[1];
|
|
|
|
return sysctl_copyout(l, src, dst + off, len);
|
|
}
|
|
|
|
/*
|
|
* sysctl helper routine for kern.proc_args pseudo-subtree.
|
|
*/
|
|
static int
|
|
sysctl_kern_proc_args(SYSCTLFN_ARGS)
|
|
{
|
|
struct ps_strings pss;
|
|
struct proc *p;
|
|
pid_t pid;
|
|
int type, error;
|
|
void *cookie[2];
|
|
|
|
if (namelen == 1 && name[0] == CTL_QUERY)
|
|
return (sysctl_query(SYSCTLFN_CALL(rnode)));
|
|
|
|
if (newp != NULL || namelen != 2)
|
|
return (EINVAL);
|
|
pid = name[0];
|
|
type = name[1];
|
|
|
|
switch (type) {
|
|
case KERN_PROC_PATHNAME:
|
|
sysctl_unlock();
|
|
error = fill_pathname(l, pid, oldp, oldlenp);
|
|
sysctl_relock();
|
|
return error;
|
|
|
|
case KERN_PROC_CWD:
|
|
sysctl_unlock();
|
|
error = fill_cwd(l, pid, oldp, oldlenp);
|
|
sysctl_relock();
|
|
return error;
|
|
|
|
case KERN_PROC_ARGV:
|
|
case KERN_PROC_NARGV:
|
|
case KERN_PROC_ENV:
|
|
case KERN_PROC_NENV:
|
|
/* ok */
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
|
|
sysctl_unlock();
|
|
|
|
/* check pid */
|
|
mutex_enter(&proc_lock);
|
|
if ((p = proc_find(pid)) == NULL) {
|
|
error = EINVAL;
|
|
goto out_locked;
|
|
}
|
|
mutex_enter(p->p_lock);
|
|
|
|
/* Check permission. */
|
|
if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
|
|
error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
|
|
p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL);
|
|
else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV)
|
|
error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
|
|
p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL);
|
|
else
|
|
error = EINVAL; /* XXXGCC */
|
|
if (error) {
|
|
mutex_exit(p->p_lock);
|
|
goto out_locked;
|
|
}
|
|
|
|
if (oldp == NULL) {
|
|
if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
|
|
*oldlenp = sizeof (int);
|
|
else
|
|
*oldlenp = ARG_MAX; /* XXX XXX XXX */
|
|
error = 0;
|
|
mutex_exit(p->p_lock);
|
|
goto out_locked;
|
|
}
|
|
|
|
/*
|
|
* Zombies don't have a stack, so we can't read their psstrings.
|
|
* System processes also don't have a user stack.
|
|
*/
|
|
if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) {
|
|
error = EINVAL;
|
|
mutex_exit(p->p_lock);
|
|
goto out_locked;
|
|
}
|
|
|
|
error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
|
|
mutex_exit(p->p_lock);
|
|
if (error) {
|
|
goto out_locked;
|
|
}
|
|
mutex_exit(&proc_lock);
|
|
|
|
if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
|
|
int value;
|
|
if ((error = copyin_psstrings(p, &pss)) == 0) {
|
|
if (type == KERN_PROC_NARGV)
|
|
value = pss.ps_nargvstr;
|
|
else
|
|
value = pss.ps_nenvstr;
|
|
error = sysctl_copyout(l, &value, oldp, sizeof(value));
|
|
*oldlenp = sizeof(value);
|
|
}
|
|
} else {
|
|
cookie[0] = l;
|
|
cookie[1] = oldp;
|
|
error = copy_procargs(p, type, oldlenp,
|
|
copy_procargs_sysctl_cb, cookie);
|
|
}
|
|
rw_exit(&p->p_reflock);
|
|
sysctl_relock();
|
|
return error;
|
|
|
|
out_locked:
|
|
mutex_exit(&proc_lock);
|
|
sysctl_relock();
|
|
return error;
|
|
}
|
|
|
|
int
|
|
copy_procargs(struct proc *p, int oid, size_t *limit,
|
|
int (*cb)(void *, const void *, size_t, size_t), void *cookie)
|
|
{
|
|
struct ps_strings pss;
|
|
size_t len, i, loaded, entry_len;
|
|
struct uio auio;
|
|
struct iovec aiov;
|
|
int error, argvlen;
|
|
char *arg;
|
|
char **argv;
|
|
vaddr_t user_argv;
|
|
struct vmspace *vmspace;
|
|
|
|
/*
|
|
* Allocate a temporary buffer to hold the argument vector and
|
|
* the arguments themselve.
|
|
*/
|
|
arg = kmem_alloc(PAGE_SIZE, KM_SLEEP);
|
|
argv = kmem_alloc(PAGE_SIZE, KM_SLEEP);
|
|
|
|
/*
|
|
* Lock the process down in memory.
|
|
*/
|
|
vmspace = p->p_vmspace;
|
|
uvmspace_addref(vmspace);
|
|
|
|
/*
|
|
* Read in the ps_strings structure.
|
|
*/
|
|
if ((error = copyin_psstrings(p, &pss)) != 0)
|
|
goto done;
|
|
|
|
/*
|
|
* Now read the address of the argument vector.
|
|
*/
|
|
switch (oid) {
|
|
case KERN_PROC_ARGV:
|
|
user_argv = (uintptr_t)pss.ps_argvstr;
|
|
argvlen = pss.ps_nargvstr;
|
|
break;
|
|
case KERN_PROC_ENV:
|
|
user_argv = (uintptr_t)pss.ps_envstr;
|
|
argvlen = pss.ps_nenvstr;
|
|
break;
|
|
default:
|
|
error = EINVAL;
|
|
goto done;
|
|
}
|
|
|
|
if (argvlen < 0) {
|
|
error = EIO;
|
|
goto done;
|
|
}
|
|
|
|
|
|
/*
|
|
* Now copy each string.
|
|
*/
|
|
len = 0; /* bytes written to user buffer */
|
|
loaded = 0; /* bytes from argv already processed */
|
|
i = 0; /* To make compiler happy */
|
|
entry_len = PROC_PTRSZ(p);
|
|
|
|
for (; argvlen; --argvlen) {
|
|
int finished = 0;
|
|
vaddr_t base;
|
|
size_t xlen;
|
|
int j;
|
|
|
|
if (loaded == 0) {
|
|
size_t rem = entry_len * argvlen;
|
|
loaded = MIN(rem, PAGE_SIZE);
|
|
error = copyin_vmspace(vmspace,
|
|
(const void *)user_argv, argv, loaded);
|
|
if (error)
|
|
break;
|
|
user_argv += loaded;
|
|
i = 0;
|
|
}
|
|
|
|
#if !defined(_RUMPKERNEL)
|
|
if (p->p_flag & PK_32)
|
|
MODULE_HOOK_CALL(kern_proc32_base_hook,
|
|
(argv, i++), 0, base);
|
|
else
|
|
#endif /* !defined(_RUMPKERNEL) */
|
|
base = (vaddr_t)argv[i++];
|
|
loaded -= entry_len;
|
|
|
|
/*
|
|
* The program has messed around with its arguments,
|
|
* possibly deleting some, and replacing them with
|
|
* NULL's. Treat this as the last argument and not
|
|
* a failure.
|
|
*/
|
|
if (base == 0)
|
|
break;
|
|
|
|
while (!finished) {
|
|
xlen = PAGE_SIZE - (base & PAGE_MASK);
|
|
|
|
aiov.iov_base = arg;
|
|
aiov.iov_len = PAGE_SIZE;
|
|
auio.uio_iov = &aiov;
|
|
auio.uio_iovcnt = 1;
|
|
auio.uio_offset = base;
|
|
auio.uio_resid = xlen;
|
|
auio.uio_rw = UIO_READ;
|
|
UIO_SETUP_SYSSPACE(&auio);
|
|
error = uvm_io(&vmspace->vm_map, &auio, 0);
|
|
if (error)
|
|
goto done;
|
|
|
|
/* Look for the end of the string */
|
|
for (j = 0; j < xlen; j++) {
|
|
if (arg[j] == '\0') {
|
|
xlen = j + 1;
|
|
finished = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Check for user buffer overflow */
|
|
if (len + xlen > *limit) {
|
|
finished = 1;
|
|
if (len > *limit)
|
|
xlen = 0;
|
|
else
|
|
xlen = *limit - len;
|
|
}
|
|
|
|
/* Copyout the page */
|
|
error = (*cb)(cookie, arg, len, xlen);
|
|
if (error)
|
|
goto done;
|
|
|
|
len += xlen;
|
|
base += xlen;
|
|
}
|
|
}
|
|
*limit = len;
|
|
|
|
done:
|
|
kmem_free(argv, PAGE_SIZE);
|
|
kmem_free(arg, PAGE_SIZE);
|
|
uvmspace_free(vmspace);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Fill in a proc structure for the specified process.
|
|
*/
|
|
static void
|
|
fill_proc(const struct proc *psrc, struct proc *p, bool allowaddr)
|
|
{
|
|
COND_SET_VALUE(p->p_list, psrc->p_list, allowaddr);
|
|
COND_SET_VALUE(p->p_auxlock, psrc->p_auxlock, allowaddr);
|
|
COND_SET_VALUE(p->p_lock, psrc->p_lock, allowaddr);
|
|
COND_SET_VALUE(p->p_stmutex, psrc->p_stmutex, allowaddr);
|
|
COND_SET_VALUE(p->p_reflock, psrc->p_reflock, allowaddr);
|
|
COND_SET_VALUE(p->p_waitcv, psrc->p_waitcv, allowaddr);
|
|
COND_SET_VALUE(p->p_lwpcv, psrc->p_lwpcv, allowaddr);
|
|
COND_SET_VALUE(p->p_cred, psrc->p_cred, allowaddr);
|
|
COND_SET_VALUE(p->p_fd, psrc->p_fd, allowaddr);
|
|
COND_SET_VALUE(p->p_cwdi, psrc->p_cwdi, allowaddr);
|
|
COND_SET_VALUE(p->p_stats, psrc->p_stats, allowaddr);
|
|
COND_SET_VALUE(p->p_limit, psrc->p_limit, allowaddr);
|
|
COND_SET_VALUE(p->p_vmspace, psrc->p_vmspace, allowaddr);
|
|
COND_SET_VALUE(p->p_sigacts, psrc->p_sigacts, allowaddr);
|
|
COND_SET_VALUE(p->p_aio, psrc->p_aio, allowaddr);
|
|
p->p_mqueue_cnt = psrc->p_mqueue_cnt;
|
|
COND_SET_VALUE(p->p_specdataref, psrc->p_specdataref, allowaddr);
|
|
p->p_exitsig = psrc->p_exitsig;
|
|
p->p_flag = psrc->p_flag;
|
|
p->p_sflag = psrc->p_sflag;
|
|
p->p_slflag = psrc->p_slflag;
|
|
p->p_lflag = psrc->p_lflag;
|
|
p->p_stflag = psrc->p_stflag;
|
|
p->p_stat = psrc->p_stat;
|
|
p->p_trace_enabled = psrc->p_trace_enabled;
|
|
p->p_pid = psrc->p_pid;
|
|
COND_SET_VALUE(p->p_pglist, psrc->p_pglist, allowaddr);
|
|
COND_SET_VALUE(p->p_pptr, psrc->p_pptr, allowaddr);
|
|
COND_SET_VALUE(p->p_sibling, psrc->p_sibling, allowaddr);
|
|
COND_SET_VALUE(p->p_children, psrc->p_children, allowaddr);
|
|
COND_SET_VALUE(p->p_lwps, psrc->p_lwps, allowaddr);
|
|
COND_SET_VALUE(p->p_raslist, psrc->p_raslist, allowaddr);
|
|
p->p_nlwps = psrc->p_nlwps;
|
|
p->p_nzlwps = psrc->p_nzlwps;
|
|
p->p_nrlwps = psrc->p_nrlwps;
|
|
p->p_nlwpwait = psrc->p_nlwpwait;
|
|
p->p_ndlwps = psrc->p_ndlwps;
|
|
p->p_nstopchild = psrc->p_nstopchild;
|
|
p->p_waited = psrc->p_waited;
|
|
COND_SET_VALUE(p->p_zomblwp, psrc->p_zomblwp, allowaddr);
|
|
COND_SET_VALUE(p->p_vforklwp, psrc->p_vforklwp, allowaddr);
|
|
COND_SET_VALUE(p->p_sched_info, psrc->p_sched_info, allowaddr);
|
|
p->p_estcpu = psrc->p_estcpu;
|
|
p->p_estcpu_inherited = psrc->p_estcpu_inherited;
|
|
p->p_forktime = psrc->p_forktime;
|
|
p->p_pctcpu = psrc->p_pctcpu;
|
|
COND_SET_VALUE(p->p_opptr, psrc->p_opptr, allowaddr);
|
|
COND_SET_VALUE(p->p_timers, psrc->p_timers, allowaddr);
|
|
p->p_rtime = psrc->p_rtime;
|
|
p->p_uticks = psrc->p_uticks;
|
|
p->p_sticks = psrc->p_sticks;
|
|
p->p_iticks = psrc->p_iticks;
|
|
p->p_xutime = psrc->p_xutime;
|
|
p->p_xstime = psrc->p_xstime;
|
|
p->p_traceflag = psrc->p_traceflag;
|
|
COND_SET_VALUE(p->p_tracep, psrc->p_tracep, allowaddr);
|
|
COND_SET_VALUE(p->p_textvp, psrc->p_textvp, allowaddr);
|
|
COND_SET_VALUE(p->p_emul, psrc->p_emul, allowaddr);
|
|
COND_SET_VALUE(p->p_emuldata, psrc->p_emuldata, allowaddr);
|
|
COND_SET_VALUE(p->p_execsw, psrc->p_execsw, allowaddr);
|
|
COND_SET_VALUE(p->p_klist, psrc->p_klist, allowaddr);
|
|
COND_SET_VALUE(p->p_sigwaiters, psrc->p_sigwaiters, allowaddr);
|
|
COND_SET_VALUE(p->p_sigpend, psrc->p_sigpend, allowaddr);
|
|
COND_SET_VALUE(p->p_lwpctl, psrc->p_lwpctl, allowaddr);
|
|
p->p_ppid = psrc->p_ppid;
|
|
p->p_oppid = psrc->p_oppid;
|
|
COND_SET_VALUE(p->p_path, psrc->p_path, allowaddr);
|
|
COND_SET_VALUE(p->p_sigctx, psrc->p_sigctx, allowaddr);
|
|
p->p_nice = psrc->p_nice;
|
|
memcpy(p->p_comm, psrc->p_comm, sizeof(p->p_comm));
|
|
COND_SET_VALUE(p->p_pgrp, psrc->p_pgrp, allowaddr);
|
|
COND_SET_VALUE(p->p_psstrp, psrc->p_psstrp, allowaddr);
|
|
p->p_pax = psrc->p_pax;
|
|
p->p_xexit = psrc->p_xexit;
|
|
p->p_xsig = psrc->p_xsig;
|
|
p->p_acflag = psrc->p_acflag;
|
|
COND_SET_VALUE(p->p_md, psrc->p_md, allowaddr);
|
|
p->p_stackbase = psrc->p_stackbase;
|
|
COND_SET_VALUE(p->p_dtrace, psrc->p_dtrace, allowaddr);
|
|
}
|
|
|
|
/*
|
|
* Fill in an eproc structure for the specified process.
|
|
*/
|
|
void
|
|
fill_eproc(struct proc *p, struct eproc *ep, bool zombie, bool allowaddr)
|
|
{
|
|
struct tty *tp;
|
|
struct lwp *l;
|
|
|
|
KASSERT(mutex_owned(&proc_lock));
|
|
KASSERT(mutex_owned(p->p_lock));
|
|
|
|
COND_SET_VALUE(ep->e_paddr, p, allowaddr);
|
|
COND_SET_VALUE(ep->e_sess, p->p_session, allowaddr);
|
|
if (p->p_cred) {
|
|
kauth_cred_topcred(p->p_cred, &ep->e_pcred);
|
|
kauth_cred_toucred(p->p_cred, &ep->e_ucred);
|
|
}
|
|
if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
|
|
struct vmspace *vm = p->p_vmspace;
|
|
|
|
ep->e_vm.vm_rssize = vm_resident_count(vm);
|
|
ep->e_vm.vm_tsize = vm->vm_tsize;
|
|
ep->e_vm.vm_dsize = vm->vm_dsize;
|
|
ep->e_vm.vm_ssize = vm->vm_ssize;
|
|
ep->e_vm.vm_map.size = vm->vm_map.size;
|
|
|
|
/* Pick the primary (first) LWP */
|
|
l = proc_active_lwp(p);
|
|
KASSERT(l != NULL);
|
|
lwp_lock(l);
|
|
if (l->l_wchan)
|
|
strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
|
|
lwp_unlock(l);
|
|
}
|
|
ep->e_ppid = p->p_ppid;
|
|
if (p->p_pgrp && p->p_session) {
|
|
ep->e_pgid = p->p_pgrp->pg_id;
|
|
ep->e_jobc = p->p_pgrp->pg_jobc;
|
|
ep->e_sid = p->p_session->s_sid;
|
|
if ((p->p_lflag & PL_CONTROLT) &&
|
|
(tp = p->p_session->s_ttyp)) {
|
|
ep->e_tdev = tp->t_dev;
|
|
ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
|
|
COND_SET_VALUE(ep->e_tsess, tp->t_session, allowaddr);
|
|
} else
|
|
ep->e_tdev = (uint32_t)NODEV;
|
|
ep->e_flag = p->p_session->s_ttyvp ? EPROC_CTTY : 0;
|
|
if (SESS_LEADER(p))
|
|
ep->e_flag |= EPROC_SLEADER;
|
|
strncpy(ep->e_login, p->p_session->s_login, MAXLOGNAME);
|
|
}
|
|
ep->e_xsize = ep->e_xrssize = 0;
|
|
ep->e_xccount = ep->e_xswrss = 0;
|
|
}
|
|
|
|
/*
|
|
* Fill in a kinfo_proc2 structure for the specified process.
|
|
*/
|
|
void
|
|
fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie, bool allowaddr)
|
|
{
|
|
struct tty *tp;
|
|
struct lwp *l, *l2;
|
|
struct timeval ut, st, rt;
|
|
sigset_t ss1, ss2;
|
|
struct rusage ru;
|
|
struct vmspace *vm;
|
|
|
|
KASSERT(mutex_owned(&proc_lock));
|
|
KASSERT(mutex_owned(p->p_lock));
|
|
|
|
sigemptyset(&ss1);
|
|
sigemptyset(&ss2);
|
|
|
|
COND_SET_VALUE(ki->p_paddr, PTRTOUINT64(p), allowaddr);
|
|
COND_SET_VALUE(ki->p_fd, PTRTOUINT64(p->p_fd), allowaddr);
|
|
COND_SET_VALUE(ki->p_cwdi, PTRTOUINT64(p->p_cwdi), allowaddr);
|
|
COND_SET_VALUE(ki->p_stats, PTRTOUINT64(p->p_stats), allowaddr);
|
|
COND_SET_VALUE(ki->p_limit, PTRTOUINT64(p->p_limit), allowaddr);
|
|
COND_SET_VALUE(ki->p_vmspace, PTRTOUINT64(p->p_vmspace), allowaddr);
|
|
COND_SET_VALUE(ki->p_sigacts, PTRTOUINT64(p->p_sigacts), allowaddr);
|
|
COND_SET_VALUE(ki->p_sess, PTRTOUINT64(p->p_session), allowaddr);
|
|
ki->p_tsess = 0; /* may be changed if controlling tty below */
|
|
COND_SET_VALUE(ki->p_ru, PTRTOUINT64(&p->p_stats->p_ru), allowaddr);
|
|
ki->p_eflag = 0;
|
|
ki->p_exitsig = p->p_exitsig;
|
|
ki->p_flag = L_INMEM; /* Process never swapped out */
|
|
ki->p_flag |= sysctl_map_flags(sysctl_flagmap, p->p_flag);
|
|
ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag);
|
|
ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag);
|
|
ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag);
|
|
ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag);
|
|
ki->p_pid = p->p_pid;
|
|
ki->p_ppid = p->p_ppid;
|
|
ki->p_uid = kauth_cred_geteuid(p->p_cred);
|
|
ki->p_ruid = kauth_cred_getuid(p->p_cred);
|
|
ki->p_gid = kauth_cred_getegid(p->p_cred);
|
|
ki->p_rgid = kauth_cred_getgid(p->p_cred);
|
|
ki->p_svuid = kauth_cred_getsvuid(p->p_cred);
|
|
ki->p_svgid = kauth_cred_getsvgid(p->p_cred);
|
|
ki->p_ngroups = kauth_cred_ngroups(p->p_cred);
|
|
kauth_cred_getgroups(p->p_cred, ki->p_groups,
|
|
uimin(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])),
|
|
UIO_SYSSPACE);
|
|
|
|
ki->p_uticks = p->p_uticks;
|
|
ki->p_sticks = p->p_sticks;
|
|
ki->p_iticks = p->p_iticks;
|
|
ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */
|
|
COND_SET_VALUE(ki->p_tracep, PTRTOUINT64(p->p_tracep), allowaddr);
|
|
ki->p_traceflag = p->p_traceflag;
|
|
|
|
memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
|
|
memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
|
|
|
|
ki->p_cpticks = 0;
|
|
ki->p_pctcpu = p->p_pctcpu;
|
|
ki->p_estcpu = 0;
|
|
ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
|
|
ki->p_realstat = p->p_stat;
|
|
ki->p_nice = p->p_nice;
|
|
ki->p_xstat = P_WAITSTATUS(p);
|
|
ki->p_acflag = p->p_acflag;
|
|
|
|
strncpy(ki->p_comm, p->p_comm,
|
|
uimin(sizeof(ki->p_comm), sizeof(p->p_comm)));
|
|
strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename));
|
|
|
|
ki->p_nlwps = p->p_nlwps;
|
|
ki->p_realflag = ki->p_flag;
|
|
|
|
if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
|
|
vm = p->p_vmspace;
|
|
ki->p_vm_rssize = vm_resident_count(vm);
|
|
ki->p_vm_tsize = vm->vm_tsize;
|
|
ki->p_vm_dsize = vm->vm_dsize;
|
|
ki->p_vm_ssize = vm->vm_ssize;
|
|
ki->p_vm_vsize = atop(vm->vm_map.size);
|
|
/*
|
|
* Since the stack is initially mapped mostly with
|
|
* PROT_NONE and grown as needed, adjust the "mapped size"
|
|
* to skip the unused stack portion.
|
|
*/
|
|
ki->p_vm_msize =
|
|
atop(vm->vm_map.size) - vm->vm_issize + vm->vm_ssize;
|
|
|
|
/* Pick the primary (first) LWP */
|
|
l = proc_active_lwp(p);
|
|
KASSERT(l != NULL);
|
|
lwp_lock(l);
|
|
ki->p_nrlwps = p->p_nrlwps;
|
|
ki->p_forw = 0;
|
|
ki->p_back = 0;
|
|
COND_SET_VALUE(ki->p_addr, PTRTOUINT64(l->l_addr), allowaddr);
|
|
ki->p_stat = l->l_stat;
|
|
ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag);
|
|
ki->p_swtime = l->l_swtime;
|
|
ki->p_slptime = l->l_slptime;
|
|
if (l->l_stat == LSONPROC)
|
|
ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
|
|
else
|
|
ki->p_schedflags = 0;
|
|
ki->p_priority = lwp_eprio(l);
|
|
ki->p_usrpri = l->l_priority;
|
|
if (l->l_wchan)
|
|
strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
|
|
COND_SET_VALUE(ki->p_wchan, PTRTOUINT64(l->l_wchan), allowaddr);
|
|
ki->p_cpuid = cpu_index(l->l_cpu);
|
|
lwp_unlock(l);
|
|
LIST_FOREACH(l, &p->p_lwps, l_sibling) {
|
|
/* This is hardly correct, but... */
|
|
sigplusset(&l->l_sigpend.sp_set, &ss1);
|
|
sigplusset(&l->l_sigmask, &ss2);
|
|
ki->p_cpticks += l->l_cpticks;
|
|
ki->p_pctcpu += l->l_pctcpu;
|
|
ki->p_estcpu += l->l_estcpu;
|
|
}
|
|
}
|
|
sigplusset(&p->p_sigpend.sp_set, &ss1);
|
|
memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t));
|
|
memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t));
|
|
|
|
if (p->p_session != NULL) {
|
|
ki->p_sid = p->p_session->s_sid;
|
|
ki->p__pgid = p->p_pgrp->pg_id;
|
|
if (p->p_session->s_ttyvp)
|
|
ki->p_eflag |= EPROC_CTTY;
|
|
if (SESS_LEADER(p))
|
|
ki->p_eflag |= EPROC_SLEADER;
|
|
strncpy(ki->p_login, p->p_session->s_login,
|
|
uimin(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
|
|
ki->p_jobc = p->p_pgrp->pg_jobc;
|
|
if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) {
|
|
ki->p_tdev = tp->t_dev;
|
|
ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
|
|
COND_SET_VALUE(ki->p_tsess, PTRTOUINT64(tp->t_session),
|
|
allowaddr);
|
|
} else {
|
|
ki->p_tdev = (int32_t)NODEV;
|
|
}
|
|
}
|
|
|
|
if (!P_ZOMBIE(p) && !zombie) {
|
|
ki->p_uvalid = 1;
|
|
ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
|
|
ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
|
|
|
|
calcru(p, &ut, &st, NULL, &rt);
|
|
ki->p_rtime_sec = rt.tv_sec;
|
|
ki->p_rtime_usec = rt.tv_usec;
|
|
ki->p_uutime_sec = ut.tv_sec;
|
|
ki->p_uutime_usec = ut.tv_usec;
|
|
ki->p_ustime_sec = st.tv_sec;
|
|
ki->p_ustime_usec = st.tv_usec;
|
|
|
|
memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
|
|
ki->p_uru_nvcsw = 0;
|
|
ki->p_uru_nivcsw = 0;
|
|
LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
|
|
ki->p_uru_nvcsw += (l2->l_ncsw - l2->l_nivcsw);
|
|
ki->p_uru_nivcsw += l2->l_nivcsw;
|
|
ruadd(&ru, &l2->l_ru);
|
|
}
|
|
ki->p_uru_maxrss = ru.ru_maxrss;
|
|
ki->p_uru_ixrss = ru.ru_ixrss;
|
|
ki->p_uru_idrss = ru.ru_idrss;
|
|
ki->p_uru_isrss = ru.ru_isrss;
|
|
ki->p_uru_minflt = ru.ru_minflt;
|
|
ki->p_uru_majflt = ru.ru_majflt;
|
|
ki->p_uru_nswap = ru.ru_nswap;
|
|
ki->p_uru_inblock = ru.ru_inblock;
|
|
ki->p_uru_oublock = ru.ru_oublock;
|
|
ki->p_uru_msgsnd = ru.ru_msgsnd;
|
|
ki->p_uru_msgrcv = ru.ru_msgrcv;
|
|
ki->p_uru_nsignals = ru.ru_nsignals;
|
|
|
|
timeradd(&p->p_stats->p_cru.ru_utime,
|
|
&p->p_stats->p_cru.ru_stime, &ut);
|
|
ki->p_uctime_sec = ut.tv_sec;
|
|
ki->p_uctime_usec = ut.tv_usec;
|
|
}
|
|
}
|
|
|
|
|
|
int
|
|
proc_find_locked(struct lwp *l, struct proc **p, pid_t pid)
|
|
{
|
|
int error;
|
|
|
|
mutex_enter(&proc_lock);
|
|
if (pid == -1)
|
|
*p = l->l_proc;
|
|
else
|
|
*p = proc_find(pid);
|
|
|
|
if (*p == NULL) {
|
|
if (pid != -1)
|
|
mutex_exit(&proc_lock);
|
|
return ESRCH;
|
|
}
|
|
if (pid != -1)
|
|
mutex_enter((*p)->p_lock);
|
|
mutex_exit(&proc_lock);
|
|
|
|
error = kauth_authorize_process(l->l_cred,
|
|
KAUTH_PROCESS_CANSEE, *p,
|
|
KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
|
|
if (error) {
|
|
if (pid != -1)
|
|
mutex_exit((*p)->p_lock);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
static int
|
|
fill_pathname(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
|
|
{
|
|
int error;
|
|
struct proc *p;
|
|
|
|
if ((error = proc_find_locked(l, &p, pid)) != 0)
|
|
return error;
|
|
|
|
if (p->p_path == NULL) {
|
|
if (pid != -1)
|
|
mutex_exit(p->p_lock);
|
|
return ENOENT;
|
|
}
|
|
|
|
size_t len = strlen(p->p_path) + 1;
|
|
if (oldp != NULL) {
|
|
size_t copylen = uimin(len, *oldlenp);
|
|
error = sysctl_copyout(l, p->p_path, oldp, copylen);
|
|
if (error == 0 && *oldlenp < len)
|
|
error = ENOSPC;
|
|
}
|
|
*oldlenp = len;
|
|
if (pid != -1)
|
|
mutex_exit(p->p_lock);
|
|
return error;
|
|
}
|
|
|
|
static int
|
|
fill_cwd(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
|
|
{
|
|
int error;
|
|
struct proc *p;
|
|
char *path;
|
|
char *bp, *bend;
|
|
struct cwdinfo *cwdi;
|
|
struct vnode *vp;
|
|
size_t len, lenused;
|
|
|
|
if ((error = proc_find_locked(l, &p, pid)) != 0)
|
|
return error;
|
|
|
|
len = MAXPATHLEN * 4;
|
|
|
|
path = kmem_alloc(len, KM_SLEEP);
|
|
|
|
bp = &path[len];
|
|
bend = bp;
|
|
*(--bp) = '\0';
|
|
|
|
cwdi = p->p_cwdi;
|
|
rw_enter(&cwdi->cwdi_lock, RW_READER);
|
|
vp = cwdi->cwdi_cdir;
|
|
error = getcwd_common(vp, NULL, &bp, path, len/2, 0, l);
|
|
rw_exit(&cwdi->cwdi_lock);
|
|
|
|
if (error)
|
|
goto out;
|
|
|
|
lenused = bend - bp;
|
|
|
|
if (oldp != NULL) {
|
|
size_t copylen = uimin(lenused, *oldlenp);
|
|
error = sysctl_copyout(l, bp, oldp, copylen);
|
|
if (error == 0 && *oldlenp < lenused)
|
|
error = ENOSPC;
|
|
}
|
|
*oldlenp = lenused;
|
|
out:
|
|
if (pid != -1)
|
|
mutex_exit(p->p_lock);
|
|
kmem_free(path, len);
|
|
return error;
|
|
}
|
|
|
|
int
|
|
proc_getauxv(struct proc *p, void **buf, size_t *len)
|
|
{
|
|
struct ps_strings pss;
|
|
int error;
|
|
void *uauxv, *kauxv;
|
|
size_t size;
|
|
|
|
if ((error = copyin_psstrings(p, &pss)) != 0)
|
|
return error;
|
|
if (pss.ps_envstr == NULL)
|
|
return EIO;
|
|
|
|
size = p->p_execsw->es_arglen;
|
|
if (size == 0)
|
|
return EIO;
|
|
|
|
size_t ptrsz = PROC_PTRSZ(p);
|
|
uauxv = (void *)((char *)pss.ps_envstr + (pss.ps_nenvstr + 1) * ptrsz);
|
|
|
|
kauxv = kmem_alloc(size, KM_SLEEP);
|
|
|
|
error = copyin_proc(p, uauxv, kauxv, size);
|
|
if (error) {
|
|
kmem_free(kauxv, size);
|
|
return error;
|
|
}
|
|
|
|
*buf = kauxv;
|
|
*len = size;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
sysctl_security_expose_address(SYSCTLFN_ARGS)
|
|
{
|
|
int expose_address, error;
|
|
struct sysctlnode node;
|
|
|
|
node = *rnode;
|
|
node.sysctl_data = &expose_address;
|
|
expose_address = *(int *)rnode->sysctl_data;
|
|
error = sysctl_lookup(SYSCTLFN_CALL(&node));
|
|
if (error || newp == NULL)
|
|
return error;
|
|
|
|
if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_KERNADDR,
|
|
0, NULL, NULL, NULL))
|
|
return EPERM;
|
|
|
|
switch (expose_address) {
|
|
case 0:
|
|
case 1:
|
|
case 2:
|
|
break;
|
|
default:
|
|
return EINVAL;
|
|
}
|
|
|
|
*(int *)rnode->sysctl_data = expose_address;
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool
|
|
get_expose_address(struct proc *p)
|
|
{
|
|
/* allow only if sysctl variable is set or privileged */
|
|
return kauth_authorize_process(kauth_cred_get(), KAUTH_PROCESS_CANSEE,
|
|
p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_KPTR), NULL, NULL) == 0;
|
|
}
|