4890eaf0d8
in iee_intr(). Fixes panic on DIAGNOSTIC kernel reported by skrll@.
1069 lines
36 KiB
C
1069 lines
36 KiB
C
/* $NetBSD: i82596.c,v 1.27 2009/05/13 13:12:06 tsutsui Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 2003 Jochen Kunz.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of Jochen Kunz may not be used to endorse or promote
|
|
* products derived from this software without specific prior
|
|
* written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY JOCHEN KUNZ
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JOCHEN KUNZ
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Driver for the Intel i82596CA and i82596DX/SX 10MBit/s Ethernet chips.
|
|
*
|
|
* It operates the i82596 in 32-Bit Linear Mode, opposed to the old i82586
|
|
* ie(4) driver (src/sys/dev/ic/i82586.c), that degrades the i82596 to
|
|
* i82586 compatibility mode.
|
|
*
|
|
* Documentation about these chips can be found at
|
|
*
|
|
* http://developer.intel.com/design/network/datashts/290218.htm
|
|
* http://developer.intel.com/design/network/datashts/290219.htm
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: i82596.c,v 1.27 2009/05/13 13:12:06 tsutsui Exp $");
|
|
|
|
/* autoconfig and device stuff */
|
|
#include <sys/param.h>
|
|
#include <sys/device.h>
|
|
#include <sys/conf.h>
|
|
#include "locators.h"
|
|
#include "ioconf.h"
|
|
|
|
/* bus_space / bus_dma etc. */
|
|
#include <sys/bus.h>
|
|
#include <sys/intr.h>
|
|
|
|
/* general system data and functions */
|
|
#include <sys/systm.h>
|
|
#include <sys/ioctl.h>
|
|
|
|
/* tsleep / sleep / wakeup */
|
|
#include <sys/proc.h>
|
|
/* hz for above */
|
|
#include <sys/kernel.h>
|
|
|
|
/* network stuff */
|
|
#include <net/if.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_ether.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/mbuf.h>
|
|
|
|
#include "bpfilter.h"
|
|
#if NBPFILTER > 0
|
|
#include <net/bpf.h>
|
|
#endif
|
|
|
|
#include <dev/ic/i82596reg.h>
|
|
#include <dev/ic/i82596var.h>
|
|
|
|
/* Supported chip variants */
|
|
const char *i82596_typenames[] = { "unknown", "DX/SX", "CA" };
|
|
|
|
/* media change and status callback */
|
|
static int iee_mediachange(struct ifnet *);
|
|
static void iee_mediastatus(struct ifnet *, struct ifmediareq *);
|
|
|
|
/* interface routines to upper protocols */
|
|
static void iee_start(struct ifnet *); /* initiate output */
|
|
static int iee_ioctl(struct ifnet *, u_long, void *); /* ioctl routine */
|
|
static int iee_init(struct ifnet *); /* init routine */
|
|
static void iee_stop(struct ifnet *, int); /* stop routine */
|
|
static void iee_watchdog(struct ifnet *); /* timer routine */
|
|
|
|
/* internal helper functions */
|
|
static void iee_cb_setup(struct iee_softc *, uint32_t);
|
|
|
|
/*
|
|
* Things a MD frontend has to provide:
|
|
*
|
|
* The functions via function pointers in the softc:
|
|
* int (*sc_iee_cmd)(struct iee_softc *sc, uint32_t cmd);
|
|
* int (*sc_iee_reset)(struct iee_softc *sc);
|
|
* void (*sc_mediastatus)(struct ifnet *, struct ifmediareq *);
|
|
* int (*sc_mediachange)(struct ifnet *);
|
|
*
|
|
* sc_iee_cmd(): send a command to the i82596 by writing the cmd parameter
|
|
* to the SCP cmd word and issuing a Channel Attention.
|
|
* sc_iee_reset(): initiate a reset, supply the address of the SCP to the
|
|
* chip, wait for the chip to initialize and ACK interrupts that
|
|
* this may have caused by calling (sc->sc_iee_cmd)(sc, IEE_SCB_ACK);
|
|
* This functions must carefully bus_dmamap_sync() all data they have touched!
|
|
*
|
|
* sc_mediastatus() and sc_mediachange() are just MD hooks to the according
|
|
* MI functions. The MD frontend may set this pointers to NULL when they
|
|
* are not needed.
|
|
*
|
|
* sc->sc_type has to be set to I82596_UNKNOWN or I82596_DX or I82596_CA.
|
|
* This is for printing out the correct chip type at attach time only. The
|
|
* MI backend doesn't distinguish different chip types when programming
|
|
* the chip.
|
|
*
|
|
* IEE_NEED_SWAP in sc->sc_flags has to be cleared on little endian hardware
|
|
* and set on big endian hardware, when endianess conversion is not done
|
|
* by the bus attachment but done by i82596 chip itself.
|
|
* Usually you need to set IEE_NEED_SWAP on big endian machines
|
|
* where the hardware (the LE/~BE pin) is configured as BE mode.
|
|
*
|
|
* If the chip is configured as BE mode, all 8 bit (byte) and 16 bit (word)
|
|
* entities can be written in big endian. But Rev A chip doesn't support
|
|
* 32 bit (dword) entities with big endian byte ordering, so we have to
|
|
* treat all 32 bit (dword) entities as two 16 bit big endian entities.
|
|
* Rev B and C chips support big endian byte ordering for 32 bit entities,
|
|
* and this new feature is enabled by IEE_SYSBUS_BE in the sysbus byte.
|
|
*
|
|
* With the IEE_SYSBUS_BE feature, all 32 bit address ponters are
|
|
* treated as true 32 bit entities but the SCB absolute address and
|
|
* statistical counters are still treated as two 16 bit big endian entities,
|
|
* so we have to always swap high and low words for these entities.
|
|
* IEE_SWAP32() should be used for the SCB address and statistical counters,
|
|
* and IEE_SWAPA32() should be used for other 32 bit pointers in the shmem.
|
|
*
|
|
* IEE_REV_A flag must be set in sc->sc_flags if the IEE_SYSBUS_BE feature
|
|
* is disabled even on big endian machines for the old Rev A chip in backend.
|
|
*
|
|
* sc->sc_cl_align must be set to 1 or to the cache line size. When set to
|
|
* 1 no special alignment of DMA descriptors is done. If sc->sc_cl_align != 1
|
|
* it forces alignment of the data structures in the shared memory to a multiple
|
|
* of sc->sc_cl_align. This is needed on archs like hp700 that have non DMA
|
|
* I/O coherent caches and are unable to map the shared memory uncachable.
|
|
* (At least pre PA7100LC CPUs are unable to map memory uncachable.)
|
|
*
|
|
* The MD frontend also has to set sc->sc_cl_align and sc->sc_sysbus
|
|
* to allocate and setup shared DMA memory in MI iee_attach().
|
|
* All communication with the chip is done via this shared memory.
|
|
* This memory is mapped with BUS_DMA_COHERENT so it will be uncached
|
|
* if possible for archs with non DMA I/O coherent caches.
|
|
* The base of the memory needs to be aligned to an even address
|
|
* if sc->sc_cl_align == 1 and aligned to a cache line if sc->sc_cl_align != 1.
|
|
* Each descriptor offsets are calculated in iee_attach() to handle this.
|
|
*
|
|
* An interrupt with iee_intr() as handler must be established.
|
|
*
|
|
* Call void iee_attach(struct iee_softc *sc, uint8_t *ether_address,
|
|
* int *media, int nmedia, int defmedia); when everything is set up. First
|
|
* parameter is a pointer to the MI softc, ether_address is an array that
|
|
* contains the ethernet address. media is an array of the media types
|
|
* provided by the hardware. The members of this array are supplied to
|
|
* ifmedia_add() in sequence. nmedia is the count of elements in media.
|
|
* defmedia is the default media that is set via ifmedia_set().
|
|
* nmedia and defmedia are ignored when media == NULL.
|
|
*
|
|
* The MD backend may call iee_detach() to detach the device.
|
|
*
|
|
* See sys/arch/hp700/gsc/if_iee_gsc.c for an example.
|
|
*/
|
|
|
|
|
|
/*
|
|
* How frame reception is done:
|
|
* Each Receive Frame Descriptor has one associated Receive Buffer Descriptor.
|
|
* Each RBD points to the data area of an mbuf cluster. The RFDs are linked
|
|
* together in a circular list. sc->sc_rx_done is the count of RFDs in the
|
|
* list already processed / the number of the RFD that has to be checked for
|
|
* a new frame first at the next RX interrupt. Upon successful reception of
|
|
* a frame the mbuf cluster is handled to upper protocol layers, a new mbuf
|
|
* cluster is allocated and the RFD / RBD are reinitialized accordingly.
|
|
*
|
|
* When a RFD list overrun occurred the whole RFD and RBD lists are
|
|
* reinitialized and frame reception is started again.
|
|
*/
|
|
int
|
|
iee_intr(void *intarg)
|
|
{
|
|
struct iee_softc *sc = intarg;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct iee_rfd *rfd;
|
|
struct iee_rbd *rbd;
|
|
bus_dmamap_t rx_map;
|
|
struct mbuf *rx_mbuf;
|
|
struct mbuf *new_mbuf;
|
|
int scb_status;
|
|
int scb_cmd;
|
|
int n, col;
|
|
uint16_t status, count, cmd;
|
|
|
|
if ((ifp->if_flags & IFF_RUNNING) == 0) {
|
|
(sc->sc_iee_cmd)(sc, IEE_SCB_ACK);
|
|
return 1;
|
|
}
|
|
IEE_SCBSYNC(sc, BUS_DMASYNC_POSTREAD);
|
|
scb_status = SC_SCB(sc)->scb_status;
|
|
scb_cmd = SC_SCB(sc)->scb_cmd;
|
|
for (;;) {
|
|
rfd = SC_RFD(sc, sc->sc_rx_done);
|
|
IEE_RFDSYNC(sc, sc->sc_rx_done,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
status = rfd->rfd_status;
|
|
if ((status & IEE_RFD_C) == 0) {
|
|
IEE_RFDSYNC(sc, sc->sc_rx_done, BUS_DMASYNC_PREREAD);
|
|
break;
|
|
}
|
|
rfd->rfd_status = 0;
|
|
IEE_RFDSYNC(sc, sc->sc_rx_done,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
/* At least one packet was received. */
|
|
rx_map = sc->sc_rx_map[sc->sc_rx_done];
|
|
rx_mbuf = sc->sc_rx_mbuf[sc->sc_rx_done];
|
|
IEE_RBDSYNC(sc, (sc->sc_rx_done + IEE_NRFD - 1) % IEE_NRFD,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
SC_RBD(sc, (sc->sc_rx_done + IEE_NRFD - 1) % IEE_NRFD)->rbd_size
|
|
&= ~IEE_RBD_EL;
|
|
IEE_RBDSYNC(sc, (sc->sc_rx_done + IEE_NRFD - 1) % IEE_NRFD,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
rbd = SC_RBD(sc, sc->sc_rx_done);
|
|
IEE_RBDSYNC(sc, sc->sc_rx_done,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
count = rbd->rbd_count;
|
|
if ((status & IEE_RFD_OK) == 0
|
|
|| (count & IEE_RBD_EOF) == 0
|
|
|| (count & IEE_RBD_F) == 0){
|
|
/* Receive error, skip frame and reuse buffer. */
|
|
rbd->rbd_count = 0;
|
|
rbd->rbd_size = IEE_RBD_EL | rx_map->dm_segs[0].ds_len;
|
|
IEE_RBDSYNC(sc, sc->sc_rx_done,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
printf("%s: iee_intr: receive error %d, rfd_status="
|
|
"0x%.4x, rfd_count=0x%.4x\n",
|
|
device_xname(sc->sc_dev),
|
|
++sc->sc_rx_err, status, count);
|
|
sc->sc_rx_done = (sc->sc_rx_done + 1) % IEE_NRFD;
|
|
continue;
|
|
}
|
|
bus_dmamap_sync(sc->sc_dmat, rx_map, 0, rx_map->dm_mapsize,
|
|
BUS_DMASYNC_POSTREAD);
|
|
rx_mbuf->m_pkthdr.len = rx_mbuf->m_len =
|
|
count & IEE_RBD_COUNT;
|
|
rx_mbuf->m_pkthdr.rcvif = ifp;
|
|
MGETHDR(new_mbuf, M_DONTWAIT, MT_DATA);
|
|
if (new_mbuf == NULL) {
|
|
printf("%s: iee_intr: can't allocate mbuf\n",
|
|
device_xname(sc->sc_dev));
|
|
break;
|
|
}
|
|
MCLAIM(new_mbuf, &sc->sc_ethercom.ec_rx_mowner);
|
|
MCLGET(new_mbuf, M_DONTWAIT);
|
|
if ((new_mbuf->m_flags & M_EXT) == 0) {
|
|
printf("%s: iee_intr: can't alloc mbuf cluster\n",
|
|
device_xname(sc->sc_dev));
|
|
m_freem(new_mbuf);
|
|
break;
|
|
}
|
|
bus_dmamap_unload(sc->sc_dmat, rx_map);
|
|
new_mbuf->m_len = new_mbuf->m_pkthdr.len = MCLBYTES - 2;
|
|
new_mbuf->m_data += 2;
|
|
if (bus_dmamap_load_mbuf(sc->sc_dmat, rx_map,
|
|
new_mbuf, BUS_DMA_READ | BUS_DMA_NOWAIT) != 0)
|
|
panic("%s: iee_intr: can't load RX DMA map\n",
|
|
device_xname(sc->sc_dev));
|
|
bus_dmamap_sync(sc->sc_dmat, rx_map, 0,
|
|
rx_map->dm_mapsize, BUS_DMASYNC_PREREAD);
|
|
#if NBPFILTER > 0
|
|
if (ifp->if_bpf != 0)
|
|
bpf_mtap(ifp->if_bpf, rx_mbuf);
|
|
#endif /* NBPFILTER > 0 */
|
|
(*ifp->if_input)(ifp, rx_mbuf);
|
|
ifp->if_ipackets++;
|
|
sc->sc_rx_mbuf[sc->sc_rx_done] = new_mbuf;
|
|
rbd->rbd_count = 0;
|
|
rbd->rbd_size = IEE_RBD_EL | rx_map->dm_segs[0].ds_len;
|
|
rbd->rbd_rb_addr = IEE_SWAPA32(rx_map->dm_segs[0].ds_addr);
|
|
IEE_RBDSYNC(sc, sc->sc_rx_done,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
sc->sc_rx_done = (sc->sc_rx_done + 1) % IEE_NRFD;
|
|
}
|
|
if ((scb_status & IEE_SCB_RUS) == IEE_SCB_RUS_NR1
|
|
|| (scb_status & IEE_SCB_RUS) == IEE_SCB_RUS_NR2
|
|
|| (scb_status & IEE_SCB_RUS) == IEE_SCB_RUS_NR3) {
|
|
/* Receive Overrun, reinit receive ring buffer. */
|
|
for (n = 0 ; n < IEE_NRFD ; n++) {
|
|
rfd = SC_RFD(sc, n);
|
|
rbd = SC_RBD(sc, n);
|
|
rfd->rfd_cmd = IEE_RFD_SF;
|
|
rfd->rfd_link_addr =
|
|
IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rfd_off
|
|
+ sc->sc_rfd_sz * ((n + 1) % IEE_NRFD)));
|
|
rbd->rbd_next_rbd =
|
|
IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rbd_off
|
|
+ sc->sc_rbd_sz * ((n + 1) % IEE_NRFD)));
|
|
rbd->rbd_size = IEE_RBD_EL |
|
|
sc->sc_rx_map[n]->dm_segs[0].ds_len;
|
|
rbd->rbd_rb_addr =
|
|
IEE_SWAPA32(sc->sc_rx_map[n]->dm_segs[0].ds_addr);
|
|
}
|
|
SC_RFD(sc, 0)->rfd_rbd_addr =
|
|
IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rbd_off));
|
|
sc->sc_rx_done = 0;
|
|
bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map, sc->sc_rfd_off,
|
|
sc->sc_rfd_sz * IEE_NRFD + sc->sc_rbd_sz * IEE_NRFD,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
(sc->sc_iee_cmd)(sc, IEE_SCB_RUC_ST);
|
|
printf("%s: iee_intr: receive ring buffer overrun\n",
|
|
device_xname(sc->sc_dev));
|
|
}
|
|
|
|
if (sc->sc_next_cb != 0) {
|
|
IEE_CBSYNC(sc, sc->sc_next_cb - 1,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
status = SC_CB(sc, sc->sc_next_cb - 1)->cb_status;
|
|
IEE_CBSYNC(sc, sc->sc_next_cb - 1,
|
|
BUS_DMASYNC_PREREAD);
|
|
if ((status & IEE_CB_C) != 0) {
|
|
/* CMD list finished */
|
|
ifp->if_timer = 0;
|
|
if (sc->sc_next_tbd != 0) {
|
|
/* A TX CMD list finished, cleanup */
|
|
for (n = 0 ; n < sc->sc_next_cb ; n++) {
|
|
m_freem(sc->sc_tx_mbuf[n]);
|
|
sc->sc_tx_mbuf[n] = NULL;
|
|
bus_dmamap_unload(sc->sc_dmat,
|
|
sc->sc_tx_map[n]);
|
|
IEE_CBSYNC(sc, n,
|
|
BUS_DMASYNC_POSTREAD|
|
|
BUS_DMASYNC_POSTWRITE);
|
|
status = SC_CB(sc, n)->cb_status;
|
|
IEE_CBSYNC(sc, n,
|
|
BUS_DMASYNC_PREREAD);
|
|
if ((status & IEE_CB_COL) != 0 &&
|
|
(status & IEE_CB_MAXCOL) == 0)
|
|
col = 16;
|
|
else
|
|
col = status
|
|
& IEE_CB_MAXCOL;
|
|
sc->sc_tx_col += col;
|
|
if ((status & IEE_CB_OK) != 0) {
|
|
ifp->if_opackets++;
|
|
ifp->if_collisions += col;
|
|
}
|
|
}
|
|
sc->sc_next_tbd = 0;
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
}
|
|
for (n = 0 ; n < sc->sc_next_cb; n++) {
|
|
/*
|
|
* Check if a CMD failed, but ignore TX errors.
|
|
*/
|
|
IEE_CBSYNC(sc, n,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
cmd = SC_CB(sc, n)->cb_cmd;
|
|
status = SC_CB(sc, n)->cb_status;
|
|
IEE_CBSYNC(sc, n, BUS_DMASYNC_PREREAD);
|
|
if ((cmd & IEE_CB_CMD) != IEE_CB_CMD_TR &&
|
|
(status & IEE_CB_OK) == 0)
|
|
printf("%s: iee_intr: scb_status=0x%x "
|
|
"scb_cmd=0x%x failed command %d: "
|
|
"cb_status[%d]=0x%.4x "
|
|
"cb_cmd[%d]=0x%.4x\n",
|
|
device_xname(sc->sc_dev),
|
|
scb_status, scb_cmd,
|
|
++sc->sc_cmd_err,
|
|
n, status, n, cmd);
|
|
}
|
|
sc->sc_next_cb = 0;
|
|
if ((sc->sc_flags & IEE_WANT_MCAST) != 0) {
|
|
iee_cb_setup(sc, IEE_CB_CMD_MCS |
|
|
IEE_CB_S | IEE_CB_EL | IEE_CB_I);
|
|
(sc->sc_iee_cmd)(sc, IEE_SCB_CUC_EXE);
|
|
} else
|
|
/* Try to get deferred packets going. */
|
|
iee_start(ifp);
|
|
}
|
|
}
|
|
if (IEE_SWAP32(SC_SCB(sc)->scb_crc_err) != sc->sc_crc_err) {
|
|
sc->sc_crc_err = IEE_SWAP32(SC_SCB(sc)->scb_crc_err);
|
|
printf("%s: iee_intr: crc_err=%d\n", device_xname(sc->sc_dev),
|
|
sc->sc_crc_err);
|
|
}
|
|
if (IEE_SWAP32(SC_SCB(sc)->scb_align_err) != sc->sc_align_err) {
|
|
sc->sc_align_err = IEE_SWAP32(SC_SCB(sc)->scb_align_err);
|
|
printf("%s: iee_intr: align_err=%d\n", device_xname(sc->sc_dev),
|
|
sc->sc_align_err);
|
|
}
|
|
if (IEE_SWAP32(SC_SCB(sc)->scb_resource_err) != sc->sc_resource_err) {
|
|
sc->sc_resource_err = IEE_SWAP32(SC_SCB(sc)->scb_resource_err);
|
|
printf("%s: iee_intr: resource_err=%d\n",
|
|
device_xname(sc->sc_dev), sc->sc_resource_err);
|
|
}
|
|
if (IEE_SWAP32(SC_SCB(sc)->scb_overrun_err) != sc->sc_overrun_err) {
|
|
sc->sc_overrun_err = IEE_SWAP32(SC_SCB(sc)->scb_overrun_err);
|
|
printf("%s: iee_intr: overrun_err=%d\n",
|
|
device_xname(sc->sc_dev), sc->sc_overrun_err);
|
|
}
|
|
if (IEE_SWAP32(SC_SCB(sc)->scb_rcvcdt_err) != sc->sc_rcvcdt_err) {
|
|
sc->sc_rcvcdt_err = IEE_SWAP32(SC_SCB(sc)->scb_rcvcdt_err);
|
|
printf("%s: iee_intr: rcvcdt_err=%d\n",
|
|
device_xname(sc->sc_dev), sc->sc_rcvcdt_err);
|
|
}
|
|
if (IEE_SWAP32(SC_SCB(sc)->scb_short_fr_err) != sc->sc_short_fr_err) {
|
|
sc->sc_short_fr_err = IEE_SWAP32(SC_SCB(sc)->scb_short_fr_err);
|
|
printf("%s: iee_intr: short_fr_err=%d\n",
|
|
device_xname(sc->sc_dev), sc->sc_short_fr_err);
|
|
}
|
|
IEE_SCBSYNC(sc, BUS_DMASYNC_PREREAD);
|
|
(sc->sc_iee_cmd)(sc, IEE_SCB_ACK);
|
|
return 1;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* How Command Block List Processing is done.
|
|
*
|
|
* A running CBL is never manipulated. If there is a CBL already running,
|
|
* further CMDs are deferred until the current list is done. A new list is
|
|
* setup when the old one has finished.
|
|
* This eases programming. To manipulate a running CBL it is necessary to
|
|
* suspend the Command Unit to avoid race conditions. After a suspend
|
|
* is sent we have to wait for an interrupt that ACKs the suspend. Then
|
|
* we can manipulate the CBL and resume operation. I am not sure that this
|
|
* is more effective then the current, much simpler approach. => KISS
|
|
* See i82596CA data sheet page 26.
|
|
*
|
|
* A CBL is running or on the way to be set up when (sc->sc_next_cb != 0).
|
|
*
|
|
* A CBL may consist of TX CMDs, and _only_ TX CMDs.
|
|
* A TX CBL is running or on the way to be set up when
|
|
* ((sc->sc_next_cb != 0) && (sc->sc_next_tbd != 0)).
|
|
*
|
|
* A CBL may consist of other non-TX CMDs like IAS or CONF, and _only_
|
|
* non-TX CMDs.
|
|
*
|
|
* This comes mostly through the way how an Ethernet driver works and
|
|
* because running CBLs are not manipulated when they are on the way. If
|
|
* if_start() is called there will be TX CMDs enqueued so we have a running
|
|
* CBL and other CMDs from e.g. if_ioctl() will be deferred and vice versa.
|
|
*
|
|
* The Multicast Setup Command is special. A MCS needs more space than
|
|
* a single CB has. Actual space requirement depends on the length of the
|
|
* multicast list. So we always defer MCS until other CBLs are finished,
|
|
* then we setup a CONF CMD in the first CB. The CONF CMD is needed to
|
|
* turn ALLMULTI on the hardware on or off. The MCS is the 2nd CB and may
|
|
* use all the remaining space in the CBL and the Transmit Buffer Descriptor
|
|
* List. (Therefore CBL and TBDL must be continuous in physical and virtual
|
|
* memory. This is guaranteed through the definitions of the list offsets
|
|
* in i82596reg.h and because it is only a single DMA segment used for all
|
|
* lists.) When ALLMULTI is enabled via the CONF CMD, the MCS is run with
|
|
* a multicast list length of 0, thus disabling the multicast filter.
|
|
* A deferred MCS is signaled via ((sc->sc_flags & IEE_WANT_MCAST) != 0)
|
|
*/
|
|
void
|
|
iee_cb_setup(struct iee_softc *sc, uint32_t cmd)
|
|
{
|
|
struct iee_cb *cb = SC_CB(sc, sc->sc_next_cb);
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct ether_multistep step;
|
|
struct ether_multi *enm;
|
|
|
|
memset(cb, 0, sc->sc_cb_sz);
|
|
cb->cb_cmd = cmd;
|
|
switch (cmd & IEE_CB_CMD) {
|
|
case IEE_CB_CMD_NOP: /* NOP CMD */
|
|
break;
|
|
case IEE_CB_CMD_IAS: /* Individual Address Setup */
|
|
memcpy(__UNVOLATILE(cb->cb_ind_addr), CLLADDR(ifp->if_sadl),
|
|
ETHER_ADDR_LEN);
|
|
break;
|
|
case IEE_CB_CMD_CONF: /* Configure */
|
|
memcpy(__UNVOLATILE(cb->cb_cf), sc->sc_cf, sc->sc_cf[0]
|
|
& IEE_CF_0_CNT_M);
|
|
break;
|
|
case IEE_CB_CMD_MCS: /* Multicast Setup */
|
|
if (sc->sc_next_cb != 0) {
|
|
sc->sc_flags |= IEE_WANT_MCAST;
|
|
return;
|
|
}
|
|
sc->sc_flags &= ~IEE_WANT_MCAST;
|
|
if ((sc->sc_cf[8] & IEE_CF_8_PRM) != 0) {
|
|
/* Need no multicast filter in promisc mode. */
|
|
iee_cb_setup(sc, IEE_CB_CMD_CONF | IEE_CB_S | IEE_CB_EL
|
|
| IEE_CB_I);
|
|
return;
|
|
}
|
|
/* Leave room for a CONF CMD to en/dis-able ALLMULTI mode */
|
|
cb = SC_CB(sc, sc->sc_next_cb + 1);
|
|
cb->cb_cmd = cmd;
|
|
cb->cb_mcast.mc_size = 0;
|
|
ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
|
|
while (enm != NULL) {
|
|
if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
|
|
ETHER_ADDR_LEN) != 0 || cb->cb_mcast.mc_size
|
|
* ETHER_ADDR_LEN + 2 * sc->sc_cb_sz >
|
|
sc->sc_cb_sz * IEE_NCB +
|
|
sc->sc_tbd_sz * IEE_NTBD * IEE_NCB) {
|
|
cb->cb_mcast.mc_size = 0;
|
|
break;
|
|
}
|
|
memcpy(__UNVOLATILE(&cb->cb_mcast.mc_addrs[
|
|
cb->cb_mcast.mc_size * ETHER_ADDR_LEN]),
|
|
enm->enm_addrlo, ETHER_ADDR_LEN);
|
|
ETHER_NEXT_MULTI(step, enm);
|
|
cb->cb_mcast.mc_size++;
|
|
}
|
|
if (cb->cb_mcast.mc_size == 0) {
|
|
/* Can't do exact mcast filtering, do ALLMULTI mode. */
|
|
ifp->if_flags |= IFF_ALLMULTI;
|
|
sc->sc_cf[11] &= ~IEE_CF_11_MCALL;
|
|
} else {
|
|
/* disable ALLMULTI and load mcast list */
|
|
ifp->if_flags &= ~IFF_ALLMULTI;
|
|
sc->sc_cf[11] |= IEE_CF_11_MCALL;
|
|
/* Mcast setup may need more then sc->sc_cb_sz bytes. */
|
|
bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map,
|
|
sc->sc_cb_off,
|
|
sc->sc_cb_sz * IEE_NCB +
|
|
sc->sc_tbd_sz * IEE_NTBD * IEE_NCB,
|
|
BUS_DMASYNC_PREWRITE);
|
|
}
|
|
iee_cb_setup(sc, IEE_CB_CMD_CONF);
|
|
break;
|
|
case IEE_CB_CMD_TR: /* Transmit */
|
|
cb->cb_transmit.tx_tbd_addr =
|
|
IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_tbd_off
|
|
+ sc->sc_tbd_sz * sc->sc_next_tbd));
|
|
cb->cb_cmd |= IEE_CB_SF; /* Always use Flexible Mode. */
|
|
break;
|
|
case IEE_CB_CMD_TDR: /* Time Domain Reflectometry */
|
|
break;
|
|
case IEE_CB_CMD_DUMP: /* Dump */
|
|
break;
|
|
case IEE_CB_CMD_DIAG: /* Diagnose */
|
|
break;
|
|
default:
|
|
/* can't happen */
|
|
break;
|
|
}
|
|
cb->cb_link_addr = IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_cb_off +
|
|
sc->sc_cb_sz * (sc->sc_next_cb + 1)));
|
|
IEE_CBSYNC(sc, sc->sc_next_cb,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
sc->sc_next_cb++;
|
|
ifp->if_timer = 5;
|
|
}
|
|
|
|
|
|
|
|
void
|
|
iee_attach(struct iee_softc *sc, uint8_t *eth_addr, int *media, int nmedia,
|
|
int defmedia)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
int n;
|
|
|
|
KASSERT(sc->sc_cl_align > 0 && powerof2(sc->sc_cl_align));
|
|
|
|
/*
|
|
* Calculate DMA descriptor offsets and sizes in shmem
|
|
* which should be cache line aligned.
|
|
*/
|
|
sc->sc_scp_off = 0;
|
|
sc->sc_scp_sz = roundup2(sizeof(struct iee_scp), sc->sc_cl_align);
|
|
sc->sc_iscp_off = sc->sc_scp_sz;
|
|
sc->sc_iscp_sz = roundup2(sizeof(struct iee_iscp), sc->sc_cl_align);
|
|
sc->sc_scb_off = sc->sc_iscp_off + sc->sc_iscp_sz;
|
|
sc->sc_scb_sz = roundup2(sizeof(struct iee_scb), sc->sc_cl_align);
|
|
sc->sc_rfd_off = sc->sc_scb_off + sc->sc_scb_sz;
|
|
sc->sc_rfd_sz = roundup2(sizeof(struct iee_rfd), sc->sc_cl_align);
|
|
sc->sc_rbd_off = sc->sc_rfd_off + sc->sc_rfd_sz * IEE_NRFD;
|
|
sc->sc_rbd_sz = roundup2(sizeof(struct iee_rbd), sc->sc_cl_align);
|
|
sc->sc_cb_off = sc->sc_rbd_off + sc->sc_rbd_sz * IEE_NRFD;
|
|
sc->sc_cb_sz = roundup2(sizeof(struct iee_cb), sc->sc_cl_align);
|
|
sc->sc_tbd_off = sc->sc_cb_off + sc->sc_cb_sz * IEE_NCB;
|
|
sc->sc_tbd_sz = roundup2(sizeof(struct iee_tbd), sc->sc_cl_align);
|
|
sc->sc_shmem_sz = sc->sc_tbd_off + sc->sc_tbd_sz * IEE_NTBD * IEE_NCB;
|
|
|
|
/* allocate memory for shared DMA descriptors */
|
|
if (bus_dmamem_alloc(sc->sc_dmat, sc->sc_shmem_sz, PAGE_SIZE, 0,
|
|
&sc->sc_dma_segs, 1, &sc->sc_dma_rsegs, BUS_DMA_NOWAIT) != 0) {
|
|
aprint_error(": can't allocate %d bytes of DMA memory\n",
|
|
sc->sc_shmem_sz);
|
|
return;
|
|
}
|
|
if (bus_dmamem_map(sc->sc_dmat, &sc->sc_dma_segs, sc->sc_dma_rsegs,
|
|
sc->sc_shmem_sz, (void **)&sc->sc_shmem_addr,
|
|
BUS_DMA_COHERENT | BUS_DMA_NOWAIT) != 0) {
|
|
aprint_error(": can't map DMA memory\n");
|
|
bus_dmamem_free(sc->sc_dmat, &sc->sc_dma_segs,
|
|
sc->sc_dma_rsegs);
|
|
return;
|
|
}
|
|
if (bus_dmamap_create(sc->sc_dmat, sc->sc_shmem_sz, sc->sc_dma_rsegs,
|
|
sc->sc_shmem_sz, 0, BUS_DMA_NOWAIT, &sc->sc_shmem_map) != 0) {
|
|
aprint_error(": can't create DMA map\n");
|
|
bus_dmamem_unmap(sc->sc_dmat, sc->sc_shmem_addr,
|
|
sc->sc_shmem_sz);
|
|
bus_dmamem_free(sc->sc_dmat, &sc->sc_dma_segs,
|
|
sc->sc_dma_rsegs);
|
|
return;
|
|
}
|
|
if (bus_dmamap_load(sc->sc_dmat, sc->sc_shmem_map, sc->sc_shmem_addr,
|
|
sc->sc_shmem_sz, NULL, BUS_DMA_NOWAIT) != 0) {
|
|
aprint_error(": can't load DMA map\n");
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_shmem_map);
|
|
bus_dmamem_unmap(sc->sc_dmat, sc->sc_shmem_addr,
|
|
sc->sc_shmem_sz);
|
|
bus_dmamem_free(sc->sc_dmat, &sc->sc_dma_segs,
|
|
sc->sc_dma_rsegs);
|
|
return;
|
|
}
|
|
memset(sc->sc_shmem_addr, 0, sc->sc_shmem_sz);
|
|
|
|
/* Set pointer to Intermediate System Configuration Pointer. */
|
|
/* Phys. addr. in big endian order. (Big endian as defined by Intel.) */
|
|
SC_SCP(sc)->scp_iscp_addr = IEE_SWAP32(IEE_PHYS_SHMEM(sc->sc_iscp_off));
|
|
SC_SCP(sc)->scp_sysbus = sc->sc_sysbus;
|
|
/* Set pointer to System Control Block. */
|
|
/* Phys. addr. in big endian order. (Big endian as defined by Intel.) */
|
|
SC_ISCP(sc)->iscp_scb_addr = IEE_SWAP32(IEE_PHYS_SHMEM(sc->sc_scb_off));
|
|
/* Set pointer to Receive Frame Area. (physical address) */
|
|
SC_SCB(sc)->scb_rfa_addr = IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rfd_off));
|
|
/* Set pointer to Command Block. (physical address) */
|
|
SC_SCB(sc)->scb_cmd_blk_addr =
|
|
IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_cb_off));
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map, 0, sc->sc_shmem_sz,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
ifmedia_init(&sc->sc_ifmedia, 0, iee_mediachange, iee_mediastatus);
|
|
if (media != NULL) {
|
|
for (n = 0 ; n < nmedia ; n++)
|
|
ifmedia_add(&sc->sc_ifmedia, media[n], 0, NULL);
|
|
ifmedia_set(&sc->sc_ifmedia, defmedia);
|
|
} else {
|
|
ifmedia_add(&sc->sc_ifmedia, IFM_ETHER | IFM_NONE, 0, NULL);
|
|
ifmedia_set(&sc->sc_ifmedia, IFM_ETHER | IFM_NONE);
|
|
}
|
|
|
|
ifp->if_softc = sc;
|
|
strcpy(ifp->if_xname, device_xname(sc->sc_dev));
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_start = iee_start; /* initiate output routine */
|
|
ifp->if_ioctl = iee_ioctl; /* ioctl routine */
|
|
ifp->if_init = iee_init; /* init routine */
|
|
ifp->if_stop = iee_stop; /* stop routine */
|
|
ifp->if_watchdog = iee_watchdog; /* timer routine */
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
/* iee supports IEEE 802.1Q Virtual LANs, see vlan(4). */
|
|
sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
|
|
|
|
if_attach(ifp);
|
|
ether_ifattach(ifp, eth_addr);
|
|
|
|
aprint_normal(": Intel 82596%s address %s\n",
|
|
i82596_typenames[sc->sc_type], ether_sprintf(eth_addr));
|
|
|
|
for (n = 0 ; n < IEE_NCB ; n++)
|
|
sc->sc_tx_map[n] = NULL;
|
|
for (n = 0 ; n < IEE_NRFD ; n++) {
|
|
sc->sc_rx_mbuf[n] = NULL;
|
|
sc->sc_rx_map[n] = NULL;
|
|
}
|
|
sc->sc_tx_timeout = 0;
|
|
sc->sc_setup_timeout = 0;
|
|
(sc->sc_iee_reset)(sc);
|
|
}
|
|
|
|
|
|
|
|
void
|
|
iee_detach(struct iee_softc *sc, int flags)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
|
|
if ((ifp->if_flags & IFF_RUNNING) != 0)
|
|
iee_stop(ifp, 1);
|
|
ether_ifdetach(ifp);
|
|
if_detach(ifp);
|
|
bus_dmamap_unload(sc->sc_dmat, sc->sc_shmem_map);
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_shmem_map);
|
|
bus_dmamem_unmap(sc->sc_dmat, sc->sc_shmem_addr, sc->sc_shmem_sz);
|
|
bus_dmamem_free(sc->sc_dmat, &sc->sc_dma_segs, sc->sc_dma_rsegs);
|
|
}
|
|
|
|
|
|
|
|
/* media change and status callback */
|
|
int
|
|
iee_mediachange(struct ifnet *ifp)
|
|
{
|
|
struct iee_softc *sc = ifp->if_softc;
|
|
|
|
if (sc->sc_mediachange != NULL)
|
|
return (sc->sc_mediachange)(ifp);
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
void
|
|
iee_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmreq)
|
|
{
|
|
struct iee_softc *sc = ifp->if_softc;
|
|
|
|
if (sc->sc_mediastatus != NULL)
|
|
(sc->sc_mediastatus)(ifp, ifmreq);
|
|
}
|
|
|
|
|
|
|
|
/* initiate output routine */
|
|
void
|
|
iee_start(struct ifnet *ifp)
|
|
{
|
|
struct iee_softc *sc = ifp->if_softc;
|
|
struct mbuf *m = NULL;
|
|
struct iee_tbd *tbd;
|
|
int t;
|
|
int n;
|
|
|
|
if (sc->sc_next_cb != 0)
|
|
/* There is already a CMD running. Defer packet enqueuing. */
|
|
return;
|
|
for (t = 0 ; t < IEE_NCB ; t++) {
|
|
IFQ_DEQUEUE(&ifp->if_snd, sc->sc_tx_mbuf[t]);
|
|
if (sc->sc_tx_mbuf[t] == NULL)
|
|
break;
|
|
if (bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_tx_map[t],
|
|
sc->sc_tx_mbuf[t], BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
|
|
/*
|
|
* The packet needs more TBD then we support.
|
|
* Copy the packet into a mbuf cluster to get it out.
|
|
*/
|
|
printf("%s: iee_start: failed to load DMA map\n",
|
|
device_xname(sc->sc_dev));
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL) {
|
|
printf("%s: iee_start: can't allocate mbuf\n",
|
|
device_xname(sc->sc_dev));
|
|
m_freem(sc->sc_tx_mbuf[t]);
|
|
t--;
|
|
continue;
|
|
}
|
|
MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
|
|
MCLGET(m, M_DONTWAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
printf("%s: iee_start: can't allocate mbuf "
|
|
"cluster\n", device_xname(sc->sc_dev));
|
|
m_freem(sc->sc_tx_mbuf[t]);
|
|
m_freem(m);
|
|
t--;
|
|
continue;
|
|
}
|
|
m_copydata(sc->sc_tx_mbuf[t], 0,
|
|
sc->sc_tx_mbuf[t]->m_pkthdr.len, mtod(m, void *));
|
|
m->m_pkthdr.len = sc->sc_tx_mbuf[t]->m_pkthdr.len;
|
|
m->m_len = sc->sc_tx_mbuf[t]->m_pkthdr.len;
|
|
m_freem(sc->sc_tx_mbuf[t]);
|
|
sc->sc_tx_mbuf[t] = m;
|
|
if (bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_tx_map[t],
|
|
m, BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
|
|
printf("%s: iee_start: can't load TX DMA map\n",
|
|
device_xname(sc->sc_dev));
|
|
m_freem(sc->sc_tx_mbuf[t]);
|
|
t--;
|
|
continue;
|
|
}
|
|
}
|
|
for (n = 0 ; n < sc->sc_tx_map[t]->dm_nsegs ; n++) {
|
|
tbd = SC_TBD(sc, sc->sc_next_tbd + n);
|
|
tbd->tbd_tb_addr =
|
|
IEE_SWAPA32(sc->sc_tx_map[t]->dm_segs[n].ds_addr);
|
|
tbd->tbd_size =
|
|
sc->sc_tx_map[t]->dm_segs[n].ds_len;
|
|
tbd->tbd_link_addr =
|
|
IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_tbd_off +
|
|
sc->sc_tbd_sz * (sc->sc_next_tbd + n + 1)));
|
|
}
|
|
SC_TBD(sc, sc->sc_next_tbd + n - 1)->tbd_size |= IEE_CB_EL;
|
|
bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map,
|
|
sc->sc_tbd_off + sc->sc_next_tbd * sc->sc_tbd_sz,
|
|
sc->sc_tbd_sz * sc->sc_tx_map[t]->dm_nsegs,
|
|
BUS_DMASYNC_PREWRITE);
|
|
bus_dmamap_sync(sc->sc_dmat, sc->sc_tx_map[t], 0,
|
|
sc->sc_tx_map[t]->dm_mapsize, BUS_DMASYNC_PREWRITE);
|
|
IFQ_POLL(&ifp->if_snd, m);
|
|
if (m == NULL)
|
|
iee_cb_setup(sc, IEE_CB_CMD_TR | IEE_CB_S | IEE_CB_EL
|
|
| IEE_CB_I);
|
|
else
|
|
iee_cb_setup(sc, IEE_CB_CMD_TR);
|
|
sc->sc_next_tbd += n;
|
|
#if NBPFILTER > 0
|
|
/* Pass packet to bpf if someone listens. */
|
|
if (ifp->if_bpf)
|
|
bpf_mtap(ifp->if_bpf, sc->sc_tx_mbuf[t]);
|
|
#endif
|
|
}
|
|
if (t == 0)
|
|
/* No packets got set up for TX. */
|
|
return;
|
|
if (t == IEE_NCB)
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
(sc->sc_iee_cmd)(sc, IEE_SCB_CUC_EXE);
|
|
}
|
|
|
|
|
|
|
|
/* ioctl routine */
|
|
int
|
|
iee_ioctl(struct ifnet *ifp, u_long cmd, void *data)
|
|
{
|
|
struct iee_softc *sc = ifp->if_softc;
|
|
int s;
|
|
int err;
|
|
|
|
s = splnet();
|
|
switch (cmd) {
|
|
case SIOCSIFMEDIA:
|
|
case SIOCGIFMEDIA:
|
|
err = ifmedia_ioctl(ifp, (struct ifreq *) data,
|
|
&sc->sc_ifmedia, cmd);
|
|
break;
|
|
|
|
default:
|
|
err = ether_ioctl(ifp, cmd, data);
|
|
if (err == ENETRESET) {
|
|
/*
|
|
* Multicast list as changed; set the hardware filter
|
|
* accordingly.
|
|
*/
|
|
if (ifp->if_flags & IFF_RUNNING) {
|
|
iee_cb_setup(sc, IEE_CB_CMD_MCS | IEE_CB_S |
|
|
IEE_CB_EL | IEE_CB_I);
|
|
if ((sc->sc_flags & IEE_WANT_MCAST) == 0)
|
|
(*sc->sc_iee_cmd)(sc, IEE_SCB_CUC_EXE);
|
|
}
|
|
err = 0;
|
|
}
|
|
break;
|
|
}
|
|
splx(s);
|
|
return err;
|
|
}
|
|
|
|
|
|
|
|
/* init routine */
|
|
int
|
|
iee_init(struct ifnet *ifp)
|
|
{
|
|
struct iee_softc *sc = ifp->if_softc;
|
|
int r;
|
|
int t;
|
|
int n;
|
|
int err;
|
|
|
|
sc->sc_next_cb = 0;
|
|
sc->sc_next_tbd = 0;
|
|
sc->sc_flags &= ~IEE_WANT_MCAST;
|
|
sc->sc_rx_done = 0;
|
|
SC_SCB(sc)->scb_crc_err = 0;
|
|
SC_SCB(sc)->scb_align_err = 0;
|
|
SC_SCB(sc)->scb_resource_err = 0;
|
|
SC_SCB(sc)->scb_overrun_err = 0;
|
|
SC_SCB(sc)->scb_rcvcdt_err = 0;
|
|
SC_SCB(sc)->scb_short_fr_err = 0;
|
|
sc->sc_crc_err = 0;
|
|
sc->sc_align_err = 0;
|
|
sc->sc_resource_err = 0;
|
|
sc->sc_overrun_err = 0;
|
|
sc->sc_rcvcdt_err = 0;
|
|
sc->sc_short_fr_err = 0;
|
|
sc->sc_tx_col = 0;
|
|
sc->sc_rx_err = 0;
|
|
sc->sc_cmd_err = 0;
|
|
/* Create Transmit DMA maps. */
|
|
for (t = 0 ; t < IEE_NCB ; t++) {
|
|
if (sc->sc_tx_map[t] == NULL && bus_dmamap_create(sc->sc_dmat,
|
|
MCLBYTES, IEE_NTBD, MCLBYTES, 0, BUS_DMA_NOWAIT,
|
|
&sc->sc_tx_map[t]) != 0) {
|
|
printf("%s: iee_init: can't create TX DMA map\n",
|
|
device_xname(sc->sc_dev));
|
|
for (n = 0 ; n < t ; n++)
|
|
bus_dmamap_destroy(sc->sc_dmat,
|
|
sc->sc_tx_map[n]);
|
|
return ENOBUFS;
|
|
}
|
|
}
|
|
/* Initialize Receive Frame and Receive Buffer Descriptors */
|
|
err = 0;
|
|
memset(SC_RFD(sc, 0), 0, sc->sc_rfd_sz * IEE_NRFD);
|
|
memset(SC_RBD(sc, 0), 0, sc->sc_rbd_sz * IEE_NRFD);
|
|
for (r = 0 ; r < IEE_NRFD ; r++) {
|
|
SC_RFD(sc, r)->rfd_cmd = IEE_RFD_SF;
|
|
SC_RFD(sc, r)->rfd_link_addr =
|
|
IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rfd_off
|
|
+ sc->sc_rfd_sz * ((r + 1) % IEE_NRFD)));
|
|
|
|
SC_RBD(sc, r)->rbd_next_rbd =
|
|
IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rbd_off
|
|
+ sc->sc_rbd_sz * ((r + 1) % IEE_NRFD)));
|
|
if (sc->sc_rx_mbuf[r] == NULL) {
|
|
MGETHDR(sc->sc_rx_mbuf[r], M_DONTWAIT, MT_DATA);
|
|
if (sc->sc_rx_mbuf[r] == NULL) {
|
|
printf("%s: iee_init: can't allocate mbuf\n",
|
|
device_xname(sc->sc_dev));
|
|
err = 1;
|
|
break;
|
|
}
|
|
MCLAIM(sc->sc_rx_mbuf[r],&sc->sc_ethercom.ec_rx_mowner);
|
|
MCLGET(sc->sc_rx_mbuf[r], M_DONTWAIT);
|
|
if ((sc->sc_rx_mbuf[r]->m_flags & M_EXT) == 0) {
|
|
printf("%s: iee_init: can't allocate mbuf"
|
|
" cluster\n", device_xname(sc->sc_dev));
|
|
m_freem(sc->sc_rx_mbuf[r]);
|
|
err = 1;
|
|
break;
|
|
}
|
|
sc->sc_rx_mbuf[r]->m_len =
|
|
sc->sc_rx_mbuf[r]->m_pkthdr.len = MCLBYTES - 2;
|
|
sc->sc_rx_mbuf[r]->m_data += 2;
|
|
}
|
|
if (sc->sc_rx_map[r] == NULL && bus_dmamap_create(sc->sc_dmat,
|
|
MCLBYTES, 1, MCLBYTES , 0, BUS_DMA_NOWAIT,
|
|
&sc->sc_rx_map[r]) != 0) {
|
|
printf("%s: iee_init: can't create RX "
|
|
"DMA map\n", device_xname(sc->sc_dev));
|
|
m_freem(sc->sc_rx_mbuf[r]);
|
|
err = 1;
|
|
break;
|
|
}
|
|
if (bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_rx_map[r],
|
|
sc->sc_rx_mbuf[r], BUS_DMA_READ | BUS_DMA_NOWAIT) != 0) {
|
|
printf("%s: iee_init: can't load RX DMA map\n",
|
|
device_xname(sc->sc_dev));
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_map[r]);
|
|
m_freem(sc->sc_rx_mbuf[r]);
|
|
err = 1;
|
|
break;
|
|
}
|
|
bus_dmamap_sync(sc->sc_dmat, sc->sc_rx_map[r], 0,
|
|
sc->sc_rx_map[r]->dm_mapsize, BUS_DMASYNC_PREREAD);
|
|
SC_RBD(sc, r)->rbd_size = sc->sc_rx_map[r]->dm_segs[0].ds_len;
|
|
SC_RBD(sc, r)->rbd_rb_addr =
|
|
IEE_SWAPA32(sc->sc_rx_map[r]->dm_segs[0].ds_addr);
|
|
}
|
|
SC_RFD(sc, 0)->rfd_rbd_addr =
|
|
IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rbd_off));
|
|
if (err != 0) {
|
|
for (n = 0 ; n < r; n++) {
|
|
m_freem(sc->sc_rx_mbuf[n]);
|
|
sc->sc_rx_mbuf[n] = NULL;
|
|
bus_dmamap_unload(sc->sc_dmat, sc->sc_rx_map[n]);
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_map[n]);
|
|
sc->sc_rx_map[n] = NULL;
|
|
}
|
|
for (n = 0 ; n < t ; n++) {
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_map[n]);
|
|
sc->sc_tx_map[n] = NULL;
|
|
}
|
|
return ENOBUFS;
|
|
}
|
|
|
|
(sc->sc_iee_reset)(sc);
|
|
iee_cb_setup(sc, IEE_CB_CMD_IAS);
|
|
sc->sc_cf[0] = IEE_CF_0_DEF | IEE_CF_0_PREF;
|
|
sc->sc_cf[1] = IEE_CF_1_DEF;
|
|
sc->sc_cf[2] = IEE_CF_2_DEF;
|
|
sc->sc_cf[3] = IEE_CF_3_ADDRLEN_DEF | IEE_CF_3_NSAI
|
|
| IEE_CF_3_PREAMLEN_DEF;
|
|
sc->sc_cf[4] = IEE_CF_4_DEF;
|
|
sc->sc_cf[5] = IEE_CF_5_DEF;
|
|
sc->sc_cf[6] = IEE_CF_6_DEF;
|
|
sc->sc_cf[7] = IEE_CF_7_DEF;
|
|
sc->sc_cf[8] = IEE_CF_8_DEF;
|
|
sc->sc_cf[9] = IEE_CF_9_DEF;
|
|
sc->sc_cf[10] = IEE_CF_10_DEF;
|
|
sc->sc_cf[11] = IEE_CF_11_DEF & ~IEE_CF_11_LNGFLD;
|
|
sc->sc_cf[12] = IEE_CF_12_DEF;
|
|
sc->sc_cf[13] = IEE_CF_13_DEF;
|
|
iee_cb_setup(sc, IEE_CB_CMD_CONF | IEE_CB_S | IEE_CB_EL);
|
|
SC_SCB(sc)->scb_rfa_addr = IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rfd_off));
|
|
bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map, 0, sc->sc_shmem_sz,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
(sc->sc_iee_cmd)(sc, IEE_SCB_CUC_EXE | IEE_SCB_RUC_ST);
|
|
/* Issue a Channel Attention to ACK interrupts we may have caused. */
|
|
(sc->sc_iee_cmd)(sc, IEE_SCB_ACK);
|
|
|
|
/* Mark the interface as running and ready to RX/TX packets. */
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
/* stop routine */
|
|
void
|
|
iee_stop(struct ifnet *ifp, int disable)
|
|
{
|
|
struct iee_softc *sc = ifp->if_softc;
|
|
int n;
|
|
|
|
ifp->if_flags &= ~IFF_RUNNING;
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
ifp->if_timer = 0;
|
|
/* Reset the chip to get it quiet. */
|
|
(sc->sc_iee_reset)(ifp->if_softc);
|
|
/* Issue a Channel Attention to ACK interrupts we may have caused. */
|
|
(sc->sc_iee_cmd)(ifp->if_softc, IEE_SCB_ACK);
|
|
/* Release any dynamically allocated resources. */
|
|
for (n = 0 ; n < IEE_NCB ; n++) {
|
|
if (sc->sc_tx_map[n] != NULL)
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_map[n]);
|
|
sc->sc_tx_map[n] = NULL;
|
|
}
|
|
for (n = 0 ; n < IEE_NRFD ; n++) {
|
|
if (sc->sc_rx_mbuf[n] != NULL)
|
|
m_freem(sc->sc_rx_mbuf[n]);
|
|
sc->sc_rx_mbuf[n] = NULL;
|
|
if (sc->sc_rx_map[n] != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat, sc->sc_rx_map[n]);
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_map[n]);
|
|
}
|
|
sc->sc_rx_map[n] = NULL;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/* timer routine */
|
|
void
|
|
iee_watchdog(struct ifnet *ifp)
|
|
{
|
|
struct iee_softc *sc = ifp->if_softc;
|
|
|
|
(sc->sc_iee_reset)(sc);
|
|
if (sc->sc_next_tbd != 0)
|
|
printf("%s: iee_watchdog: transmit timeout %d\n",
|
|
device_xname(sc->sc_dev), ++sc->sc_tx_timeout);
|
|
else
|
|
printf("%s: iee_watchdog: setup timeout %d\n",
|
|
device_xname(sc->sc_dev), ++sc->sc_setup_timeout);
|
|
iee_init(ifp);
|
|
}
|