NetBSD/sys/kern/subr_pool.c

2436 lines
58 KiB
C

/* $NetBSD: subr_pool.c,v 1.124 2006/11/01 10:17:58 yamt Exp $ */
/*-
* Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
* Simulation Facility, NASA Ames Research Center.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.124 2006/11/01 10:17:58 yamt Exp $");
#include "opt_pool.h"
#include "opt_poollog.h"
#include "opt_lockdebug.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/errno.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/lock.h>
#include <sys/pool.h>
#include <sys/syslog.h>
#include <uvm/uvm.h>
/*
* Pool resource management utility.
*
* Memory is allocated in pages which are split into pieces according to
* the pool item size. Each page is kept on one of three lists in the
* pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
* for empty, full and partially-full pages respectively. The individual
* pool items are on a linked list headed by `ph_itemlist' in each page
* header. The memory for building the page list is either taken from
* the allocated pages themselves (for small pool items) or taken from
* an internal pool of page headers (`phpool').
*/
/* List of all pools */
LIST_HEAD(,pool) pool_head = LIST_HEAD_INITIALIZER(pool_head);
/* Private pool for page header structures */
#define PHPOOL_MAX 8
static struct pool phpool[PHPOOL_MAX];
#define PHPOOL_FREELIST_NELEM(idx) (((idx) == 0) ? 0 : (1 << (idx)))
#ifdef POOL_SUBPAGE
/* Pool of subpages for use by normal pools. */
static struct pool psppool;
#endif
static SLIST_HEAD(, pool_allocator) pa_deferinitq =
SLIST_HEAD_INITIALIZER(pa_deferinitq);
static void *pool_page_alloc_meta(struct pool *, int);
static void pool_page_free_meta(struct pool *, void *);
/* allocator for pool metadata */
static struct pool_allocator pool_allocator_meta = {
pool_page_alloc_meta, pool_page_free_meta,
.pa_backingmapptr = &kmem_map,
};
/* # of seconds to retain page after last use */
int pool_inactive_time = 10;
/* Next candidate for drainage (see pool_drain()) */
static struct pool *drainpp;
/* This spin lock protects both pool_head and drainpp. */
struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
typedef uint8_t pool_item_freelist_t;
struct pool_item_header {
/* Page headers */
LIST_ENTRY(pool_item_header)
ph_pagelist; /* pool page list */
SPLAY_ENTRY(pool_item_header)
ph_node; /* Off-page page headers */
caddr_t ph_page; /* this page's address */
struct timeval ph_time; /* last referenced */
union {
/* !PR_NOTOUCH */
struct {
LIST_HEAD(, pool_item)
phu_itemlist; /* chunk list for this page */
} phu_normal;
/* PR_NOTOUCH */
struct {
uint16_t
phu_off; /* start offset in page */
pool_item_freelist_t
phu_firstfree; /* first free item */
/*
* XXX it might be better to use
* a simple bitmap and ffs(3)
*/
} phu_notouch;
} ph_u;
uint16_t ph_nmissing; /* # of chunks in use */
};
#define ph_itemlist ph_u.phu_normal.phu_itemlist
#define ph_off ph_u.phu_notouch.phu_off
#define ph_firstfree ph_u.phu_notouch.phu_firstfree
struct pool_item {
#ifdef DIAGNOSTIC
u_int pi_magic;
#endif
#define PI_MAGIC 0xdeadbeefU
/* Other entries use only this list entry */
LIST_ENTRY(pool_item) pi_list;
};
#define POOL_NEEDS_CATCHUP(pp) \
((pp)->pr_nitems < (pp)->pr_minitems)
/*
* Pool cache management.
*
* Pool caches provide a way for constructed objects to be cached by the
* pool subsystem. This can lead to performance improvements by avoiding
* needless object construction/destruction; it is deferred until absolutely
* necessary.
*
* Caches are grouped into cache groups. Each cache group references
* up to 16 constructed objects. When a cache allocates an object
* from the pool, it calls the object's constructor and places it into
* a cache group. When a cache group frees an object back to the pool,
* it first calls the object's destructor. This allows the object to
* persist in constructed form while freed to the cache.
*
* Multiple caches may exist for each pool. This allows a single
* object type to have multiple constructed forms. The pool references
* each cache, so that when a pool is drained by the pagedaemon, it can
* drain each individual cache as well. Each time a cache is drained,
* the most idle cache group is freed to the pool in its entirety.
*
* Pool caches are layed on top of pools. By layering them, we can avoid
* the complexity of cache management for pools which would not benefit
* from it.
*/
/* The cache group pool. */
static struct pool pcgpool;
static void pool_cache_reclaim(struct pool_cache *, struct pool_pagelist *,
struct pool_cache_grouplist *);
static void pcg_grouplist_free(struct pool_cache_grouplist *);
static int pool_catchup(struct pool *);
static void pool_prime_page(struct pool *, caddr_t,
struct pool_item_header *);
static void pool_update_curpage(struct pool *);
static int pool_grow(struct pool *, int);
static void *pool_allocator_alloc(struct pool *, int);
static void pool_allocator_free(struct pool *, void *);
static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
void (*)(const char *, ...));
static void pool_print1(struct pool *, const char *,
void (*)(const char *, ...));
static int pool_chk_page(struct pool *, const char *,
struct pool_item_header *);
/*
* Pool log entry. An array of these is allocated in pool_init().
*/
struct pool_log {
const char *pl_file;
long pl_line;
int pl_action;
#define PRLOG_GET 1
#define PRLOG_PUT 2
void *pl_addr;
};
#ifdef POOL_DIAGNOSTIC
/* Number of entries in pool log buffers */
#ifndef POOL_LOGSIZE
#define POOL_LOGSIZE 10
#endif
int pool_logsize = POOL_LOGSIZE;
static inline void
pr_log(struct pool *pp, void *v, int action, const char *file, long line)
{
int n = pp->pr_curlogentry;
struct pool_log *pl;
if ((pp->pr_roflags & PR_LOGGING) == 0)
return;
/*
* Fill in the current entry. Wrap around and overwrite
* the oldest entry if necessary.
*/
pl = &pp->pr_log[n];
pl->pl_file = file;
pl->pl_line = line;
pl->pl_action = action;
pl->pl_addr = v;
if (++n >= pp->pr_logsize)
n = 0;
pp->pr_curlogentry = n;
}
static void
pr_printlog(struct pool *pp, struct pool_item *pi,
void (*pr)(const char *, ...))
{
int i = pp->pr_logsize;
int n = pp->pr_curlogentry;
if ((pp->pr_roflags & PR_LOGGING) == 0)
return;
/*
* Print all entries in this pool's log.
*/
while (i-- > 0) {
struct pool_log *pl = &pp->pr_log[n];
if (pl->pl_action != 0) {
if (pi == NULL || pi == pl->pl_addr) {
(*pr)("\tlog entry %d:\n", i);
(*pr)("\t\taction = %s, addr = %p\n",
pl->pl_action == PRLOG_GET ? "get" : "put",
pl->pl_addr);
(*pr)("\t\tfile: %s at line %lu\n",
pl->pl_file, pl->pl_line);
}
}
if (++n >= pp->pr_logsize)
n = 0;
}
}
static inline void
pr_enter(struct pool *pp, const char *file, long line)
{
if (__predict_false(pp->pr_entered_file != NULL)) {
printf("pool %s: reentrancy at file %s line %ld\n",
pp->pr_wchan, file, line);
printf(" previous entry at file %s line %ld\n",
pp->pr_entered_file, pp->pr_entered_line);
panic("pr_enter");
}
pp->pr_entered_file = file;
pp->pr_entered_line = line;
}
static inline void
pr_leave(struct pool *pp)
{
if (__predict_false(pp->pr_entered_file == NULL)) {
printf("pool %s not entered?\n", pp->pr_wchan);
panic("pr_leave");
}
pp->pr_entered_file = NULL;
pp->pr_entered_line = 0;
}
static inline void
pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
{
if (pp->pr_entered_file != NULL)
(*pr)("\n\tcurrently entered from file %s line %ld\n",
pp->pr_entered_file, pp->pr_entered_line);
}
#else
#define pr_log(pp, v, action, file, line)
#define pr_printlog(pp, pi, pr)
#define pr_enter(pp, file, line)
#define pr_leave(pp)
#define pr_enter_check(pp, pr)
#endif /* POOL_DIAGNOSTIC */
static inline int
pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
const void *v)
{
const char *cp = v;
int idx;
KASSERT(pp->pr_roflags & PR_NOTOUCH);
idx = (cp - ph->ph_page - ph->ph_off) / pp->pr_size;
KASSERT(idx < pp->pr_itemsperpage);
return idx;
}
#define PR_FREELIST_ALIGN(p) \
roundup((uintptr_t)(p), sizeof(pool_item_freelist_t))
#define PR_FREELIST(ph) ((pool_item_freelist_t *)PR_FREELIST_ALIGN((ph) + 1))
#define PR_INDEX_USED ((pool_item_freelist_t)-1)
#define PR_INDEX_EOL ((pool_item_freelist_t)-2)
static inline void
pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
void *obj)
{
int idx = pr_item_notouch_index(pp, ph, obj);
pool_item_freelist_t *freelist = PR_FREELIST(ph);
KASSERT(freelist[idx] == PR_INDEX_USED);
freelist[idx] = ph->ph_firstfree;
ph->ph_firstfree = idx;
}
static inline void *
pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
{
int idx = ph->ph_firstfree;
pool_item_freelist_t *freelist = PR_FREELIST(ph);
KASSERT(freelist[idx] != PR_INDEX_USED);
ph->ph_firstfree = freelist[idx];
freelist[idx] = PR_INDEX_USED;
return ph->ph_page + ph->ph_off + idx * pp->pr_size;
}
static inline int
phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
{
/*
* we consider pool_item_header with smaller ph_page bigger.
* (this unnatural ordering is for the benefit of pr_find_pagehead.)
*/
if (a->ph_page < b->ph_page)
return (1);
else if (a->ph_page > b->ph_page)
return (-1);
else
return (0);
}
SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
/*
* Return the pool page header based on item address.
*/
static inline struct pool_item_header *
pr_find_pagehead(struct pool *pp, void *v)
{
struct pool_item_header *ph, tmp;
if ((pp->pr_roflags & PR_NOALIGN) != 0) {
tmp.ph_page = (caddr_t)(uintptr_t)v;
ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
if (ph == NULL) {
ph = SPLAY_ROOT(&pp->pr_phtree);
if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
}
KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
}
} else {
caddr_t page =
(caddr_t)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
ph = (void *)(page + pp->pr_phoffset);
} else {
tmp.ph_page = page;
ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
}
}
KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
(ph->ph_page <= (char *)v &&
(char *)v < ph->ph_page + pp->pr_alloc->pa_pagesz));
return ph;
}
static void
pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
{
struct pool_item_header *ph;
int s;
while ((ph = LIST_FIRST(pq)) != NULL) {
LIST_REMOVE(ph, ph_pagelist);
pool_allocator_free(pp, ph->ph_page);
if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
s = splvm();
pool_put(pp->pr_phpool, ph);
splx(s);
}
}
}
/*
* Remove a page from the pool.
*/
static inline void
pr_rmpage(struct pool *pp, struct pool_item_header *ph,
struct pool_pagelist *pq)
{
LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
/*
* If the page was idle, decrement the idle page count.
*/
if (ph->ph_nmissing == 0) {
#ifdef DIAGNOSTIC
if (pp->pr_nidle == 0)
panic("pr_rmpage: nidle inconsistent");
if (pp->pr_nitems < pp->pr_itemsperpage)
panic("pr_rmpage: nitems inconsistent");
#endif
pp->pr_nidle--;
}
pp->pr_nitems -= pp->pr_itemsperpage;
/*
* Unlink the page from the pool and queue it for release.
*/
LIST_REMOVE(ph, ph_pagelist);
if ((pp->pr_roflags & PR_PHINPAGE) == 0)
SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
LIST_INSERT_HEAD(pq, ph, ph_pagelist);
pp->pr_npages--;
pp->pr_npagefree++;
pool_update_curpage(pp);
}
static boolean_t
pa_starved_p(struct pool_allocator *pa)
{
if (pa->pa_backingmap != NULL) {
return vm_map_starved_p(pa->pa_backingmap);
}
return FALSE;
}
static int
pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
{
struct pool *pp = obj;
struct pool_allocator *pa = pp->pr_alloc;
KASSERT(&pp->pr_reclaimerentry == ce);
pool_reclaim(pp);
if (!pa_starved_p(pa)) {
return CALLBACK_CHAIN_ABORT;
}
return CALLBACK_CHAIN_CONTINUE;
}
static void
pool_reclaim_register(struct pool *pp)
{
struct vm_map *map = pp->pr_alloc->pa_backingmap;
int s;
if (map == NULL) {
return;
}
s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback,
&pp->pr_reclaimerentry, pp, pool_reclaim_callback);
splx(s);
}
static void
pool_reclaim_unregister(struct pool *pp)
{
struct vm_map *map = pp->pr_alloc->pa_backingmap;
int s;
if (map == NULL) {
return;
}
s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */
callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback,
&pp->pr_reclaimerentry);
splx(s);
}
static void
pa_reclaim_register(struct pool_allocator *pa)
{
struct vm_map *map = *pa->pa_backingmapptr;
struct pool *pp;
KASSERT(pa->pa_backingmap == NULL);
if (map == NULL) {
SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q);
return;
}
pa->pa_backingmap = map;
TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
pool_reclaim_register(pp);
}
}
/*
* Initialize all the pools listed in the "pools" link set.
*/
void
pool_subsystem_init(void)
{
struct pool_allocator *pa;
__link_set_decl(pools, struct link_pool_init);
struct link_pool_init * const *pi;
__link_set_foreach(pi, pools)
pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
(*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
(*pi)->palloc);
while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) {
KASSERT(pa->pa_backingmapptr != NULL);
KASSERT(*pa->pa_backingmapptr != NULL);
SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q);
pa_reclaim_register(pa);
}
}
/*
* Initialize the given pool resource structure.
*
* We export this routine to allow other kernel parts to declare
* static pools that must be initialized before malloc() is available.
*/
void
pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
const char *wchan, struct pool_allocator *palloc)
{
#ifdef DEBUG
struct pool *pp1;
#endif
size_t trysize, phsize;
int off, slack, s;
KASSERT((1UL << (CHAR_BIT * sizeof(pool_item_freelist_t))) - 2 >=
PHPOOL_FREELIST_NELEM(PHPOOL_MAX - 1));
#ifdef DEBUG
/*
* Check that the pool hasn't already been initialised and
* added to the list of all pools.
*/
LIST_FOREACH(pp1, &pool_head, pr_poollist) {
if (pp == pp1)
panic("pool_init: pool %s already initialised",
wchan);
}
#endif
#ifdef POOL_DIAGNOSTIC
/*
* Always log if POOL_DIAGNOSTIC is defined.
*/
if (pool_logsize != 0)
flags |= PR_LOGGING;
#endif
if (palloc == NULL)
palloc = &pool_allocator_kmem;
#ifdef POOL_SUBPAGE
if (size > palloc->pa_pagesz) {
if (palloc == &pool_allocator_kmem)
palloc = &pool_allocator_kmem_fullpage;
else if (palloc == &pool_allocator_nointr)
palloc = &pool_allocator_nointr_fullpage;
}
#endif /* POOL_SUBPAGE */
if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
if (palloc->pa_pagesz == 0)
palloc->pa_pagesz = PAGE_SIZE;
TAILQ_INIT(&palloc->pa_list);
simple_lock_init(&palloc->pa_slock);
palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
if (palloc->pa_backingmapptr != NULL) {
pa_reclaim_register(palloc);
}
palloc->pa_flags |= PA_INITIALIZED;
}
if (align == 0)
align = ALIGN(1);
if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item))
size = sizeof(struct pool_item);
size = roundup(size, align);
#ifdef DIAGNOSTIC
if (size > palloc->pa_pagesz)
panic("pool_init: pool item size (%zu) too large", size);
#endif
/*
* Initialize the pool structure.
*/
LIST_INIT(&pp->pr_emptypages);
LIST_INIT(&pp->pr_fullpages);
LIST_INIT(&pp->pr_partpages);
LIST_INIT(&pp->pr_cachelist);
pp->pr_curpage = NULL;
pp->pr_npages = 0;
pp->pr_minitems = 0;
pp->pr_minpages = 0;
pp->pr_maxpages = UINT_MAX;
pp->pr_roflags = flags;
pp->pr_flags = 0;
pp->pr_size = size;
pp->pr_align = align;
pp->pr_wchan = wchan;
pp->pr_alloc = palloc;
pp->pr_nitems = 0;
pp->pr_nout = 0;
pp->pr_hardlimit = UINT_MAX;
pp->pr_hardlimit_warning = NULL;
pp->pr_hardlimit_ratecap.tv_sec = 0;
pp->pr_hardlimit_ratecap.tv_usec = 0;
pp->pr_hardlimit_warning_last.tv_sec = 0;
pp->pr_hardlimit_warning_last.tv_usec = 0;
pp->pr_drain_hook = NULL;
pp->pr_drain_hook_arg = NULL;
/*
* Decide whether to put the page header off page to avoid
* wasting too large a part of the page or too big item.
* Off-page page headers go on a hash table, so we can match
* a returned item with its header based on the page address.
* We use 1/16 of the page size and about 8 times of the item
* size as the threshold (XXX: tune)
*
* However, we'll put the header into the page if we can put
* it without wasting any items.
*
* Silently enforce `0 <= ioff < align'.
*/
pp->pr_itemoffset = ioff %= align;
/* See the comment below about reserved bytes. */
trysize = palloc->pa_pagesz - ((align - ioff) % align);
phsize = ALIGN(sizeof(struct pool_item_header));
if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 &&
(pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
/* Use the end of the page for the page header */
pp->pr_roflags |= PR_PHINPAGE;
pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
} else {
/* The page header will be taken from our page header pool */
pp->pr_phoffset = 0;
off = palloc->pa_pagesz;
SPLAY_INIT(&pp->pr_phtree);
}
/*
* Alignment is to take place at `ioff' within the item. This means
* we must reserve up to `align - 1' bytes on the page to allow
* appropriate positioning of each item.
*/
pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
KASSERT(pp->pr_itemsperpage != 0);
if ((pp->pr_roflags & PR_NOTOUCH)) {
int idx;
for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
idx++) {
/* nothing */
}
if (idx >= PHPOOL_MAX) {
/*
* if you see this panic, consider to tweak
* PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
*/
panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
pp->pr_wchan, pp->pr_itemsperpage);
}
pp->pr_phpool = &phpool[idx];
} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
pp->pr_phpool = &phpool[0];
}
#if defined(DIAGNOSTIC)
else {
pp->pr_phpool = NULL;
}
#endif
/*
* Use the slack between the chunks and the page header
* for "cache coloring".
*/
slack = off - pp->pr_itemsperpage * pp->pr_size;
pp->pr_maxcolor = (slack / align) * align;
pp->pr_curcolor = 0;
pp->pr_nget = 0;
pp->pr_nfail = 0;
pp->pr_nput = 0;
pp->pr_npagealloc = 0;
pp->pr_npagefree = 0;
pp->pr_hiwat = 0;
pp->pr_nidle = 0;
#ifdef POOL_DIAGNOSTIC
if (flags & PR_LOGGING) {
if (kmem_map == NULL ||
(pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
M_TEMP, M_NOWAIT)) == NULL)
pp->pr_roflags &= ~PR_LOGGING;
pp->pr_curlogentry = 0;
pp->pr_logsize = pool_logsize;
}
#endif
pp->pr_entered_file = NULL;
pp->pr_entered_line = 0;
simple_lock_init(&pp->pr_slock);
/*
* Initialize private page header pool and cache magazine pool if we
* haven't done so yet.
* XXX LOCKING.
*/
if (phpool[0].pr_size == 0) {
int idx;
for (idx = 0; idx < PHPOOL_MAX; idx++) {
static char phpool_names[PHPOOL_MAX][6+1+6+1];
int nelem;
size_t sz;
nelem = PHPOOL_FREELIST_NELEM(idx);
snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
"phpool-%d", nelem);
sz = sizeof(struct pool_item_header);
if (nelem) {
sz = PR_FREELIST_ALIGN(sz)
+ nelem * sizeof(pool_item_freelist_t);
}
pool_init(&phpool[idx], sz, 0, 0, 0,
phpool_names[idx], &pool_allocator_meta);
}
#ifdef POOL_SUBPAGE
pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
PR_RECURSIVE, "psppool", &pool_allocator_meta);
#endif
pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
0, "pcgpool", &pool_allocator_meta);
}
/* Insert into the list of all pools. */
simple_lock(&pool_head_slock);
LIST_INSERT_HEAD(&pool_head, pp, pr_poollist);
simple_unlock(&pool_head_slock);
/* Insert this into the list of pools using this allocator. */
s = splvm();
simple_lock(&palloc->pa_slock);
TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
simple_unlock(&palloc->pa_slock);
splx(s);
pool_reclaim_register(pp);
}
/*
* De-commision a pool resource.
*/
void
pool_destroy(struct pool *pp)
{
struct pool_pagelist pq;
struct pool_item_header *ph;
int s;
/* Remove from global pool list */
simple_lock(&pool_head_slock);
LIST_REMOVE(pp, pr_poollist);
if (drainpp == pp)
drainpp = NULL;
simple_unlock(&pool_head_slock);
/* Remove this pool from its allocator's list of pools. */
pool_reclaim_unregister(pp);
s = splvm();
simple_lock(&pp->pr_alloc->pa_slock);
TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
simple_unlock(&pp->pr_alloc->pa_slock);
splx(s);
s = splvm();
simple_lock(&pp->pr_slock);
KASSERT(LIST_EMPTY(&pp->pr_cachelist));
#ifdef DIAGNOSTIC
if (pp->pr_nout != 0) {
pr_printlog(pp, NULL, printf);
panic("pool_destroy: pool busy: still out: %u",
pp->pr_nout);
}
#endif
KASSERT(LIST_EMPTY(&pp->pr_fullpages));
KASSERT(LIST_EMPTY(&pp->pr_partpages));
/* Remove all pages */
LIST_INIT(&pq);
while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
pr_rmpage(pp, ph, &pq);
simple_unlock(&pp->pr_slock);
splx(s);
pr_pagelist_free(pp, &pq);
#ifdef POOL_DIAGNOSTIC
if ((pp->pr_roflags & PR_LOGGING) != 0)
free(pp->pr_log, M_TEMP);
#endif
}
void
pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
{
/* XXX no locking -- must be used just after pool_init() */
#ifdef DIAGNOSTIC
if (pp->pr_drain_hook != NULL)
panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
#endif
pp->pr_drain_hook = fn;
pp->pr_drain_hook_arg = arg;
}
static struct pool_item_header *
pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
{
struct pool_item_header *ph;
int s;
LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0);
if ((pp->pr_roflags & PR_PHINPAGE) != 0)
ph = (struct pool_item_header *) (storage + pp->pr_phoffset);
else {
s = splvm();
ph = pool_get(pp->pr_phpool, flags);
splx(s);
}
return (ph);
}
/*
* Grab an item from the pool; must be called at appropriate spl level
*/
void *
#ifdef POOL_DIAGNOSTIC
_pool_get(struct pool *pp, int flags, const char *file, long line)
#else
pool_get(struct pool *pp, int flags)
#endif
{
struct pool_item *pi;
struct pool_item_header *ph;
void *v;
#ifdef DIAGNOSTIC
if (__predict_false(pp->pr_itemsperpage == 0))
panic("pool_get: pool %p: pr_itemsperpage is zero, "
"pool not initialized?", pp);
if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
(flags & PR_WAITOK) != 0))
panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
#endif /* DIAGNOSTIC */
#ifdef LOCKDEBUG
if (flags & PR_WAITOK)
ASSERT_SLEEPABLE(NULL, "pool_get(PR_WAITOK)");
SCHED_ASSERT_UNLOCKED();
#endif
simple_lock(&pp->pr_slock);
pr_enter(pp, file, line);
startover:
/*
* Check to see if we've reached the hard limit. If we have,
* and we can wait, then wait until an item has been returned to
* the pool.
*/
#ifdef DIAGNOSTIC
if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
pr_leave(pp);
simple_unlock(&pp->pr_slock);
panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
}
#endif
if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
if (pp->pr_drain_hook != NULL) {
/*
* Since the drain hook is going to free things
* back to the pool, unlock, call the hook, re-lock,
* and check the hardlimit condition again.
*/
pr_leave(pp);
simple_unlock(&pp->pr_slock);
(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
simple_lock(&pp->pr_slock);
pr_enter(pp, file, line);
if (pp->pr_nout < pp->pr_hardlimit)
goto startover;
}
if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
/*
* XXX: A warning isn't logged in this case. Should
* it be?
*/
pp->pr_flags |= PR_WANTED;
pr_leave(pp);
ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
pr_enter(pp, file, line);
goto startover;
}
/*
* Log a message that the hard limit has been hit.
*/
if (pp->pr_hardlimit_warning != NULL &&
ratecheck(&pp->pr_hardlimit_warning_last,
&pp->pr_hardlimit_ratecap))
log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
pp->pr_nfail++;
pr_leave(pp);
simple_unlock(&pp->pr_slock);
return (NULL);
}
/*
* The convention we use is that if `curpage' is not NULL, then
* it points at a non-empty bucket. In particular, `curpage'
* never points at a page header which has PR_PHINPAGE set and
* has no items in its bucket.
*/
if ((ph = pp->pr_curpage) == NULL) {
int error;
#ifdef DIAGNOSTIC
if (pp->pr_nitems != 0) {
simple_unlock(&pp->pr_slock);
printf("pool_get: %s: curpage NULL, nitems %u\n",
pp->pr_wchan, pp->pr_nitems);
panic("pool_get: nitems inconsistent");
}
#endif
/*
* Call the back-end page allocator for more memory.
* Release the pool lock, as the back-end page allocator
* may block.
*/
pr_leave(pp);
error = pool_grow(pp, flags);
pr_enter(pp, file, line);
if (error != 0) {
/*
* We were unable to allocate a page or item
* header, but we released the lock during
* allocation, so perhaps items were freed
* back to the pool. Check for this case.
*/
if (pp->pr_curpage != NULL)
goto startover;
pp->pr_nfail++;
pr_leave(pp);
simple_unlock(&pp->pr_slock);
return (NULL);
}
/* Start the allocation process over. */
goto startover;
}
if (pp->pr_roflags & PR_NOTOUCH) {
#ifdef DIAGNOSTIC
if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
pr_leave(pp);
simple_unlock(&pp->pr_slock);
panic("pool_get: %s: page empty", pp->pr_wchan);
}
#endif
v = pr_item_notouch_get(pp, ph);
#ifdef POOL_DIAGNOSTIC
pr_log(pp, v, PRLOG_GET, file, line);
#endif
} else {
v = pi = LIST_FIRST(&ph->ph_itemlist);
if (__predict_false(v == NULL)) {
pr_leave(pp);
simple_unlock(&pp->pr_slock);
panic("pool_get: %s: page empty", pp->pr_wchan);
}
#ifdef DIAGNOSTIC
if (__predict_false(pp->pr_nitems == 0)) {
pr_leave(pp);
simple_unlock(&pp->pr_slock);
printf("pool_get: %s: items on itemlist, nitems %u\n",
pp->pr_wchan, pp->pr_nitems);
panic("pool_get: nitems inconsistent");
}
#endif
#ifdef POOL_DIAGNOSTIC
pr_log(pp, v, PRLOG_GET, file, line);
#endif
#ifdef DIAGNOSTIC
if (__predict_false(pi->pi_magic != PI_MAGIC)) {
pr_printlog(pp, pi, printf);
panic("pool_get(%s): free list modified: "
"magic=%x; page %p; item addr %p\n",
pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
}
#endif
/*
* Remove from item list.
*/
LIST_REMOVE(pi, pi_list);
}
pp->pr_nitems--;
pp->pr_nout++;
if (ph->ph_nmissing == 0) {
#ifdef DIAGNOSTIC
if (__predict_false(pp->pr_nidle == 0))
panic("pool_get: nidle inconsistent");
#endif
pp->pr_nidle--;
/*
* This page was previously empty. Move it to the list of
* partially-full pages. This page is already curpage.
*/
LIST_REMOVE(ph, ph_pagelist);
LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
}
ph->ph_nmissing++;
if (ph->ph_nmissing == pp->pr_itemsperpage) {
#ifdef DIAGNOSTIC
if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
!LIST_EMPTY(&ph->ph_itemlist))) {
pr_leave(pp);
simple_unlock(&pp->pr_slock);
panic("pool_get: %s: nmissing inconsistent",
pp->pr_wchan);
}
#endif
/*
* This page is now full. Move it to the full list
* and select a new current page.
*/
LIST_REMOVE(ph, ph_pagelist);
LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
pool_update_curpage(pp);
}
pp->pr_nget++;
pr_leave(pp);
/*
* If we have a low water mark and we are now below that low
* water mark, add more items to the pool.
*/
if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
/*
* XXX: Should we log a warning? Should we set up a timeout
* to try again in a second or so? The latter could break
* a caller's assumptions about interrupt protection, etc.
*/
}
simple_unlock(&pp->pr_slock);
return (v);
}
/*
* Internal version of pool_put(). Pool is already locked/entered.
*/
static void
pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
{
struct pool_item *pi = v;
struct pool_item_header *ph;
LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
SCHED_ASSERT_UNLOCKED();
#ifdef DIAGNOSTIC
if (__predict_false(pp->pr_nout == 0)) {
printf("pool %s: putting with none out\n",
pp->pr_wchan);
panic("pool_put");
}
#endif
if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
pr_printlog(pp, NULL, printf);
panic("pool_put: %s: page header missing", pp->pr_wchan);
}
#ifdef LOCKDEBUG
/*
* Check if we're freeing a locked simple lock.
*/
simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
#endif
/*
* Return to item list.
*/
if (pp->pr_roflags & PR_NOTOUCH) {
pr_item_notouch_put(pp, ph, v);
} else {
#ifdef DIAGNOSTIC
pi->pi_magic = PI_MAGIC;
#endif
#ifdef DEBUG
{
int i, *ip = v;
for (i = 0; i < pp->pr_size / sizeof(int); i++) {
*ip++ = PI_MAGIC;
}
}
#endif
LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
}
KDASSERT(ph->ph_nmissing != 0);
ph->ph_nmissing--;
pp->pr_nput++;
pp->pr_nitems++;
pp->pr_nout--;
/* Cancel "pool empty" condition if it exists */
if (pp->pr_curpage == NULL)
pp->pr_curpage = ph;
if (pp->pr_flags & PR_WANTED) {
pp->pr_flags &= ~PR_WANTED;
if (ph->ph_nmissing == 0)
pp->pr_nidle++;
wakeup((caddr_t)pp);
return;
}
/*
* If this page is now empty, do one of two things:
*
* (1) If we have more pages than the page high water mark,
* free the page back to the system. ONLY CONSIDER
* FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
* CLAIM.
*
* (2) Otherwise, move the page to the empty page list.
*
* Either way, select a new current page (so we use a partially-full
* page if one is available).
*/
if (ph->ph_nmissing == 0) {
pp->pr_nidle++;
if (pp->pr_npages > pp->pr_minpages &&
(pp->pr_npages > pp->pr_maxpages ||
pa_starved_p(pp->pr_alloc))) {
pr_rmpage(pp, ph, pq);
} else {
LIST_REMOVE(ph, ph_pagelist);
LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
/*
* Update the timestamp on the page. A page must
* be idle for some period of time before it can
* be reclaimed by the pagedaemon. This minimizes
* ping-pong'ing for memory.
*/
getmicrotime(&ph->ph_time);
}
pool_update_curpage(pp);
}
/*
* If the page was previously completely full, move it to the
* partially-full list and make it the current page. The next
* allocation will get the item from this page, instead of
* further fragmenting the pool.
*/
else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
LIST_REMOVE(ph, ph_pagelist);
LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
pp->pr_curpage = ph;
}
}
/*
* Return resource to the pool; must be called at appropriate spl level
*/
#ifdef POOL_DIAGNOSTIC
void
_pool_put(struct pool *pp, void *v, const char *file, long line)
{
struct pool_pagelist pq;
LIST_INIT(&pq);
simple_lock(&pp->pr_slock);
pr_enter(pp, file, line);
pr_log(pp, v, PRLOG_PUT, file, line);
pool_do_put(pp, v, &pq);
pr_leave(pp);
simple_unlock(&pp->pr_slock);
pr_pagelist_free(pp, &pq);
}
#undef pool_put
#endif /* POOL_DIAGNOSTIC */
void
pool_put(struct pool *pp, void *v)
{
struct pool_pagelist pq;
LIST_INIT(&pq);
simple_lock(&pp->pr_slock);
pool_do_put(pp, v, &pq);
simple_unlock(&pp->pr_slock);
pr_pagelist_free(pp, &pq);
}
#ifdef POOL_DIAGNOSTIC
#define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
#endif
/*
* pool_grow: grow a pool by a page.
*
* => called with pool locked.
* => unlock and relock the pool.
* => return with pool locked.
*/
static int
pool_grow(struct pool *pp, int flags)
{
struct pool_item_header *ph = NULL;
char *cp;
simple_unlock(&pp->pr_slock);
cp = pool_allocator_alloc(pp, flags);
if (__predict_true(cp != NULL)) {
ph = pool_alloc_item_header(pp, cp, flags);
}
if (__predict_false(cp == NULL || ph == NULL)) {
if (cp != NULL) {
pool_allocator_free(pp, cp);
}
simple_lock(&pp->pr_slock);
return ENOMEM;
}
simple_lock(&pp->pr_slock);
pool_prime_page(pp, cp, ph);
pp->pr_npagealloc++;
return 0;
}
/*
* Add N items to the pool.
*/
int
pool_prime(struct pool *pp, int n)
{
int newpages;
int error = 0;
simple_lock(&pp->pr_slock);
newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
while (newpages-- > 0) {
error = pool_grow(pp, PR_NOWAIT);
if (error) {
break;
}
pp->pr_minpages++;
}
if (pp->pr_minpages >= pp->pr_maxpages)
pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
simple_unlock(&pp->pr_slock);
return error;
}
/*
* Add a page worth of items to the pool.
*
* Note, we must be called with the pool descriptor LOCKED.
*/
static void
pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
{
struct pool_item *pi;
caddr_t cp = storage;
unsigned int align = pp->pr_align;
unsigned int ioff = pp->pr_itemoffset;
int n;
LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
#ifdef DIAGNOSTIC
if ((pp->pr_roflags & PR_NOALIGN) == 0 &&
((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
#endif
/*
* Insert page header.
*/
LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
LIST_INIT(&ph->ph_itemlist);
ph->ph_page = storage;
ph->ph_nmissing = 0;
getmicrotime(&ph->ph_time);
if ((pp->pr_roflags & PR_PHINPAGE) == 0)
SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
pp->pr_nidle++;
/*
* Color this page.
*/
cp = (caddr_t)(cp + pp->pr_curcolor);
if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
pp->pr_curcolor = 0;
/*
* Adjust storage to apply aligment to `pr_itemoffset' in each item.
*/
if (ioff != 0)
cp = (caddr_t)(cp + (align - ioff));
/*
* Insert remaining chunks on the bucket list.
*/
n = pp->pr_itemsperpage;
pp->pr_nitems += n;
if (pp->pr_roflags & PR_NOTOUCH) {
pool_item_freelist_t *freelist = PR_FREELIST(ph);
int i;
ph->ph_off = cp - storage;
ph->ph_firstfree = 0;
for (i = 0; i < n - 1; i++)
freelist[i] = i + 1;
freelist[n - 1] = PR_INDEX_EOL;
} else {
while (n--) {
pi = (struct pool_item *)cp;
KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
/* Insert on page list */
LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
#ifdef DIAGNOSTIC
pi->pi_magic = PI_MAGIC;
#endif
cp = (caddr_t)(cp + pp->pr_size);
}
}
/*
* If the pool was depleted, point at the new page.
*/
if (pp->pr_curpage == NULL)
pp->pr_curpage = ph;
if (++pp->pr_npages > pp->pr_hiwat)
pp->pr_hiwat = pp->pr_npages;
}
/*
* Used by pool_get() when nitems drops below the low water mark. This
* is used to catch up pr_nitems with the low water mark.
*
* Note 1, we never wait for memory here, we let the caller decide what to do.
*
* Note 2, we must be called with the pool already locked, and we return
* with it locked.
*/
static int
pool_catchup(struct pool *pp)
{
int error = 0;
while (POOL_NEEDS_CATCHUP(pp)) {
error = pool_grow(pp, PR_NOWAIT);
if (error) {
break;
}
}
return error;
}
static void
pool_update_curpage(struct pool *pp)
{
pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
if (pp->pr_curpage == NULL) {
pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
}
}
void
pool_setlowat(struct pool *pp, int n)
{
simple_lock(&pp->pr_slock);
pp->pr_minitems = n;
pp->pr_minpages = (n == 0)
? 0
: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
/* Make sure we're caught up with the newly-set low water mark. */
if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
/*
* XXX: Should we log a warning? Should we set up a timeout
* to try again in a second or so? The latter could break
* a caller's assumptions about interrupt protection, etc.
*/
}
simple_unlock(&pp->pr_slock);
}
void
pool_sethiwat(struct pool *pp, int n)
{
simple_lock(&pp->pr_slock);
pp->pr_maxpages = (n == 0)
? 0
: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
simple_unlock(&pp->pr_slock);
}
void
pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
{
simple_lock(&pp->pr_slock);
pp->pr_hardlimit = n;
pp->pr_hardlimit_warning = warnmess;
pp->pr_hardlimit_ratecap.tv_sec = ratecap;
pp->pr_hardlimit_warning_last.tv_sec = 0;
pp->pr_hardlimit_warning_last.tv_usec = 0;
/*
* In-line version of pool_sethiwat(), because we don't want to
* release the lock.
*/
pp->pr_maxpages = (n == 0)
? 0
: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
simple_unlock(&pp->pr_slock);
}
/*
* Release all complete pages that have not been used recently.
*/
int
#ifdef POOL_DIAGNOSTIC
_pool_reclaim(struct pool *pp, const char *file, long line)
#else
pool_reclaim(struct pool *pp)
#endif
{
struct pool_item_header *ph, *phnext;
struct pool_cache *pc;
struct pool_pagelist pq;
struct pool_cache_grouplist pcgl;
struct timeval curtime, diff;
if (pp->pr_drain_hook != NULL) {
/*
* The drain hook must be called with the pool unlocked.
*/
(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
}
if (simple_lock_try(&pp->pr_slock) == 0)
return (0);
pr_enter(pp, file, line);
LIST_INIT(&pq);
LIST_INIT(&pcgl);
/*
* Reclaim items from the pool's caches.
*/
LIST_FOREACH(pc, &pp->pr_cachelist, pc_poollist)
pool_cache_reclaim(pc, &pq, &pcgl);
getmicrotime(&curtime);
for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
phnext = LIST_NEXT(ph, ph_pagelist);
/* Check our minimum page claim */
if (pp->pr_npages <= pp->pr_minpages)
break;
KASSERT(ph->ph_nmissing == 0);
timersub(&curtime, &ph->ph_time, &diff);
if (diff.tv_sec < pool_inactive_time
&& !pa_starved_p(pp->pr_alloc))
continue;
/*
* If freeing this page would put us below
* the low water mark, stop now.
*/
if ((pp->pr_nitems - pp->pr_itemsperpage) <
pp->pr_minitems)
break;
pr_rmpage(pp, ph, &pq);
}
pr_leave(pp);
simple_unlock(&pp->pr_slock);
if (LIST_EMPTY(&pq) && LIST_EMPTY(&pcgl))
return 0;
pr_pagelist_free(pp, &pq);
pcg_grouplist_free(&pcgl);
return (1);
}
/*
* Drain pools, one at a time.
*
* Note, we must never be called from an interrupt context.
*/
void
pool_drain(void *arg)
{
struct pool *pp;
int s;
pp = NULL;
s = splvm();
simple_lock(&pool_head_slock);
if (drainpp == NULL) {
drainpp = LIST_FIRST(&pool_head);
}
if (drainpp) {
pp = drainpp;
drainpp = LIST_NEXT(pp, pr_poollist);
}
simple_unlock(&pool_head_slock);
if (pp)
pool_reclaim(pp);
splx(s);
}
/*
* Diagnostic helpers.
*/
void
pool_print(struct pool *pp, const char *modif)
{
int s;
s = splvm();
if (simple_lock_try(&pp->pr_slock) == 0) {
printf("pool %s is locked; try again later\n",
pp->pr_wchan);
splx(s);
return;
}
pool_print1(pp, modif, printf);
simple_unlock(&pp->pr_slock);
splx(s);
}
void
pool_printall(const char *modif, void (*pr)(const char *, ...))
{
struct pool *pp;
if (simple_lock_try(&pool_head_slock) == 0) {
(*pr)("WARNING: pool_head_slock is locked\n");
} else {
simple_unlock(&pool_head_slock);
}
LIST_FOREACH(pp, &pool_head, pr_poollist) {
pool_printit(pp, modif, pr);
}
}
void
pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
{
if (pp == NULL) {
(*pr)("Must specify a pool to print.\n");
return;
}
/*
* Called from DDB; interrupts should be blocked, and all
* other processors should be paused. We can skip locking
* the pool in this case.
*
* We do a simple_lock_try() just to print the lock
* status, however.
*/
if (simple_lock_try(&pp->pr_slock) == 0)
(*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
else
simple_unlock(&pp->pr_slock);
pool_print1(pp, modif, pr);
}
static void
pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
void (*pr)(const char *, ...))
{
struct pool_item_header *ph;
#ifdef DIAGNOSTIC
struct pool_item *pi;
#endif
LIST_FOREACH(ph, pl, ph_pagelist) {
(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
ph->ph_page, ph->ph_nmissing,
(u_long)ph->ph_time.tv_sec,
(u_long)ph->ph_time.tv_usec);
#ifdef DIAGNOSTIC
if (!(pp->pr_roflags & PR_NOTOUCH)) {
LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
if (pi->pi_magic != PI_MAGIC) {
(*pr)("\t\t\titem %p, magic 0x%x\n",
pi, pi->pi_magic);
}
}
}
#endif
}
}
static void
pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
{
struct pool_item_header *ph;
struct pool_cache *pc;
struct pool_cache_group *pcg;
int i, print_log = 0, print_pagelist = 0, print_cache = 0;
char c;
while ((c = *modif++) != '\0') {
if (c == 'l')
print_log = 1;
if (c == 'p')
print_pagelist = 1;
if (c == 'c')
print_cache = 1;
}
(*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
pp->pr_roflags);
(*pr)("\talloc %p\n", pp->pr_alloc);
(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
(*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
pp->pr_nget, pp->pr_nfail, pp->pr_nput);
(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
if (print_pagelist == 0)
goto skip_pagelist;
if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
(*pr)("\n\tempty page list:\n");
pool_print_pagelist(pp, &pp->pr_emptypages, pr);
if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
(*pr)("\n\tfull page list:\n");
pool_print_pagelist(pp, &pp->pr_fullpages, pr);
if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
(*pr)("\n\tpartial-page list:\n");
pool_print_pagelist(pp, &pp->pr_partpages, pr);
if (pp->pr_curpage == NULL)
(*pr)("\tno current page\n");
else
(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
skip_pagelist:
if (print_log == 0)
goto skip_log;
(*pr)("\n");
if ((pp->pr_roflags & PR_LOGGING) == 0)
(*pr)("\tno log\n");
else {
pr_printlog(pp, NULL, pr);
}
skip_log:
if (print_cache == 0)
goto skip_cache;
#define PR_GROUPLIST(pcg) \
(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
for (i = 0; i < PCG_NOBJECTS; i++) { \
if (pcg->pcg_objects[i].pcgo_pa != \
POOL_PADDR_INVALID) { \
(*pr)("\t\t\t%p, 0x%llx\n", \
pcg->pcg_objects[i].pcgo_va, \
(unsigned long long) \
pcg->pcg_objects[i].pcgo_pa); \
} else { \
(*pr)("\t\t\t%p\n", \
pcg->pcg_objects[i].pcgo_va); \
} \
}
LIST_FOREACH(pc, &pp->pr_cachelist, pc_poollist) {
(*pr)("\tcache %p\n", pc);
(*pr)("\t hits %lu misses %lu ngroups %lu nitems %lu\n",
pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
(*pr)("\t full groups:\n");
LIST_FOREACH(pcg, &pc->pc_fullgroups, pcg_list) {
PR_GROUPLIST(pcg);
}
(*pr)("\t partial groups:\n");
LIST_FOREACH(pcg, &pc->pc_partgroups, pcg_list) {
PR_GROUPLIST(pcg);
}
(*pr)("\t empty groups:\n");
LIST_FOREACH(pcg, &pc->pc_emptygroups, pcg_list) {
PR_GROUPLIST(pcg);
}
}
#undef PR_GROUPLIST
skip_cache:
pr_enter_check(pp, pr);
}
static int
pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
{
struct pool_item *pi;
caddr_t page;
int n;
if ((pp->pr_roflags & PR_NOALIGN) == 0) {
page = (caddr_t)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
if (page != ph->ph_page &&
(pp->pr_roflags & PR_PHINPAGE) != 0) {
if (label != NULL)
printf("%s: ", label);
printf("pool(%p:%s): page inconsistency: page %p;"
" at page head addr %p (p %p)\n", pp,
pp->pr_wchan, ph->ph_page,
ph, page);
return 1;
}
}
if ((pp->pr_roflags & PR_NOTOUCH) != 0)
return 0;
for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
pi != NULL;
pi = LIST_NEXT(pi,pi_list), n++) {
#ifdef DIAGNOSTIC
if (pi->pi_magic != PI_MAGIC) {
if (label != NULL)
printf("%s: ", label);
printf("pool(%s): free list modified: magic=%x;"
" page %p; item ordinal %d; addr %p\n",
pp->pr_wchan, pi->pi_magic, ph->ph_page,
n, pi);
panic("pool");
}
#endif
if ((pp->pr_roflags & PR_NOALIGN) != 0) {
continue;
}
page = (caddr_t)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
if (page == ph->ph_page)
continue;
if (label != NULL)
printf("%s: ", label);
printf("pool(%p:%s): page inconsistency: page %p;"
" item ordinal %d; addr %p (p %p)\n", pp,
pp->pr_wchan, ph->ph_page,
n, pi, page);
return 1;
}
return 0;
}
int
pool_chk(struct pool *pp, const char *label)
{
struct pool_item_header *ph;
int r = 0;
simple_lock(&pp->pr_slock);
LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
r = pool_chk_page(pp, label, ph);
if (r) {
goto out;
}
}
LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
r = pool_chk_page(pp, label, ph);
if (r) {
goto out;
}
}
LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
r = pool_chk_page(pp, label, ph);
if (r) {
goto out;
}
}
out:
simple_unlock(&pp->pr_slock);
return (r);
}
/*
* pool_cache_init:
*
* Initialize a pool cache.
*
* NOTE: If the pool must be protected from interrupts, we expect
* to be called at the appropriate interrupt priority level.
*/
void
pool_cache_init(struct pool_cache *pc, struct pool *pp,
int (*ctor)(void *, void *, int),
void (*dtor)(void *, void *),
void *arg)
{
LIST_INIT(&pc->pc_emptygroups);
LIST_INIT(&pc->pc_fullgroups);
LIST_INIT(&pc->pc_partgroups);
simple_lock_init(&pc->pc_slock);
pc->pc_pool = pp;
pc->pc_ctor = ctor;
pc->pc_dtor = dtor;
pc->pc_arg = arg;
pc->pc_hits = 0;
pc->pc_misses = 0;
pc->pc_ngroups = 0;
pc->pc_nitems = 0;
simple_lock(&pp->pr_slock);
LIST_INSERT_HEAD(&pp->pr_cachelist, pc, pc_poollist);
simple_unlock(&pp->pr_slock);
}
/*
* pool_cache_destroy:
*
* Destroy a pool cache.
*/
void
pool_cache_destroy(struct pool_cache *pc)
{
struct pool *pp = pc->pc_pool;
/* First, invalidate the entire cache. */
pool_cache_invalidate(pc);
/* ...and remove it from the pool's cache list. */
simple_lock(&pp->pr_slock);
LIST_REMOVE(pc, pc_poollist);
simple_unlock(&pp->pr_slock);
}
static inline void *
pcg_get(struct pool_cache_group *pcg, paddr_t *pap)
{
void *object;
u_int idx;
KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
KASSERT(pcg->pcg_avail != 0);
idx = --pcg->pcg_avail;
KASSERT(pcg->pcg_objects[idx].pcgo_va != NULL);
object = pcg->pcg_objects[idx].pcgo_va;
if (pap != NULL)
*pap = pcg->pcg_objects[idx].pcgo_pa;
pcg->pcg_objects[idx].pcgo_va = NULL;
return (object);
}
static inline void
pcg_put(struct pool_cache_group *pcg, void *object, paddr_t pa)
{
u_int idx;
KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
idx = pcg->pcg_avail++;
KASSERT(pcg->pcg_objects[idx].pcgo_va == NULL);
pcg->pcg_objects[idx].pcgo_va = object;
pcg->pcg_objects[idx].pcgo_pa = pa;
}
static void
pcg_grouplist_free(struct pool_cache_grouplist *pcgl)
{
struct pool_cache_group *pcg;
int s;
s = splvm();
while ((pcg = LIST_FIRST(pcgl)) != NULL) {
LIST_REMOVE(pcg, pcg_list);
pool_put(&pcgpool, pcg);
}
splx(s);
}
/*
* pool_cache_get{,_paddr}:
*
* Get an object from a pool cache (optionally returning
* the physical address of the object).
*/
void *
pool_cache_get_paddr(struct pool_cache *pc, int flags, paddr_t *pap)
{
struct pool_cache_group *pcg;
void *object;
#ifdef LOCKDEBUG
if (flags & PR_WAITOK)
ASSERT_SLEEPABLE(NULL, "pool_cache_get(PR_WAITOK)");
#endif
simple_lock(&pc->pc_slock);
pcg = LIST_FIRST(&pc->pc_partgroups);
if (pcg == NULL) {
pcg = LIST_FIRST(&pc->pc_fullgroups);
if (pcg != NULL) {
LIST_REMOVE(pcg, pcg_list);
LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
}
}
if (pcg == NULL) {
/*
* No groups with any available objects. Allocate
* a new object, construct it, and return it to
* the caller. We will allocate a group, if necessary,
* when the object is freed back to the cache.
*/
pc->pc_misses++;
simple_unlock(&pc->pc_slock);
object = pool_get(pc->pc_pool, flags);
if (object != NULL && pc->pc_ctor != NULL) {
if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
pool_put(pc->pc_pool, object);
return (NULL);
}
}
if (object != NULL && pap != NULL) {
#ifdef POOL_VTOPHYS
*pap = POOL_VTOPHYS(object);
#else
*pap = POOL_PADDR_INVALID;
#endif
}
return (object);
}
pc->pc_hits++;
pc->pc_nitems--;
object = pcg_get(pcg, pap);
if (pcg->pcg_avail == 0) {
LIST_REMOVE(pcg, pcg_list);
LIST_INSERT_HEAD(&pc->pc_emptygroups, pcg, pcg_list);
}
simple_unlock(&pc->pc_slock);
return (object);
}
/*
* pool_cache_put{,_paddr}:
*
* Put an object back to the pool cache (optionally caching the
* physical address of the object).
*/
void
pool_cache_put_paddr(struct pool_cache *pc, void *object, paddr_t pa)
{
struct pool_cache_group *pcg;
int s;
if (__predict_false((pc->pc_pool->pr_flags & PR_WANTED) != 0)) {
goto destruct;
}
simple_lock(&pc->pc_slock);
pcg = LIST_FIRST(&pc->pc_partgroups);
if (pcg == NULL) {
pcg = LIST_FIRST(&pc->pc_emptygroups);
if (pcg != NULL) {
LIST_REMOVE(pcg, pcg_list);
LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
}
}
if (pcg == NULL) {
/*
* No empty groups to free the object to. Attempt to
* allocate one.
*/
simple_unlock(&pc->pc_slock);
s = splvm();
pcg = pool_get(&pcgpool, PR_NOWAIT);
splx(s);
if (pcg == NULL) {
destruct:
/*
* Unable to allocate a cache group; destruct the object
* and free it back to the pool.
*/
pool_cache_destruct_object(pc, object);
return;
}
memset(pcg, 0, sizeof(*pcg));
simple_lock(&pc->pc_slock);
pc->pc_ngroups++;
LIST_INSERT_HEAD(&pc->pc_partgroups, pcg, pcg_list);
}
pc->pc_nitems++;
pcg_put(pcg, object, pa);
if (pcg->pcg_avail == PCG_NOBJECTS) {
LIST_REMOVE(pcg, pcg_list);
LIST_INSERT_HEAD(&pc->pc_fullgroups, pcg, pcg_list);
}
simple_unlock(&pc->pc_slock);
}
/*
* pool_cache_destruct_object:
*
* Force destruction of an object and its release back into
* the pool.
*/
void
pool_cache_destruct_object(struct pool_cache *pc, void *object)
{
if (pc->pc_dtor != NULL)
(*pc->pc_dtor)(pc->pc_arg, object);
pool_put(pc->pc_pool, object);
}
static void
pool_do_cache_invalidate_grouplist(struct pool_cache_grouplist *pcgsl,
struct pool_cache *pc, struct pool_pagelist *pq,
struct pool_cache_grouplist *pcgdl)
{
struct pool_cache_group *pcg, *npcg;
void *object;
for (pcg = LIST_FIRST(pcgsl); pcg != NULL; pcg = npcg) {
npcg = LIST_NEXT(pcg, pcg_list);
while (pcg->pcg_avail != 0) {
pc->pc_nitems--;
object = pcg_get(pcg, NULL);
if (pc->pc_dtor != NULL)
(*pc->pc_dtor)(pc->pc_arg, object);
pool_do_put(pc->pc_pool, object, pq);
}
pc->pc_ngroups--;
LIST_REMOVE(pcg, pcg_list);
LIST_INSERT_HEAD(pcgdl, pcg, pcg_list);
}
}
static void
pool_do_cache_invalidate(struct pool_cache *pc, struct pool_pagelist *pq,
struct pool_cache_grouplist *pcgl)
{
LOCK_ASSERT(simple_lock_held(&pc->pc_slock));
LOCK_ASSERT(simple_lock_held(&pc->pc_pool->pr_slock));
pool_do_cache_invalidate_grouplist(&pc->pc_fullgroups, pc, pq, pcgl);
pool_do_cache_invalidate_grouplist(&pc->pc_partgroups, pc, pq, pcgl);
KASSERT(LIST_EMPTY(&pc->pc_partgroups));
KASSERT(LIST_EMPTY(&pc->pc_fullgroups));
KASSERT(pc->pc_nitems == 0);
}
/*
* pool_cache_invalidate:
*
* Invalidate a pool cache (destruct and release all of the
* cached objects).
*/
void
pool_cache_invalidate(struct pool_cache *pc)
{
struct pool_pagelist pq;
struct pool_cache_grouplist pcgl;
LIST_INIT(&pq);
LIST_INIT(&pcgl);
simple_lock(&pc->pc_slock);
simple_lock(&pc->pc_pool->pr_slock);
pool_do_cache_invalidate(pc, &pq, &pcgl);
simple_unlock(&pc->pc_pool->pr_slock);
simple_unlock(&pc->pc_slock);
pr_pagelist_free(pc->pc_pool, &pq);
pcg_grouplist_free(&pcgl);
}
/*
* pool_cache_reclaim:
*
* Reclaim a pool cache for pool_reclaim().
*/
static void
pool_cache_reclaim(struct pool_cache *pc, struct pool_pagelist *pq,
struct pool_cache_grouplist *pcgl)
{
/*
* We're locking in the wrong order (normally pool_cache -> pool,
* but the pool is already locked when we get here), so we have
* to use trylock. If we can't lock the pool_cache, it's not really
* a big deal here.
*/
if (simple_lock_try(&pc->pc_slock) == 0)
return;
pool_do_cache_invalidate(pc, pq, pcgl);
simple_unlock(&pc->pc_slock);
}
/*
* Pool backend allocators.
*
* Each pool has a backend allocator that handles allocation, deallocation,
* and any additional draining that might be needed.
*
* We provide two standard allocators:
*
* pool_allocator_kmem - the default when no allocator is specified
*
* pool_allocator_nointr - used for pools that will not be accessed
* in interrupt context.
*/
void *pool_page_alloc(struct pool *, int);
void pool_page_free(struct pool *, void *);
#ifdef POOL_SUBPAGE
struct pool_allocator pool_allocator_kmem_fullpage = {
pool_page_alloc, pool_page_free, 0,
.pa_backingmapptr = &kmem_map,
};
#else
struct pool_allocator pool_allocator_kmem = {
pool_page_alloc, pool_page_free, 0,
.pa_backingmapptr = &kmem_map,
};
#endif
void *pool_page_alloc_nointr(struct pool *, int);
void pool_page_free_nointr(struct pool *, void *);
#ifdef POOL_SUBPAGE
struct pool_allocator pool_allocator_nointr_fullpage = {
pool_page_alloc_nointr, pool_page_free_nointr, 0,
.pa_backingmapptr = &kernel_map,
};
#else
struct pool_allocator pool_allocator_nointr = {
pool_page_alloc_nointr, pool_page_free_nointr, 0,
.pa_backingmapptr = &kernel_map,
};
#endif
#ifdef POOL_SUBPAGE
void *pool_subpage_alloc(struct pool *, int);
void pool_subpage_free(struct pool *, void *);
struct pool_allocator pool_allocator_kmem = {
pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
.pa_backingmapptr = &kmem_map,
};
void *pool_subpage_alloc_nointr(struct pool *, int);
void pool_subpage_free_nointr(struct pool *, void *);
struct pool_allocator pool_allocator_nointr = {
pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
.pa_backingmapptr = &kmem_map,
};
#endif /* POOL_SUBPAGE */
static void *
pool_allocator_alloc(struct pool *pp, int flags)
{
struct pool_allocator *pa = pp->pr_alloc;
void *res;
LOCK_ASSERT(!simple_lock_held(&pp->pr_slock));
res = (*pa->pa_alloc)(pp, flags);
if (res == NULL && (flags & PR_WAITOK) == 0) {
/*
* We only run the drain hook here if PR_NOWAIT.
* In other cases, the hook will be run in
* pool_reclaim().
*/
if (pp->pr_drain_hook != NULL) {
(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
res = (*pa->pa_alloc)(pp, flags);
}
}
return res;
}
static void
pool_allocator_free(struct pool *pp, void *v)
{
struct pool_allocator *pa = pp->pr_alloc;
LOCK_ASSERT(!simple_lock_held(&pp->pr_slock));
(*pa->pa_free)(pp, v);
}
void *
pool_page_alloc(struct pool *pp, int flags)
{
boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok));
}
void
pool_page_free(struct pool *pp, void *v)
{
uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
}
static void *
pool_page_alloc_meta(struct pool *pp, int flags)
{
boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok));
}
static void
pool_page_free_meta(struct pool *pp, void *v)
{
uvm_km_free_poolpage(kmem_map, (vaddr_t) v);
}
#ifdef POOL_SUBPAGE
/* Sub-page allocator, for machines with large hardware pages. */
void *
pool_subpage_alloc(struct pool *pp, int flags)
{
void *v;
int s;
s = splvm();
v = pool_get(&psppool, flags);
splx(s);
return v;
}
void
pool_subpage_free(struct pool *pp, void *v)
{
int s;
s = splvm();
pool_put(&psppool, v);
splx(s);
}
/* We don't provide a real nointr allocator. Maybe later. */
void *
pool_subpage_alloc_nointr(struct pool *pp, int flags)
{
return (pool_subpage_alloc(pp, flags));
}
void
pool_subpage_free_nointr(struct pool *pp, void *v)
{
pool_subpage_free(pp, v);
}
#endif /* POOL_SUBPAGE */
void *
pool_page_alloc_nointr(struct pool *pp, int flags)
{
boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok));
}
void
pool_page_free_nointr(struct pool *pp, void *v)
{
uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
}