a84fee7faf
it's just to get it out of my local tree).
2636 lines
62 KiB
C
2636 lines
62 KiB
C
/* $NetBSD: kern_sig.c,v 1.240 2006/11/22 02:02:51 elad Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1982, 1986, 1989, 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
* (c) UNIX System Laboratories, Inc.
|
|
* All or some portions of this file are derived from material licensed
|
|
* to the University of California by American Telephone and Telegraph
|
|
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
|
|
* the permission of UNIX System Laboratories, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: kern_sig.c,v 1.240 2006/11/22 02:02:51 elad Exp $");
|
|
|
|
#include "opt_coredump.h"
|
|
#include "opt_ktrace.h"
|
|
#include "opt_ptrace.h"
|
|
#include "opt_multiprocessor.h"
|
|
#include "opt_compat_sunos.h"
|
|
#include "opt_compat_netbsd.h"
|
|
#include "opt_compat_netbsd32.h"
|
|
#include "opt_pax.h"
|
|
|
|
#define SIGPROP /* include signal properties table */
|
|
#include <sys/param.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/namei.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/timeb.h>
|
|
#include <sys/times.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/acct.h>
|
|
#include <sys/file.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/wait.h>
|
|
#include <sys/ktrace.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/core.h>
|
|
#include <sys/filedesc.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/pool.h>
|
|
#include <sys/ucontext.h>
|
|
#include <sys/sa.h>
|
|
#include <sys/savar.h>
|
|
#include <sys/exec.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/kauth.h>
|
|
|
|
#include <sys/mount.h>
|
|
#include <sys/syscallargs.h>
|
|
|
|
#include <machine/cpu.h>
|
|
|
|
#include <sys/user.h> /* for coredump */
|
|
|
|
#ifdef PAX_SEGVGUARD
|
|
#include <sys/pax.h>
|
|
#endif /* PAX_SEGVGUARD */
|
|
|
|
#include <uvm/uvm.h>
|
|
#include <uvm/uvm_extern.h>
|
|
|
|
#ifdef COREDUMP
|
|
static int build_corename(struct proc *, char *, const char *, size_t);
|
|
#endif
|
|
static void ksiginfo_exithook(struct proc *, void *);
|
|
static void ksiginfo_queue(struct proc *, const ksiginfo_t *, ksiginfo_t **);
|
|
static ksiginfo_t *ksiginfo_dequeue(struct proc *, int);
|
|
static void kpsignal2(struct proc *, const ksiginfo_t *);
|
|
|
|
sigset_t contsigmask, stopsigmask, sigcantmask;
|
|
|
|
struct pool sigacts_pool; /* memory pool for sigacts structures */
|
|
|
|
/*
|
|
* struct sigacts memory pool allocator.
|
|
*/
|
|
|
|
static void *
|
|
sigacts_poolpage_alloc(struct pool *pp, int flags)
|
|
{
|
|
|
|
return (void *)uvm_km_alloc(kernel_map,
|
|
(PAGE_SIZE)*2, (PAGE_SIZE)*2,
|
|
((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
|
|
| UVM_KMF_WIRED);
|
|
}
|
|
|
|
static void
|
|
sigacts_poolpage_free(struct pool *pp, void *v)
|
|
{
|
|
uvm_km_free(kernel_map, (vaddr_t)v, (PAGE_SIZE)*2, UVM_KMF_WIRED);
|
|
}
|
|
|
|
static struct pool_allocator sigactspool_allocator = {
|
|
.pa_alloc = sigacts_poolpage_alloc,
|
|
.pa_free = sigacts_poolpage_free,
|
|
};
|
|
|
|
static POOL_INIT(siginfo_pool, sizeof(siginfo_t), 0, 0, 0, "siginfo",
|
|
&pool_allocator_nointr);
|
|
static POOL_INIT(ksiginfo_pool, sizeof(ksiginfo_t), 0, 0, 0, "ksiginfo", NULL);
|
|
|
|
static ksiginfo_t *
|
|
ksiginfo_alloc(int prflags)
|
|
{
|
|
int s;
|
|
ksiginfo_t *ksi;
|
|
|
|
s = splsoftclock();
|
|
ksi = pool_get(&ksiginfo_pool, prflags);
|
|
splx(s);
|
|
return ksi;
|
|
}
|
|
|
|
static void
|
|
ksiginfo_free(ksiginfo_t *ksi)
|
|
{
|
|
int s;
|
|
|
|
s = splsoftclock();
|
|
pool_put(&ksiginfo_pool, ksi);
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* Remove and return the first ksiginfo element that matches our requested
|
|
* signal, or return NULL if one not found.
|
|
*/
|
|
static ksiginfo_t *
|
|
ksiginfo_dequeue(struct proc *p, int signo)
|
|
{
|
|
ksiginfo_t *ksi;
|
|
int s;
|
|
|
|
s = splsoftclock();
|
|
simple_lock(&p->p_sigctx.ps_silock);
|
|
CIRCLEQ_FOREACH(ksi, &p->p_sigctx.ps_siginfo, ksi_list) {
|
|
if (ksi->ksi_signo == signo) {
|
|
CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
|
|
goto out;
|
|
}
|
|
}
|
|
ksi = NULL;
|
|
out:
|
|
simple_unlock(&p->p_sigctx.ps_silock);
|
|
splx(s);
|
|
return ksi;
|
|
}
|
|
|
|
/*
|
|
* Append a new ksiginfo element to the list of pending ksiginfo's, if
|
|
* we need to (SA_SIGINFO was requested). We replace non RT signals if
|
|
* they already existed in the queue and we add new entries for RT signals,
|
|
* or for non RT signals with non-existing entries.
|
|
*/
|
|
static void
|
|
ksiginfo_queue(struct proc *p, const ksiginfo_t *ksi, ksiginfo_t **newkp)
|
|
{
|
|
ksiginfo_t *kp;
|
|
struct sigaction *sa = &SIGACTION_PS(p->p_sigacts, ksi->ksi_signo);
|
|
int s;
|
|
|
|
if ((sa->sa_flags & SA_SIGINFO) == 0)
|
|
return;
|
|
|
|
/*
|
|
* If there's no info, don't save it.
|
|
*/
|
|
if (KSI_EMPTY_P(ksi))
|
|
return;
|
|
|
|
s = splsoftclock();
|
|
simple_lock(&p->p_sigctx.ps_silock);
|
|
#ifdef notyet /* XXX: QUEUING */
|
|
if (ksi->ksi_signo < SIGRTMIN)
|
|
#endif
|
|
{
|
|
CIRCLEQ_FOREACH(kp, &p->p_sigctx.ps_siginfo, ksi_list) {
|
|
if (kp->ksi_signo == ksi->ksi_signo) {
|
|
KSI_COPY(ksi, kp);
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
if (newkp && *newkp) {
|
|
kp = *newkp;
|
|
*newkp = NULL;
|
|
} else {
|
|
SCHED_ASSERT_UNLOCKED();
|
|
kp = ksiginfo_alloc(PR_NOWAIT);
|
|
if (kp == NULL) {
|
|
#ifdef DIAGNOSTIC
|
|
printf("Out of memory allocating siginfo for pid %d\n",
|
|
p->p_pid);
|
|
#endif
|
|
goto out;
|
|
}
|
|
}
|
|
*kp = *ksi;
|
|
CIRCLEQ_INSERT_TAIL(&p->p_sigctx.ps_siginfo, kp, ksi_list);
|
|
out:
|
|
simple_unlock(&p->p_sigctx.ps_silock);
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* free all pending ksiginfo on exit
|
|
*/
|
|
static void
|
|
ksiginfo_exithook(struct proc *p, void *v)
|
|
{
|
|
int s;
|
|
|
|
s = splsoftclock();
|
|
simple_lock(&p->p_sigctx.ps_silock);
|
|
while (!CIRCLEQ_EMPTY(&p->p_sigctx.ps_siginfo)) {
|
|
ksiginfo_t *ksi = CIRCLEQ_FIRST(&p->p_sigctx.ps_siginfo);
|
|
CIRCLEQ_REMOVE(&p->p_sigctx.ps_siginfo, ksi, ksi_list);
|
|
ksiginfo_free(ksi);
|
|
}
|
|
simple_unlock(&p->p_sigctx.ps_silock);
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* Initialize signal-related data structures.
|
|
*/
|
|
void
|
|
signal_init(void)
|
|
{
|
|
|
|
sigactspool_allocator.pa_pagesz = (PAGE_SIZE)*2;
|
|
|
|
pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
|
|
sizeof(struct sigacts) > PAGE_SIZE ?
|
|
&sigactspool_allocator : &pool_allocator_nointr);
|
|
|
|
exithook_establish(ksiginfo_exithook, NULL);
|
|
exechook_establish(ksiginfo_exithook, NULL);
|
|
}
|
|
|
|
/*
|
|
* Create an initial sigctx structure, using the same signal state
|
|
* as p. If 'share' is set, share the sigctx_proc part, otherwise just
|
|
* copy it from parent.
|
|
*/
|
|
void
|
|
sigactsinit(struct proc *np, struct proc *pp, int share)
|
|
{
|
|
struct sigacts *ps;
|
|
|
|
if (share) {
|
|
np->p_sigacts = pp->p_sigacts;
|
|
pp->p_sigacts->sa_refcnt++;
|
|
} else {
|
|
ps = pool_get(&sigacts_pool, PR_WAITOK);
|
|
if (pp)
|
|
memcpy(ps, pp->p_sigacts, sizeof(struct sigacts));
|
|
else
|
|
memset(ps, '\0', sizeof(struct sigacts));
|
|
ps->sa_refcnt = 1;
|
|
np->p_sigacts = ps;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Make this process not share its sigctx, maintaining all
|
|
* signal state.
|
|
*/
|
|
void
|
|
sigactsunshare(struct proc *p)
|
|
{
|
|
struct sigacts *oldps;
|
|
|
|
if (p->p_sigacts->sa_refcnt == 1)
|
|
return;
|
|
|
|
oldps = p->p_sigacts;
|
|
sigactsinit(p, NULL, 0);
|
|
|
|
if (--oldps->sa_refcnt == 0)
|
|
pool_put(&sigacts_pool, oldps);
|
|
}
|
|
|
|
/*
|
|
* Release a sigctx structure.
|
|
*/
|
|
void
|
|
sigactsfree(struct sigacts *ps)
|
|
{
|
|
|
|
if (--ps->sa_refcnt > 0)
|
|
return;
|
|
|
|
pool_put(&sigacts_pool, ps);
|
|
}
|
|
|
|
int
|
|
sigaction1(struct proc *p, int signum, const struct sigaction *nsa,
|
|
struct sigaction *osa, const void *tramp, int vers)
|
|
{
|
|
struct sigacts *ps;
|
|
int prop;
|
|
|
|
ps = p->p_sigacts;
|
|
if (signum <= 0 || signum >= NSIG)
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* Trampoline ABI version 0 is reserved for the legacy
|
|
* kernel-provided on-stack trampoline. Conversely, if we are
|
|
* using a non-0 ABI version, we must have a trampoline. Only
|
|
* validate the vers if a new sigaction was supplied. Emulations
|
|
* use legacy kernel trampolines with version 0, alternatively
|
|
* check for that too.
|
|
*/
|
|
if ((vers != 0 && tramp == NULL) ||
|
|
#ifdef SIGTRAMP_VALID
|
|
(nsa != NULL &&
|
|
((vers == 0) ?
|
|
(p->p_emul->e_sigcode == NULL) :
|
|
!SIGTRAMP_VALID(vers))) ||
|
|
#endif
|
|
(vers == 0 && tramp != NULL))
|
|
return (EINVAL);
|
|
|
|
if (osa)
|
|
*osa = SIGACTION_PS(ps, signum);
|
|
|
|
if (nsa) {
|
|
if (nsa->sa_flags & ~SA_ALLBITS)
|
|
return (EINVAL);
|
|
|
|
prop = sigprop[signum];
|
|
if (prop & SA_CANTMASK)
|
|
return (EINVAL);
|
|
|
|
(void) splsched(); /* XXXSMP */
|
|
SIGACTION_PS(ps, signum) = *nsa;
|
|
ps->sa_sigdesc[signum].sd_tramp = tramp;
|
|
ps->sa_sigdesc[signum].sd_vers = vers;
|
|
sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
|
|
if ((prop & SA_NORESET) != 0)
|
|
SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
|
|
if (signum == SIGCHLD) {
|
|
if (nsa->sa_flags & SA_NOCLDSTOP)
|
|
p->p_flag |= P_NOCLDSTOP;
|
|
else
|
|
p->p_flag &= ~P_NOCLDSTOP;
|
|
if (nsa->sa_flags & SA_NOCLDWAIT) {
|
|
/*
|
|
* Paranoia: since SA_NOCLDWAIT is implemented
|
|
* by reparenting the dying child to PID 1 (and
|
|
* trust it to reap the zombie), PID 1 itself
|
|
* is forbidden to set SA_NOCLDWAIT.
|
|
*/
|
|
if (p->p_pid == 1)
|
|
p->p_flag &= ~P_NOCLDWAIT;
|
|
else
|
|
p->p_flag |= P_NOCLDWAIT;
|
|
} else
|
|
p->p_flag &= ~P_NOCLDWAIT;
|
|
|
|
if (nsa->sa_handler == SIG_IGN) {
|
|
/*
|
|
* Paranoia: same as above.
|
|
*/
|
|
if (p->p_pid == 1)
|
|
p->p_flag &= ~P_CLDSIGIGN;
|
|
else
|
|
p->p_flag |= P_CLDSIGIGN;
|
|
} else
|
|
p->p_flag &= ~P_CLDSIGIGN;
|
|
|
|
}
|
|
if ((nsa->sa_flags & SA_NODEFER) == 0)
|
|
sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
|
|
else
|
|
sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
|
|
/*
|
|
* Set bit in p_sigctx.ps_sigignore for signals that are set to
|
|
* SIG_IGN, and for signals set to SIG_DFL where the default is
|
|
* to ignore. However, don't put SIGCONT in
|
|
* p_sigctx.ps_sigignore, as we have to restart the process.
|
|
*/
|
|
if (nsa->sa_handler == SIG_IGN ||
|
|
(nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
|
|
/* never to be seen again */
|
|
sigdelset(&p->p_sigctx.ps_siglist, signum);
|
|
if (signum != SIGCONT) {
|
|
/* easier in psignal */
|
|
sigaddset(&p->p_sigctx.ps_sigignore, signum);
|
|
}
|
|
sigdelset(&p->p_sigctx.ps_sigcatch, signum);
|
|
} else {
|
|
sigdelset(&p->p_sigctx.ps_sigignore, signum);
|
|
if (nsa->sa_handler == SIG_DFL)
|
|
sigdelset(&p->p_sigctx.ps_sigcatch, signum);
|
|
else
|
|
sigaddset(&p->p_sigctx.ps_sigcatch, signum);
|
|
}
|
|
(void) spl0();
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
#ifdef COMPAT_16
|
|
/* ARGSUSED */
|
|
int
|
|
compat_16_sys___sigaction14(struct lwp *l, void *v, register_t *retval)
|
|
{
|
|
struct compat_16_sys___sigaction14_args /* {
|
|
syscallarg(int) signum;
|
|
syscallarg(const struct sigaction *) nsa;
|
|
syscallarg(struct sigaction *) osa;
|
|
} */ *uap = v;
|
|
struct proc *p;
|
|
struct sigaction nsa, osa;
|
|
int error;
|
|
|
|
if (SCARG(uap, nsa)) {
|
|
error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
|
|
if (error)
|
|
return (error);
|
|
}
|
|
p = l->l_proc;
|
|
error = sigaction1(p, SCARG(uap, signum),
|
|
SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
|
|
NULL, 0);
|
|
if (error)
|
|
return (error);
|
|
if (SCARG(uap, osa)) {
|
|
error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
|
|
if (error)
|
|
return (error);
|
|
}
|
|
return (0);
|
|
}
|
|
#endif
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
sys___sigaction_sigtramp(struct lwp *l, void *v, register_t *retval)
|
|
{
|
|
struct sys___sigaction_sigtramp_args /* {
|
|
syscallarg(int) signum;
|
|
syscallarg(const struct sigaction *) nsa;
|
|
syscallarg(struct sigaction *) osa;
|
|
syscallarg(void *) tramp;
|
|
syscallarg(int) vers;
|
|
} */ *uap = v;
|
|
struct proc *p = l->l_proc;
|
|
struct sigaction nsa, osa;
|
|
int error;
|
|
|
|
if (SCARG(uap, nsa)) {
|
|
error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
|
|
if (error)
|
|
return (error);
|
|
}
|
|
error = sigaction1(p, SCARG(uap, signum),
|
|
SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
|
|
SCARG(uap, tramp), SCARG(uap, vers));
|
|
if (error)
|
|
return (error);
|
|
if (SCARG(uap, osa)) {
|
|
error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
|
|
if (error)
|
|
return (error);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Initialize signal state for process 0;
|
|
* set to ignore signals that are ignored by default and disable the signal
|
|
* stack.
|
|
*/
|
|
void
|
|
siginit(struct proc *p)
|
|
{
|
|
struct sigacts *ps;
|
|
int signum, prop;
|
|
|
|
ps = p->p_sigacts;
|
|
sigemptyset(&contsigmask);
|
|
sigemptyset(&stopsigmask);
|
|
sigemptyset(&sigcantmask);
|
|
for (signum = 1; signum < NSIG; signum++) {
|
|
prop = sigprop[signum];
|
|
if (prop & SA_CONT)
|
|
sigaddset(&contsigmask, signum);
|
|
if (prop & SA_STOP)
|
|
sigaddset(&stopsigmask, signum);
|
|
if (prop & SA_CANTMASK)
|
|
sigaddset(&sigcantmask, signum);
|
|
if (prop & SA_IGNORE && signum != SIGCONT)
|
|
sigaddset(&p->p_sigctx.ps_sigignore, signum);
|
|
sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
|
|
SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
|
|
}
|
|
sigemptyset(&p->p_sigctx.ps_sigcatch);
|
|
p->p_sigctx.ps_sigwaited = NULL;
|
|
p->p_flag &= ~P_NOCLDSTOP;
|
|
|
|
/*
|
|
* Reset stack state to the user stack.
|
|
*/
|
|
p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
|
|
p->p_sigctx.ps_sigstk.ss_size = 0;
|
|
p->p_sigctx.ps_sigstk.ss_sp = 0;
|
|
|
|
/* One reference. */
|
|
ps->sa_refcnt = 1;
|
|
}
|
|
|
|
/*
|
|
* Reset signals for an exec of the specified process.
|
|
*/
|
|
void
|
|
execsigs(struct proc *p)
|
|
{
|
|
struct sigacts *ps;
|
|
int signum, prop;
|
|
|
|
sigactsunshare(p);
|
|
|
|
ps = p->p_sigacts;
|
|
|
|
/*
|
|
* Reset caught signals. Held signals remain held
|
|
* through p_sigctx.ps_sigmask (unless they were caught,
|
|
* and are now ignored by default).
|
|
*/
|
|
for (signum = 1; signum < NSIG; signum++) {
|
|
if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
|
|
prop = sigprop[signum];
|
|
if (prop & SA_IGNORE) {
|
|
if ((prop & SA_CONT) == 0)
|
|
sigaddset(&p->p_sigctx.ps_sigignore,
|
|
signum);
|
|
sigdelset(&p->p_sigctx.ps_siglist, signum);
|
|
}
|
|
SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
|
|
}
|
|
sigemptyset(&SIGACTION_PS(ps, signum).sa_mask);
|
|
SIGACTION_PS(ps, signum).sa_flags = SA_RESTART;
|
|
}
|
|
sigemptyset(&p->p_sigctx.ps_sigcatch);
|
|
p->p_sigctx.ps_sigwaited = NULL;
|
|
|
|
/*
|
|
* Reset no zombies if child dies flag as Solaris does.
|
|
*/
|
|
p->p_flag &= ~(P_NOCLDWAIT | P_CLDSIGIGN);
|
|
if (SIGACTION_PS(ps, SIGCHLD).sa_handler == SIG_IGN)
|
|
SIGACTION_PS(ps, SIGCHLD).sa_handler = SIG_DFL;
|
|
|
|
/*
|
|
* Reset stack state to the user stack.
|
|
*/
|
|
p->p_sigctx.ps_sigstk.ss_flags = SS_DISABLE;
|
|
p->p_sigctx.ps_sigstk.ss_size = 0;
|
|
p->p_sigctx.ps_sigstk.ss_sp = 0;
|
|
}
|
|
|
|
int
|
|
sigprocmask1(struct proc *p, int how, const sigset_t *nss, sigset_t *oss)
|
|
{
|
|
|
|
if (oss)
|
|
*oss = p->p_sigctx.ps_sigmask;
|
|
|
|
if (nss) {
|
|
(void)splsched(); /* XXXSMP */
|
|
switch (how) {
|
|
case SIG_BLOCK:
|
|
sigplusset(nss, &p->p_sigctx.ps_sigmask);
|
|
break;
|
|
case SIG_UNBLOCK:
|
|
sigminusset(nss, &p->p_sigctx.ps_sigmask);
|
|
CHECKSIGS(p);
|
|
break;
|
|
case SIG_SETMASK:
|
|
p->p_sigctx.ps_sigmask = *nss;
|
|
CHECKSIGS(p);
|
|
break;
|
|
default:
|
|
(void)spl0(); /* XXXSMP */
|
|
return (EINVAL);
|
|
}
|
|
sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
|
|
(void)spl0(); /* XXXSMP */
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Manipulate signal mask.
|
|
* Note that we receive new mask, not pointer,
|
|
* and return old mask as return value;
|
|
* the library stub does the rest.
|
|
*/
|
|
int
|
|
sys___sigprocmask14(struct lwp *l, void *v, register_t *retval)
|
|
{
|
|
struct sys___sigprocmask14_args /* {
|
|
syscallarg(int) how;
|
|
syscallarg(const sigset_t *) set;
|
|
syscallarg(sigset_t *) oset;
|
|
} */ *uap = v;
|
|
struct proc *p;
|
|
sigset_t nss, oss;
|
|
int error;
|
|
|
|
if (SCARG(uap, set)) {
|
|
error = copyin(SCARG(uap, set), &nss, sizeof(nss));
|
|
if (error)
|
|
return (error);
|
|
}
|
|
p = l->l_proc;
|
|
error = sigprocmask1(p, SCARG(uap, how),
|
|
SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
|
|
if (error)
|
|
return (error);
|
|
if (SCARG(uap, oset)) {
|
|
error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
|
|
if (error)
|
|
return (error);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
sigpending1(struct proc *p, sigset_t *ss)
|
|
{
|
|
|
|
*ss = p->p_sigctx.ps_siglist;
|
|
sigminusset(&p->p_sigctx.ps_sigmask, ss);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
sys___sigpending14(struct lwp *l, void *v, register_t *retval)
|
|
{
|
|
struct sys___sigpending14_args /* {
|
|
syscallarg(sigset_t *) set;
|
|
} */ *uap = v;
|
|
struct proc *p;
|
|
sigset_t ss;
|
|
|
|
p = l->l_proc;
|
|
sigpending1(p, &ss);
|
|
return (copyout(&ss, SCARG(uap, set), sizeof(ss)));
|
|
}
|
|
|
|
int
|
|
sigsuspend1(struct proc *p, const sigset_t *ss)
|
|
{
|
|
struct sigacts *ps;
|
|
|
|
ps = p->p_sigacts;
|
|
if (ss) {
|
|
/*
|
|
* When returning from sigpause, we want
|
|
* the old mask to be restored after the
|
|
* signal handler has finished. Thus, we
|
|
* save it here and mark the sigctx structure
|
|
* to indicate this.
|
|
*/
|
|
p->p_sigctx.ps_oldmask = p->p_sigctx.ps_sigmask;
|
|
p->p_sigctx.ps_flags |= SAS_OLDMASK;
|
|
(void) splsched(); /* XXXSMP */
|
|
p->p_sigctx.ps_sigmask = *ss;
|
|
CHECKSIGS(p);
|
|
sigminusset(&sigcantmask, &p->p_sigctx.ps_sigmask);
|
|
(void) spl0(); /* XXXSMP */
|
|
}
|
|
|
|
while (tsleep((caddr_t) ps, PPAUSE|PCATCH, "pause", 0) == 0)
|
|
/* void */;
|
|
|
|
/* always return EINTR rather than ERESTART... */
|
|
return (EINTR);
|
|
}
|
|
|
|
/*
|
|
* Suspend process until signal, providing mask to be set
|
|
* in the meantime. Note nonstandard calling convention:
|
|
* libc stub passes mask, not pointer, to save a copyin.
|
|
*/
|
|
/* ARGSUSED */
|
|
int
|
|
sys___sigsuspend14(struct lwp *l, void *v, register_t *retval)
|
|
{
|
|
struct sys___sigsuspend14_args /* {
|
|
syscallarg(const sigset_t *) set;
|
|
} */ *uap = v;
|
|
struct proc *p;
|
|
sigset_t ss;
|
|
int error;
|
|
|
|
if (SCARG(uap, set)) {
|
|
error = copyin(SCARG(uap, set), &ss, sizeof(ss));
|
|
if (error)
|
|
return (error);
|
|
}
|
|
|
|
p = l->l_proc;
|
|
return (sigsuspend1(p, SCARG(uap, set) ? &ss : 0));
|
|
}
|
|
|
|
int
|
|
sigaltstack1(struct proc *p, const struct sigaltstack *nss,
|
|
struct sigaltstack *oss)
|
|
{
|
|
|
|
if (oss)
|
|
*oss = p->p_sigctx.ps_sigstk;
|
|
|
|
if (nss) {
|
|
if (nss->ss_flags & ~SS_ALLBITS)
|
|
return (EINVAL);
|
|
|
|
if (nss->ss_flags & SS_DISABLE) {
|
|
if (p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK)
|
|
return (EINVAL);
|
|
} else {
|
|
if (nss->ss_size < MINSIGSTKSZ)
|
|
return (ENOMEM);
|
|
}
|
|
p->p_sigctx.ps_sigstk = *nss;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
sys___sigaltstack14(struct lwp *l, void *v, register_t *retval)
|
|
{
|
|
struct sys___sigaltstack14_args /* {
|
|
syscallarg(const struct sigaltstack *) nss;
|
|
syscallarg(struct sigaltstack *) oss;
|
|
} */ *uap = v;
|
|
struct proc *p;
|
|
struct sigaltstack nss, oss;
|
|
int error;
|
|
|
|
if (SCARG(uap, nss)) {
|
|
error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
|
|
if (error)
|
|
return (error);
|
|
}
|
|
p = l->l_proc;
|
|
error = sigaltstack1(p,
|
|
SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
|
|
if (error)
|
|
return (error);
|
|
if (SCARG(uap, oss)) {
|
|
error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
|
|
if (error)
|
|
return (error);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
sys_kill(struct lwp *l, void *v, register_t *retval)
|
|
{
|
|
struct sys_kill_args /* {
|
|
syscallarg(int) pid;
|
|
syscallarg(int) signum;
|
|
} */ *uap = v;
|
|
struct proc *p;
|
|
ksiginfo_t ksi;
|
|
int signum = SCARG(uap, signum);
|
|
int error;
|
|
|
|
if ((u_int)signum >= NSIG)
|
|
return (EINVAL);
|
|
KSI_INIT(&ksi);
|
|
ksi.ksi_signo = signum;
|
|
ksi.ksi_code = SI_USER;
|
|
ksi.ksi_pid = l->l_proc->p_pid;
|
|
ksi.ksi_uid = kauth_cred_geteuid(l->l_cred);
|
|
if (SCARG(uap, pid) > 0) {
|
|
/* kill single process */
|
|
if ((p = pfind(SCARG(uap, pid))) == NULL)
|
|
return (ESRCH);
|
|
error = kauth_authorize_process(l->l_cred,
|
|
KAUTH_PROCESS_CANSIGNAL, p, (void *)(uintptr_t)signum,
|
|
NULL, NULL);
|
|
if (error)
|
|
return error;
|
|
if (signum)
|
|
kpsignal2(p, &ksi);
|
|
return (0);
|
|
}
|
|
switch (SCARG(uap, pid)) {
|
|
case -1: /* broadcast signal */
|
|
return (killpg1(l, &ksi, 0, 1));
|
|
case 0: /* signal own process group */
|
|
return (killpg1(l, &ksi, 0, 0));
|
|
default: /* negative explicit process group */
|
|
return (killpg1(l, &ksi, -SCARG(uap, pid), 0));
|
|
}
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
/*
|
|
* Common code for kill process group/broadcast kill.
|
|
* cp is calling process.
|
|
*/
|
|
int
|
|
killpg1(struct lwp *l, ksiginfo_t *ksi, int pgid, int all)
|
|
{
|
|
struct proc *p, *cp;
|
|
kauth_cred_t pc;
|
|
struct pgrp *pgrp;
|
|
int nfound;
|
|
int signum = ksi->ksi_signo;
|
|
|
|
cp = l->l_proc;
|
|
pc = l->l_cred;
|
|
nfound = 0;
|
|
if (all) {
|
|
/*
|
|
* broadcast
|
|
*/
|
|
proclist_lock_read();
|
|
PROCLIST_FOREACH(p, &allproc) {
|
|
if (p->p_pid <= 1 || p->p_flag & P_SYSTEM || p == cp ||
|
|
kauth_authorize_process(pc, KAUTH_PROCESS_CANSIGNAL,
|
|
p, (void *)(uintptr_t)signum, NULL, NULL) != 0)
|
|
continue;
|
|
nfound++;
|
|
if (signum)
|
|
kpsignal2(p, ksi);
|
|
}
|
|
proclist_unlock_read();
|
|
} else {
|
|
if (pgid == 0)
|
|
/*
|
|
* zero pgid means send to my process group.
|
|
*/
|
|
pgrp = cp->p_pgrp;
|
|
else {
|
|
pgrp = pgfind(pgid);
|
|
if (pgrp == NULL)
|
|
return (ESRCH);
|
|
}
|
|
LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
|
|
if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
|
|
kauth_authorize_process(pc, KAUTH_PROCESS_CANSIGNAL,
|
|
p, (void *)(uintptr_t)signum, NULL, NULL) != 0)
|
|
continue;
|
|
nfound++;
|
|
if (signum && P_ZOMBIE(p) == 0)
|
|
kpsignal2(p, ksi);
|
|
}
|
|
}
|
|
return (nfound ? 0 : ESRCH);
|
|
}
|
|
|
|
/*
|
|
* Send a signal to a process group.
|
|
*/
|
|
void
|
|
gsignal(int pgid, int signum)
|
|
{
|
|
ksiginfo_t ksi;
|
|
KSI_INIT_EMPTY(&ksi);
|
|
ksi.ksi_signo = signum;
|
|
kgsignal(pgid, &ksi, NULL);
|
|
}
|
|
|
|
void
|
|
kgsignal(int pgid, ksiginfo_t *ksi, void *data)
|
|
{
|
|
struct pgrp *pgrp;
|
|
|
|
if (pgid && (pgrp = pgfind(pgid)))
|
|
kpgsignal(pgrp, ksi, data, 0);
|
|
}
|
|
|
|
/*
|
|
* Send a signal to a process group. If checktty is 1,
|
|
* limit to members which have a controlling terminal.
|
|
*/
|
|
void
|
|
pgsignal(struct pgrp *pgrp, int sig, int checkctty)
|
|
{
|
|
ksiginfo_t ksi;
|
|
KSI_INIT_EMPTY(&ksi);
|
|
ksi.ksi_signo = sig;
|
|
kpgsignal(pgrp, &ksi, NULL, checkctty);
|
|
}
|
|
|
|
void
|
|
kpgsignal(struct pgrp *pgrp, ksiginfo_t *ksi, void *data, int checkctty)
|
|
{
|
|
struct proc *p;
|
|
|
|
if (pgrp)
|
|
LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
|
|
if (checkctty == 0 || p->p_flag & P_CONTROLT)
|
|
kpsignal(p, ksi, data);
|
|
}
|
|
|
|
/*
|
|
* Send a signal caused by a trap to the current process.
|
|
* If it will be caught immediately, deliver it with correct code.
|
|
* Otherwise, post it normally.
|
|
*/
|
|
void
|
|
trapsignal(struct lwp *l, const ksiginfo_t *ksi)
|
|
{
|
|
struct proc *p;
|
|
struct sigacts *ps;
|
|
int signum = ksi->ksi_signo;
|
|
|
|
KASSERT(KSI_TRAP_P(ksi));
|
|
|
|
p = l->l_proc;
|
|
ps = p->p_sigacts;
|
|
if ((p->p_flag & P_TRACED) == 0 &&
|
|
sigismember(&p->p_sigctx.ps_sigcatch, signum) &&
|
|
!sigismember(&p->p_sigctx.ps_sigmask, signum)) {
|
|
p->p_stats->p_ru.ru_nsignals++;
|
|
#ifdef KTRACE
|
|
if (KTRPOINT(p, KTR_PSIG))
|
|
ktrpsig(l, signum, SIGACTION_PS(ps, signum).sa_handler,
|
|
&p->p_sigctx.ps_sigmask, ksi);
|
|
#endif
|
|
kpsendsig(l, ksi, &p->p_sigctx.ps_sigmask);
|
|
(void) splsched(); /* XXXSMP */
|
|
sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
|
|
&p->p_sigctx.ps_sigmask);
|
|
if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
|
|
sigdelset(&p->p_sigctx.ps_sigcatch, signum);
|
|
if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
|
|
sigaddset(&p->p_sigctx.ps_sigignore, signum);
|
|
SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
|
|
}
|
|
(void) spl0(); /* XXXSMP */
|
|
} else {
|
|
p->p_sigctx.ps_lwp = l->l_lid;
|
|
/* XXX for core dump/debugger */
|
|
p->p_sigctx.ps_signo = ksi->ksi_signo;
|
|
p->p_sigctx.ps_code = ksi->ksi_trap;
|
|
kpsignal2(p, ksi);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Fill in signal information and signal the parent for a child status change.
|
|
*/
|
|
void
|
|
child_psignal(struct proc *p)
|
|
{
|
|
ksiginfo_t ksi;
|
|
|
|
KSI_INIT(&ksi);
|
|
ksi.ksi_signo = SIGCHLD;
|
|
ksi.ksi_code = p->p_xstat == SIGCONT ? CLD_CONTINUED : CLD_STOPPED;
|
|
ksi.ksi_pid = p->p_pid;
|
|
ksi.ksi_uid = kauth_cred_geteuid(p->p_cred);
|
|
ksi.ksi_status = p->p_xstat;
|
|
ksi.ksi_utime = p->p_stats->p_ru.ru_utime.tv_sec;
|
|
ksi.ksi_stime = p->p_stats->p_ru.ru_stime.tv_sec;
|
|
kpsignal2(p->p_pptr, &ksi);
|
|
}
|
|
|
|
/*
|
|
* Send the signal to the process. If the signal has an action, the action
|
|
* is usually performed by the target process rather than the caller; we add
|
|
* the signal to the set of pending signals for the process.
|
|
*
|
|
* Exceptions:
|
|
* o When a stop signal is sent to a sleeping process that takes the
|
|
* default action, the process is stopped without awakening it.
|
|
* o SIGCONT restarts stopped processes (or puts them back to sleep)
|
|
* regardless of the signal action (eg, blocked or ignored).
|
|
*
|
|
* Other ignored signals are discarded immediately.
|
|
*/
|
|
void
|
|
psignal(struct proc *p, int signum)
|
|
{
|
|
ksiginfo_t ksi;
|
|
|
|
KSI_INIT_EMPTY(&ksi);
|
|
ksi.ksi_signo = signum;
|
|
kpsignal2(p, &ksi);
|
|
}
|
|
|
|
void
|
|
kpsignal(struct proc *p, ksiginfo_t *ksi, void *data)
|
|
{
|
|
|
|
if ((p->p_flag & P_WEXIT) == 0 && data) {
|
|
size_t fd;
|
|
struct filedesc *fdp = p->p_fd;
|
|
|
|
ksi->ksi_fd = -1;
|
|
for (fd = 0; fd < fdp->fd_nfiles; fd++) {
|
|
struct file *fp = fdp->fd_ofiles[fd];
|
|
/* XXX: lock? */
|
|
if (fp && fp->f_data == data) {
|
|
ksi->ksi_fd = fd;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
kpsignal2(p, ksi);
|
|
}
|
|
|
|
static void
|
|
kpsignal2(struct proc *p, const ksiginfo_t *ksi)
|
|
{
|
|
struct lwp *l, *suspended = NULL;
|
|
struct sadata_vp *vp;
|
|
ksiginfo_t *newkp;
|
|
int s = 0, prop, allsusp;
|
|
sig_t action;
|
|
int signum = ksi->ksi_signo;
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (signum <= 0 || signum >= NSIG)
|
|
panic("psignal signal number %d", signum);
|
|
|
|
SCHED_ASSERT_UNLOCKED();
|
|
#endif
|
|
|
|
/*
|
|
* Notify any interested parties in the signal.
|
|
*/
|
|
KNOTE(&p->p_klist, NOTE_SIGNAL | signum);
|
|
|
|
prop = sigprop[signum];
|
|
|
|
/*
|
|
* If proc is traced, always give parent a chance.
|
|
*/
|
|
if (p->p_flag & P_TRACED) {
|
|
action = SIG_DFL;
|
|
|
|
/*
|
|
* If the process is being traced and the signal is being
|
|
* caught, make sure to save any ksiginfo.
|
|
*/
|
|
if (sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
|
|
SCHED_ASSERT_UNLOCKED();
|
|
ksiginfo_queue(p, ksi, NULL);
|
|
}
|
|
} else {
|
|
/*
|
|
* If the signal was the result of a trap, reset it
|
|
* to default action if it's currently masked, so that it would
|
|
* coredump immediatelly instead of spinning repeatedly
|
|
* taking the signal.
|
|
*/
|
|
if (KSI_TRAP_P(ksi)
|
|
&& sigismember(&p->p_sigctx.ps_sigmask, signum)
|
|
&& !sigismember(&p->p_sigctx.ps_sigcatch, signum)) {
|
|
sigdelset(&p->p_sigctx.ps_sigignore, signum);
|
|
sigdelset(&p->p_sigctx.ps_sigcatch, signum);
|
|
sigdelset(&p->p_sigctx.ps_sigmask, signum);
|
|
SIGACTION(p, signum).sa_handler = SIG_DFL;
|
|
}
|
|
|
|
/*
|
|
* If the signal is being ignored,
|
|
* then we forget about it immediately.
|
|
* (Note: we don't set SIGCONT in p_sigctx.ps_sigignore,
|
|
* and if it is set to SIG_IGN,
|
|
* action will be SIG_DFL here.)
|
|
*/
|
|
if (sigismember(&p->p_sigctx.ps_sigignore, signum))
|
|
return;
|
|
if (sigismember(&p->p_sigctx.ps_sigmask, signum))
|
|
action = SIG_HOLD;
|
|
else if (sigismember(&p->p_sigctx.ps_sigcatch, signum))
|
|
action = SIG_CATCH;
|
|
else {
|
|
action = SIG_DFL;
|
|
|
|
if (prop & SA_KILL && p->p_nice > NZERO)
|
|
p->p_nice = NZERO;
|
|
|
|
/*
|
|
* If sending a tty stop signal to a member of an
|
|
* orphaned process group, discard the signal here if
|
|
* the action is default; don't stop the process below
|
|
* if sleeping, and don't clear any pending SIGCONT.
|
|
*/
|
|
if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0)
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (prop & SA_CONT)
|
|
sigminusset(&stopsigmask, &p->p_sigctx.ps_siglist);
|
|
|
|
if (prop & SA_STOP)
|
|
sigminusset(&contsigmask, &p->p_sigctx.ps_siglist);
|
|
|
|
/*
|
|
* If the signal doesn't have SA_CANTMASK (no override for SIGKILL,
|
|
* please!), check if anything waits on it. If yes, save the
|
|
* info into provided ps_sigwaited, and wake-up the waiter.
|
|
* The signal won't be processed further here.
|
|
*/
|
|
if ((prop & SA_CANTMASK) == 0
|
|
&& p->p_sigctx.ps_sigwaited
|
|
&& sigismember(p->p_sigctx.ps_sigwait, signum)
|
|
&& p->p_stat != SSTOP) {
|
|
p->p_sigctx.ps_sigwaited->ksi_info = ksi->ksi_info;
|
|
p->p_sigctx.ps_sigwaited = NULL;
|
|
wakeup_one(&p->p_sigctx.ps_sigwait);
|
|
return;
|
|
}
|
|
|
|
sigaddset(&p->p_sigctx.ps_siglist, signum);
|
|
|
|
/* CHECKSIGS() is "inlined" here. */
|
|
p->p_sigctx.ps_sigcheck = 1;
|
|
|
|
/*
|
|
* Defer further processing for signals which are held,
|
|
* except that stopped processes must be continued by SIGCONT.
|
|
*/
|
|
if (action == SIG_HOLD &&
|
|
((prop & SA_CONT) == 0 || p->p_stat != SSTOP)) {
|
|
SCHED_ASSERT_UNLOCKED();
|
|
ksiginfo_queue(p, ksi, NULL);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Allocate a ksiginfo_t incase we need to insert it with the
|
|
* scheduler lock held, but only if this ksiginfo_t isn't empty.
|
|
*/
|
|
if (!KSI_EMPTY_P(ksi)) {
|
|
newkp = ksiginfo_alloc(PR_NOWAIT);
|
|
if (newkp == NULL) {
|
|
#ifdef DIAGNOSTIC
|
|
printf("kpsignal2: couldn't allocated ksiginfo\n");
|
|
#endif
|
|
return;
|
|
}
|
|
} else
|
|
newkp = NULL;
|
|
|
|
SCHED_LOCK(s);
|
|
|
|
if (p->p_flag & P_SA) {
|
|
allsusp = 0;
|
|
l = NULL;
|
|
if (p->p_stat == SACTIVE) {
|
|
SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
|
|
l = vp->savp_lwp;
|
|
KDASSERT(l != NULL);
|
|
if (l->l_flag & L_SA_IDLE) {
|
|
/* wakeup idle LWP */
|
|
goto found;
|
|
/*NOTREACHED*/
|
|
} else if (l->l_flag & L_SA_YIELD) {
|
|
/* idle LWP is already waking up */
|
|
goto out;
|
|
/*NOTREACHED*/
|
|
}
|
|
}
|
|
SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
|
|
l = vp->savp_lwp;
|
|
if (l->l_stat == LSRUN ||
|
|
l->l_stat == LSONPROC) {
|
|
signotify(p);
|
|
goto out;
|
|
/*NOTREACHED*/
|
|
}
|
|
if (l->l_stat == LSSLEEP &&
|
|
l->l_flag & L_SINTR) {
|
|
/* ok to signal vp lwp */
|
|
break;
|
|
} else
|
|
l = NULL;
|
|
}
|
|
} else if (p->p_stat == SSTOP) {
|
|
SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
|
|
l = vp->savp_lwp;
|
|
if (l->l_stat == LSSLEEP && (l->l_flag & L_SINTR) != 0)
|
|
break;
|
|
l = NULL;
|
|
}
|
|
}
|
|
} else if (p->p_nrlwps > 0 && (p->p_stat != SSTOP)) {
|
|
/*
|
|
* At least one LWP is running or on a run queue.
|
|
* The signal will be noticed when one of them returns
|
|
* to userspace.
|
|
*/
|
|
signotify(p);
|
|
/*
|
|
* The signal will be noticed very soon.
|
|
*/
|
|
goto out;
|
|
/*NOTREACHED*/
|
|
} else {
|
|
/*
|
|
* Find out if any of the sleeps are interruptable,
|
|
* and if all the live LWPs remaining are suspended.
|
|
*/
|
|
allsusp = 1;
|
|
LIST_FOREACH(l, &p->p_lwps, l_sibling) {
|
|
if (l->l_stat == LSSLEEP &&
|
|
l->l_flag & L_SINTR)
|
|
break;
|
|
if (l->l_stat == LSSUSPENDED)
|
|
suspended = l;
|
|
else if ((l->l_stat != LSZOMB) &&
|
|
(l->l_stat != LSDEAD))
|
|
allsusp = 0;
|
|
}
|
|
}
|
|
|
|
found:
|
|
switch (p->p_stat) {
|
|
case SACTIVE:
|
|
|
|
if (l != NULL && (p->p_flag & P_TRACED))
|
|
goto run;
|
|
|
|
/*
|
|
* If SIGCONT is default (or ignored) and process is
|
|
* asleep, we are finished; the process should not
|
|
* be awakened.
|
|
*/
|
|
if ((prop & SA_CONT) && action == SIG_DFL) {
|
|
sigdelset(&p->p_sigctx.ps_siglist, signum);
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* When a sleeping process receives a stop
|
|
* signal, process immediately if possible.
|
|
*/
|
|
if ((prop & SA_STOP) && action == SIG_DFL) {
|
|
/*
|
|
* If a child holding parent blocked,
|
|
* stopping could cause deadlock.
|
|
*/
|
|
if (p->p_flag & P_PPWAIT) {
|
|
goto out;
|
|
}
|
|
sigdelset(&p->p_sigctx.ps_siglist, signum);
|
|
p->p_xstat = signum;
|
|
proc_stop(p, 1); /* XXXSMP: recurse? */
|
|
SCHED_UNLOCK(s);
|
|
if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) {
|
|
child_psignal(p);
|
|
}
|
|
goto done_unlocked;
|
|
}
|
|
|
|
if (l == NULL) {
|
|
/*
|
|
* Special case: SIGKILL of a process
|
|
* which is entirely composed of
|
|
* suspended LWPs should succeed. We
|
|
* make this happen by unsuspending one of
|
|
* them.
|
|
*/
|
|
if (allsusp && (signum == SIGKILL)) {
|
|
lwp_continue(suspended);
|
|
}
|
|
goto done;
|
|
}
|
|
/*
|
|
* All other (caught or default) signals
|
|
* cause the process to run.
|
|
*/
|
|
goto runfast;
|
|
/*NOTREACHED*/
|
|
case SSTOP:
|
|
/* Process is stopped */
|
|
/*
|
|
* If traced process is already stopped,
|
|
* then no further action is necessary.
|
|
*/
|
|
if (p->p_flag & P_TRACED)
|
|
goto done;
|
|
|
|
/*
|
|
* Kill signal always sets processes running,
|
|
* if possible.
|
|
*/
|
|
if (signum == SIGKILL) {
|
|
l = proc_unstop(p);
|
|
if (l)
|
|
goto runfast;
|
|
goto done;
|
|
}
|
|
|
|
if (prop & SA_CONT) {
|
|
/*
|
|
* If SIGCONT is default (or ignored),
|
|
* we continue the process but don't
|
|
* leave the signal in ps_siglist, as
|
|
* it has no further action. If
|
|
* SIGCONT is held, we continue the
|
|
* process and leave the signal in
|
|
* ps_siglist. If the process catches
|
|
* SIGCONT, let it handle the signal
|
|
* itself. If it isn't waiting on an
|
|
* event, then it goes back to run
|
|
* state. Otherwise, process goes
|
|
* back to sleep state.
|
|
*/
|
|
if (action == SIG_DFL)
|
|
sigdelset(&p->p_sigctx.ps_siglist,
|
|
signum);
|
|
l = proc_unstop(p);
|
|
if (l && (action == SIG_CATCH))
|
|
goto runfast;
|
|
goto out;
|
|
}
|
|
|
|
if (prop & SA_STOP) {
|
|
/*
|
|
* Already stopped, don't need to stop again.
|
|
* (If we did the shell could get confused.)
|
|
*/
|
|
sigdelset(&p->p_sigctx.ps_siglist, signum);
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* If a lwp is sleeping interruptibly, then
|
|
* wake it up; it will run until the kernel
|
|
* boundary, where it will stop in issignal(),
|
|
* since p->p_stat is still SSTOP. When the
|
|
* process is continued, it will be made
|
|
* runnable and can look at the signal.
|
|
*/
|
|
if (l)
|
|
goto run;
|
|
goto out;
|
|
case SIDL:
|
|
/* Process is being created by fork */
|
|
/* XXX: We are not ready to receive signals yet */
|
|
goto done;
|
|
default:
|
|
/* Else what? */
|
|
panic("psignal: Invalid process state %d.", p->p_stat);
|
|
}
|
|
/*NOTREACHED*/
|
|
|
|
runfast:
|
|
if (action == SIG_CATCH) {
|
|
ksiginfo_queue(p, ksi, &newkp);
|
|
action = SIG_HOLD;
|
|
}
|
|
/*
|
|
* Raise priority to at least PUSER.
|
|
*/
|
|
if (l->l_priority > PUSER)
|
|
l->l_priority = PUSER;
|
|
run:
|
|
if (action == SIG_CATCH) {
|
|
ksiginfo_queue(p, ksi, &newkp);
|
|
action = SIG_HOLD;
|
|
}
|
|
|
|
setrunnable(l); /* XXXSMP: recurse? */
|
|
out:
|
|
if (action == SIG_CATCH)
|
|
ksiginfo_queue(p, ksi, &newkp);
|
|
done:
|
|
SCHED_UNLOCK(s);
|
|
|
|
done_unlocked:
|
|
if (newkp)
|
|
ksiginfo_free(newkp);
|
|
}
|
|
|
|
siginfo_t *
|
|
siginfo_alloc(int flags)
|
|
{
|
|
|
|
return pool_get(&siginfo_pool, flags);
|
|
}
|
|
|
|
void
|
|
siginfo_free(void *arg)
|
|
{
|
|
|
|
pool_put(&siginfo_pool, arg);
|
|
}
|
|
|
|
void
|
|
kpsendsig(struct lwp *l, const ksiginfo_t *ksi, const sigset_t *mask)
|
|
{
|
|
struct proc *p = l->l_proc;
|
|
struct lwp *le, *li;
|
|
siginfo_t *si;
|
|
int f;
|
|
|
|
if (p->p_flag & P_SA) {
|
|
|
|
/* XXXUPSXXX What if not on sa_vp ? */
|
|
|
|
f = l->l_flag & L_SA;
|
|
l->l_flag &= ~L_SA;
|
|
si = siginfo_alloc(PR_WAITOK);
|
|
si->_info = ksi->ksi_info;
|
|
le = li = NULL;
|
|
if (KSI_TRAP_P(ksi))
|
|
le = l;
|
|
else
|
|
li = l;
|
|
if (sa_upcall(l, SA_UPCALL_SIGNAL | SA_UPCALL_DEFER, le, li,
|
|
sizeof(*si), si, siginfo_free) != 0) {
|
|
siginfo_free(si);
|
|
#if 0
|
|
if (KSI_TRAP_P(ksi))
|
|
/* XXX What do we do here?? */;
|
|
#endif
|
|
}
|
|
l->l_flag |= f;
|
|
return;
|
|
}
|
|
|
|
(*p->p_emul->e_sendsig)(ksi, mask);
|
|
}
|
|
|
|
static inline int firstsig(const sigset_t *);
|
|
|
|
static inline int
|
|
firstsig(const sigset_t *ss)
|
|
{
|
|
int sig;
|
|
|
|
sig = ffs(ss->__bits[0]);
|
|
if (sig != 0)
|
|
return (sig);
|
|
#if NSIG > 33
|
|
sig = ffs(ss->__bits[1]);
|
|
if (sig != 0)
|
|
return (sig + 32);
|
|
#endif
|
|
#if NSIG > 65
|
|
sig = ffs(ss->__bits[2]);
|
|
if (sig != 0)
|
|
return (sig + 64);
|
|
#endif
|
|
#if NSIG > 97
|
|
sig = ffs(ss->__bits[3]);
|
|
if (sig != 0)
|
|
return (sig + 96);
|
|
#endif
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* If the current process has received a signal (should be caught or cause
|
|
* termination, should interrupt current syscall), return the signal number.
|
|
* Stop signals with default action are processed immediately, then cleared;
|
|
* they aren't returned. This is checked after each entry to the system for
|
|
* a syscall or trap (though this can usually be done without calling issignal
|
|
* by checking the pending signal masks in the CURSIG macro.) The normal call
|
|
* sequence is
|
|
*
|
|
* while (signum = CURSIG(curlwp))
|
|
* postsig(signum);
|
|
*/
|
|
int
|
|
issignal(struct lwp *l)
|
|
{
|
|
struct proc *p = l->l_proc;
|
|
int s, signum, prop;
|
|
sigset_t ss;
|
|
|
|
/* Bail out if we do not own the virtual processor */
|
|
if (l->l_flag & L_SA && l->l_savp->savp_lwp != l)
|
|
return 0;
|
|
|
|
KERNEL_PROC_LOCK(l);
|
|
|
|
if (p->p_stat == SSTOP) {
|
|
/*
|
|
* The process is stopped/stopping. Stop ourselves now that
|
|
* we're on the kernel/userspace boundary.
|
|
*/
|
|
SCHED_LOCK(s);
|
|
l->l_stat = LSSTOP;
|
|
p->p_nrlwps--;
|
|
if (p->p_flag & P_TRACED)
|
|
goto sigtraceswitch;
|
|
else
|
|
goto sigswitch;
|
|
}
|
|
for (;;) {
|
|
sigpending1(p, &ss);
|
|
if (p->p_flag & P_PPWAIT)
|
|
sigminusset(&stopsigmask, &ss);
|
|
signum = firstsig(&ss);
|
|
if (signum == 0) { /* no signal to send */
|
|
p->p_sigctx.ps_sigcheck = 0;
|
|
KERNEL_PROC_UNLOCK(l);
|
|
return (0);
|
|
}
|
|
/* take the signal! */
|
|
sigdelset(&p->p_sigctx.ps_siglist, signum);
|
|
|
|
/*
|
|
* We should see pending but ignored signals
|
|
* only if P_TRACED was on when they were posted.
|
|
*/
|
|
if (sigismember(&p->p_sigctx.ps_sigignore, signum) &&
|
|
(p->p_flag & P_TRACED) == 0)
|
|
continue;
|
|
|
|
if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
|
|
/*
|
|
* If traced, always stop, and stay
|
|
* stopped until released by the debugger.
|
|
*/
|
|
p->p_xstat = signum;
|
|
|
|
/* Emulation-specific handling of signal trace */
|
|
if ((p->p_emul->e_tracesig != NULL) &&
|
|
((*p->p_emul->e_tracesig)(p, signum) != 0))
|
|
goto childresumed;
|
|
|
|
if ((p->p_flag & P_FSTRACE) == 0)
|
|
child_psignal(p);
|
|
SCHED_LOCK(s);
|
|
proc_stop(p, 1);
|
|
sigtraceswitch:
|
|
mi_switch(l, NULL);
|
|
SCHED_ASSERT_UNLOCKED();
|
|
splx(s);
|
|
|
|
childresumed:
|
|
/*
|
|
* If we are no longer being traced, or the parent
|
|
* didn't give us a signal, look for more signals.
|
|
*/
|
|
if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0)
|
|
continue;
|
|
|
|
/*
|
|
* If the new signal is being masked, look for other
|
|
* signals.
|
|
*/
|
|
signum = p->p_xstat;
|
|
p->p_xstat = 0;
|
|
/*
|
|
* `p->p_sigctx.ps_siglist |= mask' is done
|
|
* in setrunnable().
|
|
*/
|
|
if (sigismember(&p->p_sigctx.ps_sigmask, signum))
|
|
continue;
|
|
/* take the signal! */
|
|
sigdelset(&p->p_sigctx.ps_siglist, signum);
|
|
}
|
|
|
|
prop = sigprop[signum];
|
|
|
|
/*
|
|
* Decide whether the signal should be returned.
|
|
* Return the signal's number, or fall through
|
|
* to clear it from the pending mask.
|
|
*/
|
|
switch ((long)SIGACTION(p, signum).sa_handler) {
|
|
|
|
case (long)SIG_DFL:
|
|
/*
|
|
* Don't take default actions on system processes.
|
|
*/
|
|
if (p->p_pid <= 1) {
|
|
#ifdef DIAGNOSTIC
|
|
/*
|
|
* Are you sure you want to ignore SIGSEGV
|
|
* in init? XXX
|
|
*/
|
|
printf("Process (pid %d) got signal %d\n",
|
|
p->p_pid, signum);
|
|
#endif
|
|
break; /* == ignore */
|
|
}
|
|
/*
|
|
* If there is a pending stop signal to process
|
|
* with default action, stop here,
|
|
* then clear the signal. However,
|
|
* if process is member of an orphaned
|
|
* process group, ignore tty stop signals.
|
|
*/
|
|
if (prop & SA_STOP) {
|
|
if (p->p_flag & P_TRACED ||
|
|
(p->p_pgrp->pg_jobc == 0 &&
|
|
prop & SA_TTYSTOP))
|
|
break; /* == ignore */
|
|
p->p_xstat = signum;
|
|
if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0)
|
|
child_psignal(p);
|
|
SCHED_LOCK(s);
|
|
proc_stop(p, 1);
|
|
sigswitch:
|
|
mi_switch(l, NULL);
|
|
SCHED_ASSERT_UNLOCKED();
|
|
splx(s);
|
|
break;
|
|
} else if (prop & SA_IGNORE) {
|
|
/*
|
|
* Except for SIGCONT, shouldn't get here.
|
|
* Default action is to ignore; drop it.
|
|
*/
|
|
break; /* == ignore */
|
|
} else
|
|
goto keep;
|
|
/*NOTREACHED*/
|
|
|
|
case (long)SIG_IGN:
|
|
/*
|
|
* Masking above should prevent us ever trying
|
|
* to take action on an ignored signal other
|
|
* than SIGCONT, unless process is traced.
|
|
*/
|
|
#ifdef DEBUG_ISSIGNAL
|
|
if ((prop & SA_CONT) == 0 &&
|
|
(p->p_flag & P_TRACED) == 0)
|
|
printf("issignal\n");
|
|
#endif
|
|
break; /* == ignore */
|
|
|
|
default:
|
|
/*
|
|
* This signal has an action, let
|
|
* postsig() process it.
|
|
*/
|
|
goto keep;
|
|
}
|
|
}
|
|
/* NOTREACHED */
|
|
|
|
keep:
|
|
/* leave the signal for later */
|
|
sigaddset(&p->p_sigctx.ps_siglist, signum);
|
|
CHECKSIGS(p);
|
|
KERNEL_PROC_UNLOCK(l);
|
|
return (signum);
|
|
}
|
|
|
|
/*
|
|
* Put the argument process into the stopped state and notify the parent
|
|
* via wakeup. Signals are handled elsewhere. The process must not be
|
|
* on the run queue.
|
|
*/
|
|
void
|
|
proc_stop(struct proc *p, int dowakeup)
|
|
{
|
|
struct lwp *l;
|
|
struct proc *parent;
|
|
struct sadata_vp *vp;
|
|
|
|
SCHED_ASSERT_LOCKED();
|
|
|
|
/* XXX lock process LWP state */
|
|
p->p_flag &= ~P_WAITED;
|
|
p->p_stat = SSTOP;
|
|
parent = p->p_pptr;
|
|
parent->p_nstopchild++;
|
|
|
|
if (p->p_flag & P_SA) {
|
|
/*
|
|
* Only (try to) put the LWP on the VP in stopped
|
|
* state.
|
|
* All other LWPs will suspend in sa_setwoken()
|
|
* because the VP-LWP in stopped state cannot be
|
|
* repossessed.
|
|
*/
|
|
SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
|
|
l = vp->savp_lwp;
|
|
if (l->l_stat == LSONPROC && l->l_cpu == curcpu()) {
|
|
l->l_stat = LSSTOP;
|
|
p->p_nrlwps--;
|
|
} else if (l->l_stat == LSRUN) {
|
|
/* Remove LWP from the run queue */
|
|
remrunqueue(l);
|
|
l->l_stat = LSSTOP;
|
|
p->p_nrlwps--;
|
|
} else if (l->l_stat == LSSLEEP &&
|
|
l->l_flag & L_SA_IDLE) {
|
|
l->l_flag &= ~L_SA_IDLE;
|
|
l->l_stat = LSSTOP;
|
|
}
|
|
}
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Put as many LWP's as possible in stopped state.
|
|
* Sleeping ones will notice the stopped state as they try to
|
|
* return to userspace.
|
|
*/
|
|
|
|
LIST_FOREACH(l, &p->p_lwps, l_sibling) {
|
|
if (l->l_stat == LSONPROC) {
|
|
/* XXX SMP this assumes that a LWP that is LSONPROC
|
|
* is curlwp and hence is about to be mi_switched
|
|
* away; the only callers of proc_stop() are:
|
|
* - psignal
|
|
* - issignal()
|
|
* For the former, proc_stop() is only called when
|
|
* no processes are running, so we don't worry.
|
|
* For the latter, proc_stop() is called right
|
|
* before mi_switch().
|
|
*/
|
|
l->l_stat = LSSTOP;
|
|
p->p_nrlwps--;
|
|
} else if (l->l_stat == LSRUN) {
|
|
/* Remove LWP from the run queue */
|
|
remrunqueue(l);
|
|
l->l_stat = LSSTOP;
|
|
p->p_nrlwps--;
|
|
} else if ((l->l_stat == LSSLEEP) ||
|
|
(l->l_stat == LSSUSPENDED) ||
|
|
(l->l_stat == LSZOMB) ||
|
|
(l->l_stat == LSDEAD)) {
|
|
/*
|
|
* Don't do anything; let sleeping LWPs
|
|
* discover the stopped state of the process
|
|
* on their way out of the kernel; otherwise,
|
|
* things like NFS threads that sleep with
|
|
* locks will block the rest of the system
|
|
* from getting any work done.
|
|
*
|
|
* Suspended/dead/zombie LWPs aren't going
|
|
* anywhere, so we don't need to touch them.
|
|
*/
|
|
}
|
|
#ifdef DIAGNOSTIC
|
|
else {
|
|
panic("proc_stop: process %d lwp %d "
|
|
"in unstoppable state %d.\n",
|
|
p->p_pid, l->l_lid, l->l_stat);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
out:
|
|
/* XXX unlock process LWP state */
|
|
|
|
if (dowakeup)
|
|
sched_wakeup((caddr_t)p->p_pptr);
|
|
}
|
|
|
|
/*
|
|
* Given a process in state SSTOP, set the state back to SACTIVE and
|
|
* move LSSTOP'd LWPs to LSSLEEP or make them runnable.
|
|
*
|
|
* If no LWPs ended up runnable (and therefore able to take a signal),
|
|
* return a LWP that is sleeping interruptably. The caller can wake
|
|
* that LWP up to take a signal.
|
|
*/
|
|
struct lwp *
|
|
proc_unstop(struct proc *p)
|
|
{
|
|
struct lwp *l, *lr = NULL;
|
|
struct sadata_vp *vp;
|
|
int cantake = 0;
|
|
|
|
SCHED_ASSERT_LOCKED();
|
|
|
|
/*
|
|
* Our caller wants to be informed if there are only sleeping
|
|
* and interruptable LWPs left after we have run so that it
|
|
* can invoke setrunnable() if required - return one of the
|
|
* interruptable LWPs if this is the case.
|
|
*/
|
|
|
|
if (!(p->p_flag & P_WAITED))
|
|
p->p_pptr->p_nstopchild--;
|
|
p->p_stat = SACTIVE;
|
|
LIST_FOREACH(l, &p->p_lwps, l_sibling) {
|
|
if (l->l_stat == LSRUN) {
|
|
lr = NULL;
|
|
cantake = 1;
|
|
}
|
|
if (l->l_stat != LSSTOP)
|
|
continue;
|
|
|
|
if (l->l_wchan != NULL) {
|
|
l->l_stat = LSSLEEP;
|
|
if ((cantake == 0) && (l->l_flag & L_SINTR)) {
|
|
lr = l;
|
|
cantake = 1;
|
|
}
|
|
} else {
|
|
setrunnable(l);
|
|
lr = NULL;
|
|
cantake = 1;
|
|
}
|
|
}
|
|
if (p->p_flag & P_SA) {
|
|
/* Only consider returning the LWP on the VP. */
|
|
SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
|
|
lr = vp->savp_lwp;
|
|
if (lr->l_stat == LSSLEEP) {
|
|
if (lr->l_flag & L_SA_YIELD) {
|
|
setrunnable(lr);
|
|
break;
|
|
} else if (lr->l_flag & L_SINTR)
|
|
return lr;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
return lr;
|
|
}
|
|
|
|
/*
|
|
* Take the action for the specified signal
|
|
* from the current set of pending signals.
|
|
*/
|
|
void
|
|
postsig(int signum)
|
|
{
|
|
struct lwp *l;
|
|
struct proc *p;
|
|
struct sigacts *ps;
|
|
sig_t action;
|
|
sigset_t *returnmask;
|
|
|
|
l = curlwp;
|
|
p = l->l_proc;
|
|
ps = p->p_sigacts;
|
|
#ifdef DIAGNOSTIC
|
|
if (signum == 0)
|
|
panic("postsig");
|
|
#endif
|
|
|
|
KERNEL_PROC_LOCK(l);
|
|
|
|
#ifdef MULTIPROCESSOR
|
|
/*
|
|
* On MP, issignal() can return the same signal to multiple
|
|
* LWPs. The LWPs will block above waiting for the kernel
|
|
* lock and the first LWP which gets through will then remove
|
|
* the signal from ps_siglist. All other LWPs exit here.
|
|
*/
|
|
if (!sigismember(&p->p_sigctx.ps_siglist, signum)) {
|
|
KERNEL_PROC_UNLOCK(l);
|
|
return;
|
|
}
|
|
#endif
|
|
sigdelset(&p->p_sigctx.ps_siglist, signum);
|
|
action = SIGACTION_PS(ps, signum).sa_handler;
|
|
if (action == SIG_DFL) {
|
|
#ifdef KTRACE
|
|
if (KTRPOINT(p, KTR_PSIG))
|
|
ktrpsig(l, signum, action,
|
|
p->p_sigctx.ps_flags & SAS_OLDMASK ?
|
|
&p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
|
|
NULL);
|
|
#endif
|
|
/*
|
|
* Default action, where the default is to kill
|
|
* the process. (Other cases were ignored above.)
|
|
*/
|
|
sigexit(l, signum);
|
|
/* NOTREACHED */
|
|
} else {
|
|
ksiginfo_t *ksi;
|
|
/*
|
|
* If we get here, the signal must be caught.
|
|
*/
|
|
#ifdef DIAGNOSTIC
|
|
if (action == SIG_IGN ||
|
|
sigismember(&p->p_sigctx.ps_sigmask, signum))
|
|
panic("postsig action");
|
|
#endif
|
|
/*
|
|
* Set the new mask value and also defer further
|
|
* occurrences of this signal.
|
|
*
|
|
* Special case: user has done a sigpause. Here the
|
|
* current mask is not of interest, but rather the
|
|
* mask from before the sigpause is what we want
|
|
* restored after the signal processing is completed.
|
|
*/
|
|
if (p->p_sigctx.ps_flags & SAS_OLDMASK) {
|
|
returnmask = &p->p_sigctx.ps_oldmask;
|
|
p->p_sigctx.ps_flags &= ~SAS_OLDMASK;
|
|
} else
|
|
returnmask = &p->p_sigctx.ps_sigmask;
|
|
p->p_stats->p_ru.ru_nsignals++;
|
|
ksi = ksiginfo_dequeue(p, signum);
|
|
#ifdef KTRACE
|
|
if (KTRPOINT(p, KTR_PSIG))
|
|
ktrpsig(l, signum, action,
|
|
p->p_sigctx.ps_flags & SAS_OLDMASK ?
|
|
&p->p_sigctx.ps_oldmask : &p->p_sigctx.ps_sigmask,
|
|
ksi);
|
|
#endif
|
|
if (ksi == NULL) {
|
|
ksiginfo_t ksi1;
|
|
/*
|
|
* we did not save any siginfo for this, either
|
|
* because the signal was not caught, or because the
|
|
* user did not request SA_SIGINFO
|
|
*/
|
|
KSI_INIT_EMPTY(&ksi1);
|
|
ksi1.ksi_signo = signum;
|
|
kpsendsig(l, &ksi1, returnmask);
|
|
} else {
|
|
kpsendsig(l, ksi, returnmask);
|
|
ksiginfo_free(ksi);
|
|
}
|
|
p->p_sigctx.ps_lwp = 0;
|
|
p->p_sigctx.ps_code = 0;
|
|
p->p_sigctx.ps_signo = 0;
|
|
(void) splsched(); /* XXXSMP */
|
|
sigplusset(&SIGACTION_PS(ps, signum).sa_mask,
|
|
&p->p_sigctx.ps_sigmask);
|
|
if (SIGACTION_PS(ps, signum).sa_flags & SA_RESETHAND) {
|
|
sigdelset(&p->p_sigctx.ps_sigcatch, signum);
|
|
if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
|
|
sigaddset(&p->p_sigctx.ps_sigignore, signum);
|
|
SIGACTION_PS(ps, signum).sa_handler = SIG_DFL;
|
|
}
|
|
(void) spl0(); /* XXXSMP */
|
|
}
|
|
|
|
KERNEL_PROC_UNLOCK(l);
|
|
}
|
|
|
|
/*
|
|
* Kill the current process for stated reason.
|
|
*/
|
|
void
|
|
killproc(struct proc *p, const char *why)
|
|
{
|
|
log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why);
|
|
uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why);
|
|
psignal(p, SIGKILL);
|
|
}
|
|
|
|
/*
|
|
* Force the current process to exit with the specified signal, dumping core
|
|
* if appropriate. We bypass the normal tests for masked and caught signals,
|
|
* allowing unrecoverable failures to terminate the process without changing
|
|
* signal state. Mark the accounting record with the signal termination.
|
|
* If dumping core, save the signal number for the debugger. Calls exit and
|
|
* does not return.
|
|
*/
|
|
|
|
#if defined(DEBUG)
|
|
int kern_logsigexit = 1; /* not static to make public for sysctl */
|
|
#else
|
|
int kern_logsigexit = 0; /* not static to make public for sysctl */
|
|
#endif
|
|
|
|
static const char logcoredump[] =
|
|
"pid %d (%s), uid %d: exited on signal %d (core dumped)\n";
|
|
static const char lognocoredump[] =
|
|
"pid %d (%s), uid %d: exited on signal %d (core not dumped, err = %d)\n";
|
|
|
|
/* Wrapper function for use in p_userret */
|
|
static void
|
|
lwp_coredump_hook(struct lwp *l, void *arg)
|
|
{
|
|
int s;
|
|
|
|
/*
|
|
* Suspend ourselves, so that the kernel stack and therefore
|
|
* the userland registers saved in the trapframe are around
|
|
* for coredump() to write them out.
|
|
*/
|
|
KERNEL_PROC_LOCK(l);
|
|
l->l_flag &= ~L_DETACHED;
|
|
SCHED_LOCK(s);
|
|
l->l_stat = LSSUSPENDED;
|
|
l->l_proc->p_nrlwps--;
|
|
/* XXX NJWLWP check if this makes sense here: */
|
|
l->l_proc->p_stats->p_ru.ru_nvcsw++;
|
|
mi_switch(l, NULL);
|
|
SCHED_ASSERT_UNLOCKED();
|
|
splx(s);
|
|
|
|
lwp_exit(l);
|
|
}
|
|
|
|
void
|
|
sigexit(struct lwp *l, int signum)
|
|
{
|
|
struct proc *p;
|
|
#if 0
|
|
struct lwp *l2;
|
|
#endif
|
|
int exitsig;
|
|
#ifdef COREDUMP
|
|
int error;
|
|
#endif
|
|
|
|
p = l->l_proc;
|
|
|
|
/*
|
|
* Don't permit coredump() or exit1() multiple times
|
|
* in the same process.
|
|
*/
|
|
if (p->p_flag & P_WEXIT) {
|
|
KERNEL_PROC_UNLOCK(l);
|
|
(*p->p_userret)(l, p->p_userret_arg);
|
|
}
|
|
p->p_flag |= P_WEXIT;
|
|
/* We don't want to switch away from exiting. */
|
|
/* XXX multiprocessor: stop LWPs on other processors. */
|
|
#if 0
|
|
if (p->p_flag & P_SA) {
|
|
LIST_FOREACH(l2, &p->p_lwps, l_sibling)
|
|
l2->l_flag &= ~L_SA;
|
|
p->p_flag &= ~P_SA;
|
|
}
|
|
#endif
|
|
|
|
/* Make other LWPs stick around long enough to be dumped */
|
|
p->p_userret = lwp_coredump_hook;
|
|
p->p_userret_arg = NULL;
|
|
|
|
exitsig = signum;
|
|
p->p_acflag |= AXSIG;
|
|
if (sigprop[signum] & SA_CORE) {
|
|
p->p_sigctx.ps_signo = signum;
|
|
#ifdef COREDUMP
|
|
if ((error = coredump(l, NULL)) == 0)
|
|
exitsig |= WCOREFLAG;
|
|
#endif
|
|
|
|
if (kern_logsigexit) {
|
|
/* XXX What if we ever have really large UIDs? */
|
|
int uid = l->l_cred ?
|
|
(int)kauth_cred_geteuid(l->l_cred) : -1;
|
|
|
|
#ifdef COREDUMP
|
|
if (error)
|
|
log(LOG_INFO, lognocoredump, p->p_pid,
|
|
p->p_comm, uid, signum, error);
|
|
else
|
|
#endif
|
|
log(LOG_INFO, logcoredump, p->p_pid,
|
|
p->p_comm, uid, signum);
|
|
}
|
|
|
|
#ifdef PAX_SEGVGUARD
|
|
pax_segvguard(l, p->p_textvp, p->p_comm, TRUE);
|
|
#endif /* PAX_SEGVGUARD */
|
|
}
|
|
|
|
exit1(l, W_EXITCODE(0, exitsig));
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
#ifdef COREDUMP
|
|
struct coredump_iostate {
|
|
struct lwp *io_lwp;
|
|
struct vnode *io_vp;
|
|
kauth_cred_t io_cred;
|
|
off_t io_offset;
|
|
};
|
|
|
|
int
|
|
coredump_write(void *cookie, enum uio_seg segflg, const void *data, size_t len)
|
|
{
|
|
struct coredump_iostate *io = cookie;
|
|
int error;
|
|
|
|
error = vn_rdwr(UIO_WRITE, io->io_vp, __UNCONST(data), len,
|
|
io->io_offset, segflg,
|
|
IO_NODELOCKED|IO_UNIT, io->io_cred, NULL,
|
|
segflg == UIO_USERSPACE ? io->io_lwp : NULL);
|
|
if (error) {
|
|
printf("pid %d (%s): %s write of %zu@%p at %lld failed: %d\n",
|
|
io->io_lwp->l_proc->p_pid, io->io_lwp->l_proc->p_comm,
|
|
segflg == UIO_USERSPACE ? "user" : "system",
|
|
len, data, (long long) io->io_offset, error);
|
|
return (error);
|
|
}
|
|
|
|
io->io_offset += len;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Dump core, into a file named "progname.core" or "core" (depending on the
|
|
* value of shortcorename), unless the process was setuid/setgid.
|
|
*/
|
|
int
|
|
coredump(struct lwp *l, const char *pattern)
|
|
{
|
|
struct vnode *vp;
|
|
struct proc *p;
|
|
struct vmspace *vm;
|
|
kauth_cred_t cred;
|
|
struct nameidata nd;
|
|
struct vattr vattr;
|
|
struct mount *mp;
|
|
struct coredump_iostate io;
|
|
int error, error1;
|
|
char *name = NULL;
|
|
|
|
p = l->l_proc;
|
|
vm = p->p_vmspace;
|
|
cred = l->l_cred;
|
|
|
|
/*
|
|
* Make sure the process has not set-id, to prevent data leaks,
|
|
* unless it was specifically requested to allow set-id coredumps.
|
|
*/
|
|
if ((p->p_flag & P_SUGID) && !security_setidcore_dump)
|
|
return EPERM;
|
|
|
|
/*
|
|
* Refuse to core if the data + stack + user size is larger than
|
|
* the core dump limit. XXX THIS IS WRONG, because of mapped
|
|
* data.
|
|
*/
|
|
if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >=
|
|
p->p_rlimit[RLIMIT_CORE].rlim_cur)
|
|
return EFBIG; /* better error code? */
|
|
|
|
restart:
|
|
/*
|
|
* The core dump will go in the current working directory. Make
|
|
* sure that the directory is still there and that the mount flags
|
|
* allow us to write core dumps there.
|
|
*/
|
|
vp = p->p_cwdi->cwdi_cdir;
|
|
if (vp->v_mount == NULL ||
|
|
(vp->v_mount->mnt_flag & MNT_NOCOREDUMP) != 0) {
|
|
error = EPERM;
|
|
goto done;
|
|
}
|
|
|
|
if ((p->p_flag & P_SUGID) && security_setidcore_dump)
|
|
pattern = security_setidcore_path;
|
|
|
|
if (pattern == NULL)
|
|
pattern = p->p_limit->pl_corename;
|
|
if (name == NULL) {
|
|
name = PNBUF_GET();
|
|
}
|
|
if ((error = build_corename(p, name, pattern, MAXPATHLEN)) != 0)
|
|
goto done;
|
|
NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, l);
|
|
if ((error = vn_open(&nd, O_CREAT | O_NOFOLLOW | FWRITE,
|
|
S_IRUSR | S_IWUSR)) != 0)
|
|
goto done;
|
|
vp = nd.ni_vp;
|
|
|
|
if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
|
|
VOP_UNLOCK(vp, 0);
|
|
if ((error = vn_close(vp, FWRITE, cred, l)) != 0)
|
|
goto done;
|
|
if ((error = vn_start_write(NULL, &mp,
|
|
V_WAIT | V_SLEEPONLY | V_PCATCH)) != 0)
|
|
goto done;
|
|
goto restart;
|
|
}
|
|
|
|
/* Don't dump to non-regular files or files with links. */
|
|
if (vp->v_type != VREG ||
|
|
VOP_GETATTR(vp, &vattr, cred, l) || vattr.va_nlink != 1) {
|
|
error = EINVAL;
|
|
goto out;
|
|
}
|
|
VATTR_NULL(&vattr);
|
|
vattr.va_size = 0;
|
|
|
|
if ((p->p_flag & P_SUGID) && security_setidcore_dump) {
|
|
vattr.va_uid = security_setidcore_owner;
|
|
vattr.va_gid = security_setidcore_group;
|
|
vattr.va_mode = security_setidcore_mode;
|
|
}
|
|
|
|
VOP_LEASE(vp, l, cred, LEASE_WRITE);
|
|
VOP_SETATTR(vp, &vattr, cred, l);
|
|
p->p_acflag |= ACORE;
|
|
|
|
io.io_lwp = l;
|
|
io.io_vp = vp;
|
|
io.io_cred = cred;
|
|
io.io_offset = 0;
|
|
|
|
/* Now dump the actual core file. */
|
|
error = (*p->p_execsw->es_coredump)(l, &io);
|
|
out:
|
|
VOP_UNLOCK(vp, 0);
|
|
vn_finished_write(mp, 0);
|
|
error1 = vn_close(vp, FWRITE, cred, l);
|
|
if (error == 0)
|
|
error = error1;
|
|
done:
|
|
if (name != NULL)
|
|
PNBUF_PUT(name);
|
|
return error;
|
|
}
|
|
#endif /* COREDUMP */
|
|
|
|
/*
|
|
* Nonexistent system call-- signal process (may want to handle it).
|
|
* Flag error in case process won't see signal immediately (blocked or ignored).
|
|
*/
|
|
#ifndef PTRACE
|
|
__weak_alias(sys_ptrace, sys_nosys);
|
|
#endif
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
sys_nosys(struct lwp *l, void *v, register_t *retval)
|
|
{
|
|
struct proc *p;
|
|
|
|
p = l->l_proc;
|
|
psignal(p, SIGSYS);
|
|
return (ENOSYS);
|
|
}
|
|
|
|
#ifdef COREDUMP
|
|
static int
|
|
build_corename(struct proc *p, char *dst, const char *src, size_t len)
|
|
{
|
|
const char *s;
|
|
char *d, *end;
|
|
int i;
|
|
|
|
for (s = src, d = dst, end = d + len; *s != '\0'; s++) {
|
|
if (*s == '%') {
|
|
switch (*(s + 1)) {
|
|
case 'n':
|
|
i = snprintf(d, end - d, "%s", p->p_comm);
|
|
break;
|
|
case 'p':
|
|
i = snprintf(d, end - d, "%d", p->p_pid);
|
|
break;
|
|
case 'u':
|
|
i = snprintf(d, end - d, "%.*s",
|
|
(int)sizeof p->p_pgrp->pg_session->s_login,
|
|
p->p_pgrp->pg_session->s_login);
|
|
break;
|
|
case 't':
|
|
i = snprintf(d, end - d, "%ld",
|
|
p->p_stats->p_start.tv_sec);
|
|
break;
|
|
default:
|
|
goto copy;
|
|
}
|
|
d += i;
|
|
s++;
|
|
} else {
|
|
copy: *d = *s;
|
|
d++;
|
|
}
|
|
if (d >= end)
|
|
return (ENAMETOOLONG);
|
|
}
|
|
*d = '\0';
|
|
return 0;
|
|
}
|
|
#endif /* COREDUMP */
|
|
|
|
void
|
|
getucontext(struct lwp *l, ucontext_t *ucp)
|
|
{
|
|
struct proc *p;
|
|
|
|
p = l->l_proc;
|
|
|
|
ucp->uc_flags = 0;
|
|
ucp->uc_link = l->l_ctxlink;
|
|
|
|
(void)sigprocmask1(p, 0, NULL, &ucp->uc_sigmask);
|
|
ucp->uc_flags |= _UC_SIGMASK;
|
|
|
|
/*
|
|
* The (unsupplied) definition of the `current execution stack'
|
|
* in the System V Interface Definition appears to allow returning
|
|
* the main context stack.
|
|
*/
|
|
if ((p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK) == 0) {
|
|
ucp->uc_stack.ss_sp = (void *)USRSTACK;
|
|
ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
|
|
ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
|
|
} else {
|
|
/* Simply copy alternate signal execution stack. */
|
|
ucp->uc_stack = p->p_sigctx.ps_sigstk;
|
|
}
|
|
ucp->uc_flags |= _UC_STACK;
|
|
|
|
cpu_getmcontext(l, &ucp->uc_mcontext, &ucp->uc_flags);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
sys_getcontext(struct lwp *l, void *v, register_t *retval)
|
|
{
|
|
struct sys_getcontext_args /* {
|
|
syscallarg(struct __ucontext *) ucp;
|
|
} */ *uap = v;
|
|
ucontext_t uc;
|
|
|
|
getucontext(l, &uc);
|
|
|
|
return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp))));
|
|
}
|
|
|
|
int
|
|
setucontext(struct lwp *l, const ucontext_t *ucp)
|
|
{
|
|
struct proc *p;
|
|
int error;
|
|
|
|
p = l->l_proc;
|
|
if ((error = cpu_setmcontext(l, &ucp->uc_mcontext, ucp->uc_flags)) != 0)
|
|
return (error);
|
|
l->l_ctxlink = ucp->uc_link;
|
|
|
|
if ((ucp->uc_flags & _UC_SIGMASK) != 0)
|
|
sigprocmask1(p, SIG_SETMASK, &ucp->uc_sigmask, NULL);
|
|
|
|
/*
|
|
* If there was stack information, update whether or not we are
|
|
* still running on an alternate signal stack.
|
|
*/
|
|
if ((ucp->uc_flags & _UC_STACK) != 0) {
|
|
if (ucp->uc_stack.ss_flags & SS_ONSTACK)
|
|
p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
|
|
else
|
|
p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
sys_setcontext(struct lwp *l, void *v, register_t *retval)
|
|
{
|
|
struct sys_setcontext_args /* {
|
|
syscallarg(const ucontext_t *) ucp;
|
|
} */ *uap = v;
|
|
ucontext_t uc;
|
|
int error;
|
|
|
|
error = copyin(SCARG(uap, ucp), &uc, sizeof (uc));
|
|
if (error)
|
|
return (error);
|
|
if (!(uc.uc_flags & _UC_CPU))
|
|
return (EINVAL);
|
|
error = setucontext(l, &uc);
|
|
if (error)
|
|
return (error);
|
|
|
|
return (EJUSTRETURN);
|
|
}
|
|
|
|
/*
|
|
* sigtimedwait(2) system call, used also for implementation
|
|
* of sigwaitinfo() and sigwait().
|
|
*
|
|
* This only handles single LWP in signal wait. libpthread provides
|
|
* it's own sigtimedwait() wrapper to DTRT WRT individual threads.
|
|
*/
|
|
int
|
|
sys___sigtimedwait(struct lwp *l, void *v, register_t *retval)
|
|
{
|
|
return __sigtimedwait1(l, v, retval, copyout, copyin, copyout);
|
|
}
|
|
|
|
int
|
|
__sigtimedwait1(struct lwp *l, void *v, register_t *retval,
|
|
copyout_t put_info, copyin_t fetch_timeout, copyout_t put_timeout)
|
|
{
|
|
struct sys___sigtimedwait_args /* {
|
|
syscallarg(const sigset_t *) set;
|
|
syscallarg(siginfo_t *) info;
|
|
syscallarg(struct timespec *) timeout;
|
|
} */ *uap = v;
|
|
sigset_t *waitset, twaitset;
|
|
struct proc *p = l->l_proc;
|
|
int error, signum;
|
|
int timo = 0;
|
|
struct timespec ts, tsstart;
|
|
ksiginfo_t *ksi;
|
|
|
|
memset(&tsstart, 0, sizeof tsstart); /* XXX gcc */
|
|
|
|
MALLOC(waitset, sigset_t *, sizeof(sigset_t), M_TEMP, M_WAITOK);
|
|
|
|
if ((error = copyin(SCARG(uap, set), waitset, sizeof(sigset_t)))) {
|
|
FREE(waitset, M_TEMP);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Silently ignore SA_CANTMASK signals. psignal() would
|
|
* ignore SA_CANTMASK signals in waitset, we do this
|
|
* only for the below siglist check.
|
|
*/
|
|
sigminusset(&sigcantmask, waitset);
|
|
|
|
/*
|
|
* First scan siglist and check if there is signal from
|
|
* our waitset already pending.
|
|
*/
|
|
twaitset = *waitset;
|
|
__sigandset(&p->p_sigctx.ps_siglist, &twaitset);
|
|
if ((signum = firstsig(&twaitset))) {
|
|
/* found pending signal */
|
|
sigdelset(&p->p_sigctx.ps_siglist, signum);
|
|
ksi = ksiginfo_dequeue(p, signum);
|
|
if (!ksi) {
|
|
/* No queued siginfo, manufacture one */
|
|
ksi = ksiginfo_alloc(PR_WAITOK);
|
|
KSI_INIT(ksi);
|
|
ksi->ksi_info._signo = signum;
|
|
ksi->ksi_info._code = SI_USER;
|
|
}
|
|
|
|
goto sig;
|
|
}
|
|
|
|
/*
|
|
* Calculate timeout, if it was specified.
|
|
*/
|
|
if (SCARG(uap, timeout)) {
|
|
uint64_t ms;
|
|
|
|
if ((error = (*fetch_timeout)(SCARG(uap, timeout), &ts, sizeof(ts))))
|
|
return (error);
|
|
|
|
ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
|
|
timo = mstohz(ms);
|
|
if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
|
|
timo = 1;
|
|
if (timo <= 0)
|
|
return (EAGAIN);
|
|
|
|
/*
|
|
* Remember current uptime, it would be used in
|
|
* ECANCELED/ERESTART case.
|
|
*/
|
|
getnanouptime(&tsstart);
|
|
}
|
|
|
|
/*
|
|
* Setup ps_sigwait list. Pass pointer to malloced memory
|
|
* here; it's not possible to pass pointer to a structure
|
|
* on current process's stack, the current process might
|
|
* be swapped out at the time the signal would get delivered.
|
|
*/
|
|
ksi = ksiginfo_alloc(PR_WAITOK);
|
|
p->p_sigctx.ps_sigwaited = ksi;
|
|
p->p_sigctx.ps_sigwait = waitset;
|
|
|
|
/*
|
|
* Wait for signal to arrive. We can either be woken up or
|
|
* time out.
|
|
*/
|
|
error = tsleep(&p->p_sigctx.ps_sigwait, PPAUSE|PCATCH, "sigwait", timo);
|
|
|
|
/*
|
|
* Need to find out if we woke as a result of lwp_wakeup()
|
|
* or a signal outside our wait set.
|
|
*/
|
|
if (error == EINTR && p->p_sigctx.ps_sigwaited
|
|
&& !firstsig(&p->p_sigctx.ps_siglist)) {
|
|
/* wakeup via _lwp_wakeup() */
|
|
error = ECANCELED;
|
|
} else if (!error && p->p_sigctx.ps_sigwaited) {
|
|
/* spurious wakeup - arrange for syscall restart */
|
|
error = ERESTART;
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* On error, clear sigwait indication. psignal() clears it
|
|
* in !error case.
|
|
*/
|
|
if (error) {
|
|
p->p_sigctx.ps_sigwaited = NULL;
|
|
|
|
/*
|
|
* If the sleep was interrupted (either by signal or wakeup),
|
|
* update the timeout and copyout new value back.
|
|
* It would be used when the syscall would be restarted
|
|
* or called again.
|
|
*/
|
|
if (timo && (error == ERESTART || error == ECANCELED)) {
|
|
struct timespec tsnow;
|
|
int err;
|
|
|
|
/* XXX double check the following change */
|
|
getnanouptime(&tsnow);
|
|
|
|
/* compute how much time has passed since start */
|
|
timespecsub(&tsnow, &tsstart, &tsnow);
|
|
/* substract passed time from timeout */
|
|
timespecsub(&ts, &tsnow, &ts);
|
|
|
|
if (ts.tv_sec < 0) {
|
|
error = EAGAIN;
|
|
goto fail;
|
|
}
|
|
/* XXX double check the previous change */
|
|
|
|
/* copy updated timeout to userland */
|
|
if ((err = (*put_timeout)(&ts, SCARG(uap, timeout),
|
|
sizeof(ts)))) {
|
|
error = err;
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* If a signal from the wait set arrived, copy it to userland.
|
|
* Copy only the used part of siginfo, the padding part is
|
|
* left unchanged (userland is not supposed to touch it anyway).
|
|
*/
|
|
sig:
|
|
return (*put_info)(&ksi->ksi_info, SCARG(uap, info), sizeof(ksi->ksi_info));
|
|
|
|
fail:
|
|
FREE(waitset, M_TEMP);
|
|
ksiginfo_free(ksi);
|
|
p->p_sigctx.ps_sigwait = NULL;
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Returns true if signal is ignored or masked for passed process.
|
|
*/
|
|
int
|
|
sigismasked(struct proc *p, int sig)
|
|
{
|
|
|
|
return (sigismember(&p->p_sigctx.ps_sigignore, sig) ||
|
|
sigismember(&p->p_sigctx.ps_sigmask, sig));
|
|
}
|
|
|
|
static int
|
|
filt_sigattach(struct knote *kn)
|
|
{
|
|
struct proc *p = curproc;
|
|
|
|
kn->kn_ptr.p_proc = p;
|
|
kn->kn_flags |= EV_CLEAR; /* automatically set */
|
|
|
|
SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
filt_sigdetach(struct knote *kn)
|
|
{
|
|
struct proc *p = kn->kn_ptr.p_proc;
|
|
|
|
SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
|
|
}
|
|
|
|
/*
|
|
* signal knotes are shared with proc knotes, so we apply a mask to
|
|
* the hint in order to differentiate them from process hints. This
|
|
* could be avoided by using a signal-specific knote list, but probably
|
|
* isn't worth the trouble.
|
|
*/
|
|
static int
|
|
filt_signal(struct knote *kn, long hint)
|
|
{
|
|
|
|
if (hint & NOTE_SIGNAL) {
|
|
hint &= ~NOTE_SIGNAL;
|
|
|
|
if (kn->kn_id == hint)
|
|
kn->kn_data++;
|
|
}
|
|
return (kn->kn_data != 0);
|
|
}
|
|
|
|
const struct filterops sig_filtops = {
|
|
0, filt_sigattach, filt_sigdetach, filt_signal
|
|
};
|